(@ KATANA

User Guide
VERSION 6.5v3

FOUNDRY-

Katana™ User Guide. Copyright © 2023 The Foundry Visionmongers Ltd. All Rights Reserved. Use of this document and the Katana software is subject
to an End User License Agreement (the "EULA"), the terms of which are incorporated herein by reference. This document and the Katana software may
be used or copied only in accordance with the terms of the EULA. This document, the Katana software and all intellectual property rights relating
thereto are and shall remain the sole property of The Foundry Visionmongers Ltd. ("The Foundry") and/or The Foundry's licensors.

The EULA can be read in the Katana User Guide.

The Foundry assumes no responsibility or liability for any errors or inaccuracies that may appear in this document and this document is subject to
change without notice. The content of this document is furnished for informational use only.

Except as permitted by the EULA, no part of this document may be reproduced, stored in a retrieval system or transmitted, in any form or by any
means, electronic, mechanical, recording or otherwise, without the prior written permission of The Foundry. To the extent that the EULA authorizes
the making of copies of this User Guide, such copies shall be reproduced with all copyright, trademark and other proprietary rights notices included
herein. The EULA expressly prohibits any action that could adversely affect the property rights of The Foundry and/or The Foundry's licensors,
including, but not limited to, the removal of the following (or any other copyright, trademark or other proprietary rights notice included herein):

Katana"'software © 2023 The Foundry Visionmongers Ltd. All Rights Reserved. Katana" is a trademark of The Foundry Visionmongers Ltd.

Sony Pictures Imageworks is a trademark of Sony Pictures Imageworks.
Mudbox™ is a trademark of Autodesk, Inc.
RenderMan ® is a registered trademark of Pixar.

In addition to those names set forth on this page, the names of other actual companies and products mentioned in this Reference Guide (including,
but not limited to, those set forth below) may be the trademarks or service marks, or registered trademarks or service marks, of their respective
owners in the United States and/or other countries. No association with any company or product is intended or inferred by the mention of its name in
this document.

Linux ® is a registered trademark of Linus Torvalds.
The Foundry

5 Golden Square,

London,

W1F 7HT

Rev: Tuesday, March 12, 2024

Contents

User Guide

Installation and Licensing

Katana on Windows
Installing on Windows
Licensing Katana on Windows
Uninstalling on Windows

Katana on Linux
Installing on Linux
Licensing on Linux
Uninstalling on Linux

Renderers

Connecting to a Renderer

Network Configuration

Python Search Path

Setting the Temporary File Directory

Managing Katana projects in Multi-Platform Environments

Launching Katana
Launching on Windows
Launching on Linux

Command-line Interface
Katana License Requirements for Launch Modes
Interactive Mode
Script Mode
Shell Mode
Batch Mode

Katana Resources

Environment Variables

What is Katana?
Key Concepts

17

18

19
19
21
24

25
26
28
31

32

33

34

34

35

35

38

39

40

41
4
43
44
45
45

53

56

59

61

Glossary of Katana Terms

User Interface
The Default Workspace
The Default Tabs
Menu Bar Components
Customizing Your Workspace
Adjusting Layouts
Saving, Loading, and Deleting Layouts
Managing Keyboard Shortcuts
Getting Help

Creating a Project
Creating, Saving, and Loading a New Project
Importing and Exporting a Project
Changing a Project’s Settings
Assets and Asset Managers
Using the File Browser

Autosaves

Editing the Node Graph
Navigating Inside the Node Graph
Adding Nodes
Node Basics
Selecting Nodes
Connecting Nodes
Merging Nodes
Removing, Replacing, and Deleting Nodes

Copying, Pasting, and Cloning Nodes

64

75

75

76

77

81

82

84

85

86

89

89

91

92

96

96

99

104

104

105

106

110

m

112

13

114

Grouping Nodes 115

Backdrop Nodes 118
Dot Nodes 120
Advanced Display Options 121
Editing a Node's Parameters 124
Node Parameter Basics 124
Common Parameter Widgets 128
Parameter State Badges 143
Adding User Parameters 143
Widget Types 145
Widget Options 149
Conditional Behavior 150
Creating Help Text for User Parameters 154
Animation 156
Setting Keys 158
Curve Editor Overview 161
Dope Sheet Overview 183
Using the Timeline 187
Using the Scene Graph 189
The Process of Generating Scene Graph Data 191
Manipulating the Scene Graph 192
Structured Scene Graph Data 197
Bounding Boxes and Good Data for Renderers 197
Proxies and Good Data for Users 197
Level-of-Detail Groups 199
Alembic and Other Input Data Formats 200
Working Sets 200
Changing What is Shown in the Viewer 206
Bookmarking a Scene Graph State and Working Sets 207
Controlling Live Rendering in the Scene Graph 209
Making Use of Different Location Types and Proxies 210
Using Assemblies and Components 211
Resolvers 212
Examples of Resolvers 214
Implicit Resolvers 214

Creating Your Own Resolvers 216

Building Your Scene 218

Adding 3D Assets 219
Adopting Alembic 219
Collections and CEL 225
CEL in the User Interface 226
Guidelines for using CEL 226
CEL in Parameters 228
Working with Attributes 229
AttributeSet Nodes 229
OpScript Nodes 237
Adding an OpScript 237
OpScript Tutorials 239
Viewing Your Scene 249
Changing the Layout 250
Selecting Within the Viewer 253
Using Flush Caches 254
Using the OSG Viewer 254
Changing the Overall Viewer Behavior 254
Assigning a Viewer Material Shader 256
Assigning a Viewer Light Shader 257
Displaying Textures in the Viewer 258
Changing Specific Viewer Behavior 258
Setting Different Display Properties for Some Locations 261
Stepping Through the Selection History 263
Changing the View Position 264
Choosing a Light or Camera to Look Through 264
Looking Around the Viewport by Offsetting and Overscanning 266
Changing What is Displayed Within the Viewport 267
Using Manipulators 268
Toggling the Heads Up Display (HUD) 273
Displaying Normal Information Within the Viewer 273
Transforming an Object in the Viewer 274
Manipulating a Light Source 275
Using Stereo Cameras in the OSG Viewer 281
Using the Hydra Viewer 282
Changing the View Position 283
Pan and Zoom 285
Selecting Objects and Faces 287
Using Manipulators in the Hydra Viewer 289

Geometry Display Options 293

The Monitor Layer in the Hydra Viewer 295

Image-Based Selection in the Monitor Layer 298
Snapping 307
Using Stereo Cameras in the Hydra Viewer 315
Subdivision and Anti-Aliasing in the Hydra Viewer 316
Live Rendering with the Hydra Viewer 318
Render Delegates in the Hydra Viewer 319
Proxies and Bounding Boxes 325
Displaying Textures in the Hydra Viewer 326
UsdPreviewSurface in the Hydra Viewer 328

Loading USD Plug-ins into Katana 329

Setting up USD Materials 332

Setting up USD Lights 338
Changing Display Properties for Some Locations 342
Customizing the Viewport 344

Lighting Your Scene 346
Creating a Light 347
Positioning Lights 350
Light Linking 350
Getting to Grips with the GafferThree Node 351

Gaffer Object Table Overview 352
Creating a Light Using the GafferThree Node 353
Making Use of Rigs 354
Defining a Template Light Material 356
Creating a Light Filter Using the GafferThree Node 357
Linking Shadows to Specific Objects 360
Adopting Items from an Incoming Scene 360
Soloing and Muting Lights, Light Filters, and Rigs 361
Locking a Light or Rig's Transform 362
Duplicating an Item Within the Gaffer Object Table 363
Syncing the GafferThree Selection with the Scene Graph 363
Using and Overriding Look Files with GafferThree Lights 364
Lighting Tools 368
Creating Lights using Lighting Tools 369
Editing Lights Using the Lighting Tools Parameter Widget 383
Cloning Lights and Using Template Materials With Lighting Tools 394

Look Development 403

Look Development with Look Files 403
Using Look Files to Create a Material Palette 403
Using Look Files in an Asset’s Look Development 405

Creating a Look File Using LookFileBake 405

Assigning a Look File to an Asset

Resolving Look Files

Overriding Look File Material Attributes

Activating Look File Lights and Constraints
Using Look Files as Default Settings

Bringing a Look File into the Scene Graph

Assigning and Unassigning a Global Look File

Removing a Look File from the Look Files List

Managing Passes in the LookFileManager

Overriding Look Files

Adding and Assigning Materials
Material Basics
Material Pipelines
Adding Multiple Materials
Building Materials Using NetworkMaterialCreate
Creating Shading Networks

Multiple NetworkMaterials with NetworkMaterialCreate
Organizing Shading Networks with ShadingGroup Nodes

Node Parameters and Interface Controls

Editing Materials With The NetworkMaterialEdit Node
Easily Preview Sections of Your LookDev Using Material Solo

Network Materials
Creating a Network Material
Using a Network Shading Node
Creating a Network Material's Public Interface
Changing a Network Material’'s Connections
Editing a Network Material
Handling Textures
Texture Handling Options
Using Pipeline Data to Set Textures

Checking UVs
Bringing up the UV Viewer Tab
Navigating in the UV Viewer Tab
Selecting Faces
Adding Textures to the UV Viewer
Using Multi-Tile Textures
Changing the UV Viewer Display

Look Files
Handing off Looks from Look Development to Lighting
Look File Baking
Other Uses of Look Files
How Look Files Work
Setting Material Overrides using Look Files
Collections using Look Files
Look Files for Palettes of Materials
Look File Globals

41
412
413
414
414
416
417
418
418
419

420
421
426
427
429
431
446
456
464
476
483
487
488
490
496
499
500
501
501
505

506
506
506
507
509
510

511

512
513
513
514
515
516
516
517
517

Lights and Constraints in Look Files 517

The Look File Manager 518
Rendering Your Scene 519
Render Types 521
Render Type Availability 524
Performing a Render 527
Starting Multiple Renders 533
Multiple Live Renders with Foresight+ 539
Katana Queue 543
Configuring a Render 550
Render Dependencies 550
Rendering only Selected Locations 551
Setting up Interactive Render Filters 551
Managing Color 553
Viewing Your Renders 554
Using the Monitor Layer and Monitor Tab 554
Changing the Image Size and Position 555
Overlay Masking 556
Changing How to Trigger a Render 558
Rendering a Region of Interest (ROI) 559
Changing the Displayed Channels 563
Changing How the Alpha Channel is Displayed 563
Selecting Which Output Pass to View 564
Viewing the Pixel Values of the Front and Back Images 564
Comparing Front and Back Images 565
Toggling 2D Manipulator Display 569
Underlaying and Overlaying an Image 569
Using the Catalog Tab 570
Using the Histogram 576
Custom Render Resolutions 577
Influencing a Render 577
Controlling Live Rendering 578
Global Options 579
Setting up a Render Pass 582
Defining and Overriding a Color Output 583
Defining Outputs Other than Color 585
Defining an AOV Output 586
Previewing Interactive Renders for Outputs Other than Primary 590
Instancing 591

Rendering Instances 591

OpenEXR Header Metadata

Setting up Render Dependencies

Batch Mode

Advanced Workflow & Extensions
See a Nuke Comp of Your Project in Katana Using the Nuke Bridge

Asset Management
Asset Plug-ins
Asset Management System Plug-in API

Configuring the Asset Browser

Implementing A Custom Asset Control Widget
Asset Render Widget

Additional Asset Widget Delegate Methods
addAssetFromWidgetMenultems()
shouldAddStandardMenultem()
shouldAddFileTabToAssetBrowser()

getQuickLinkPathsForContext()

The Asset Publishing Process
Choosing an Asset Plug-in
Example Asset Plug-in

Retrieve and Publish

LiveGroups and LiveShadingGroups

Creating a LiveGroup

Editing LiveGroup Parameters

Loading and Reloading a LiveGroup

Editing the Contents of a LiveGroup
Making a LiveGroup Node Editable
Modified State of Editable LiveGroup Nodes

Publishing a LiveGroup

LiveGroup Conversion

596
597

598

607

608

635
635
636

650

652

653

654

655

656

657

658

659
659
660
661

665
666
667
668
669
669
670
671
672

Graph State Variables
Setting Graph State Variables
Inspecting Graph State Variables
Reading Graph State Variables
How Do Graph State Variables Work?

Scripting and Programming in Katana
Scripting with Python
Shelf ltem Scripts
Using the Python Tab
Automating Procedures
Message Logging
The Op API

Groups, Macros, and SuperTools
Macros
SuperTools
Writing a SuperTool

Customizing GafferThree

Optimizing Performance
Geolib3-MT Configuration
Geolib3-MT Profiling

Op Cook Profiling
Starting and Ending a Profiling Session
Profiling Renders
Profiling Reports

Profiling and Optimization Guide
Optimize Projects Using the Performance Tab
Improving Your Node Graph
Improving Your Ops
Composing Concurrency-Friendly Scenes
Improving OpScript Performance

Preferences
Keyboard Shortcuts
Reference Guide

2D Nodes

673
674
675
676
678

678
680
681
686
689
690
695

713
v
718
719

720

722

723

728

734
735
736
736

738
739
745
749
753
757

763

777

792

793

Color Nodes
ImageBackgroundColor
ImageBrightness
ImageChannels
ImageClamp
ImageContrast
ImageExposure
ImageFade
ImageGain
ImageGamma
Imagelnvert
ImageLevels
ImageSaturation
ImageThreshold
OCIOCDLTransform
OCIOColorSpace
OCIODisplay
OCIOFileTransform
OCIOLogConvert
OCIOLookTransform

Composite Nodes
Imageln
ImageMerge
ImageOut
ImagePremultiply
ImageUnpremultiply
ImageZMerge

Filter Nodes
ImageBIlur

I/O Nodes

ImageRead
ImageWrite

Source Nodes
ImageCheckerboard
ImageColor
ImageRamp
ImageText

Transform Nodes
ImageCrop
ImageOrient
ImagePosition
ImageReformat
ImageTransform2D

793
793
794
794
797
798
800
801
802
803
804
805
807
808
809
810

811
812
814
814

815
816
819
822
825
826
827

827
827

829
830
834

843
844
845
846
850

854
854
855
856
857
860

3D Nodes

Constraint Nodes
AimConstraint
BillboardConstraint
CameraScreenWindowConstraint
ClippingConstraint
DollyConstraint
FOVConstraint
OrientConstraint
ParentChildConstraint
PointConstraint
ReflectionConstraint
ScaleConstraint
ScreenCoordinateConstraint

Input Nodes
AttributeFile_In

Lookfile Nodes
LookFileBake
LookFileLightAndConstraintActivator
LookFileManager
LookFileMaterialsIn
LookFileMaterialsOut
LookFileMultiBake
LookFileOverrideEnable
LookFileResolve
UsdMaterialBake

Output Nodes

Render

Procedural Nodes
Alembic_In
RendererProceduralArgs

Resolve Nodes
ConstraintResolve
MaterialResolve

Source Nodes
AttributeFile_In
CameraCreate
CameralmagePlaneCreate
CollectionCreate
CoordinateSystemDefine
InfoCreate
LightCreate
LocationCreate

865

865
865
867
869
870
872
873
875
877
878
880
881
882

883
884

886
886
888
889
890
891
892
895
896
897

900
900

903
903
906

915
915
916

916
916
919
921
924
925
926
928
930

Material
PrimitiveCreate
TeapotCreate

SuperTool Nodes
Importomatic

LookFileLightAndConstraintActivator

LookFileManager
LookFileMultiBake

Other 3D Nodes
ArnoldObjectSettings
ArnoldGlobalSettings
ArnoldLiveRenderSettings
ArnoldOutputChannelDefine
ArnoldShadingNode
AttributeCopy
AttributeEditor
AttributeSet
BoundsAdjust
CameraClippingPlaneEdit
ConstraintCache
ConstraintListEdit
FaceSetCreate
GenericOp
GroupMerge
HierarchyCopy
Isolate
LightLink
LightLinkEdit
LightLinkResolve
LightLinkSetup
LightListEdit
LocationGenerate
LodGroupCreate
LodSelect
LodValuesAssign
MaterialStack
Merge
NetworkMaterial
NetworkMaterialCreate
NetworkMaterialEdit
NetworkMateriallnterfaceControls
NetworkMaterialParameterkdit
NetworkMaterialSplice
OpResolve
OpScript
PrmanGlobalSettings
PrmanObjectSettings

931
934
936

937
937
938
939
939

942
942
943
943
944
945
946
948
949
952
954
955
956
956
957
963
964
966
967
970
972
973
976
977
978
979
981
982
982
985
986
992
997
1001
1002
1005
1006
1011
1011

PrmanQutputChannelDefine 1012

PrmanShadingNode 1013
Prune 1014
Rename 1015
RenderOutputDefine 1016
ReverseNormals 1021
ShadingGroup 1022
ShadingNodeArrayConnector 1023
ShadingNodeSubnet 1023
Transform3D 1024
TransformEdit 1025
VelocityApply 1026
ZoomToRect 1027
Miscellaneous Nodes 1029
SuperTool Nodes 1029
GafferThree 1029
ImageCoordinate 1050
PonyStack 1050
Other Nodes (Misc) 1051
Backdrop 1057
DependencyMerge 1051
Dot 1052
Group 1053
GroupStack 1053
InteractiveRenderFilters 1055
LiveGroup 1055
LookFileAssign 1057
LookFileGlobalsAssign 1057
MaterialAssign 1058
NonpersistentSwitch 1059
RenderScript 1060
RendererProceduralAssign 1073
ScenegraphObjectSettings 1074
Switch 1075
Teleport 1076
TimeOffset 1076
UsdActiveSet 1077
UsdAttributeSet 1078
Usdin 1080
UsdInActivationSet 1083
UsdInheritSet 1083
UsdLayerWrite 1086
UsdMetadataSet 1087
UsdPayloadSet 1089
UsdPrimCreate 1091

UsdPrimvarSet 1093

UsdPythonWrite 1096

UsdReferenceSet 1097
UsdRelationshipSet 1099
UsdSchemaSet 1101
UsdSpecializeSet 1105
UsdSubLayerAdd 1108
UsdTransformSet 1110
UsdVariantSet 112
VariableDelete 1114
VariableEnabledGroup M4
VariableSet 1115
VariableSwitch M5
ViewerObjectSettings 1116
VisibilityAssign 1120

End User License Agreement (EULA) 1122

User Guide

This manual walks you through installing, licensing, and using Katana. For information on each individual
node, see the Reference Guide.

USER GUIDE

Installation and Licensing

This section guides you to the point where you have a default Katana workspace and are ready to start.

System Requirements

Before you do anything else, ensure that your system meets the following minimum requirements to run
Katana effectively:

« Katana 6.5v3 is tested and qualified on Linux CentOS/RHEL 7.6 to 7.9 (64-bit) and Windows 10,11(64-bit).
* A graphics card that supports OpenGL shader model 4.

* A supported renderer (see Renderers).

Note: Due to Python's handling of imports on case-insensitive platforms (see PEP 235), it is not
possible to run Katana from a file system location on a network-attached storage device (NAS) that
has been set up with mount options for case-insensitive names.

Third-Party Dependencies

Katana version 6.5v3 has dependencies on the following third-party libraries:
* OpenEXR 2.2
* OpenSSL 1.0.0.a

These libraries are provided in the Katana distribution, in separate directories under ${KATANA_HOME}/bin

An ABI-compatible copy of these libraries needs to reside on your LD_LIBRARY_PATH in order for many of
Katana's plug-ins to run. The Katana application itself uses RPATHs to locate the required libraries.

USER GUIDE

Installation and Licensing | Katana on Windows

Note: Katana's wrapper script ${KATANA_HOME}/katana appends ${LD_LIBRARY_PATH} to
ensure these libraries are visible to Katana plug-ins.

If you manage your own LD_LIBRARY_PATH or wish to expose these libraries to plug-ins by some

other means, you can call the Katana binary directly using:
${KATANA_ROOT}/bin/katanaBin

Katana on Windows

After installation, all Katana applications are run from either desktop icons, the Start menu, or from the
command-line using launch modes and command-line arguments.

Supported Operating Systems
» Windows 10,11(64-bit)

Note: Other operating systems may work with Katana, but have not been fully tested. If you have
any problems with a particular operating system, please contact our support team.

Installing on Windows

To install Katana on Windows, see either:
« Installing Katana with the User Interface (Ul)

* Installing Katana from the Command-Line

Installing Katana with the User Interface (Ul)

To install Katana on Windows using the standard, user interface method, follow the instructions below:

USER GUIDE

Installation and Licensing | Katana on Windows

Download the correct .zip installation file from our website at
https://www.foundry.com/products/katana.

Extract the .exe installation file from the .zip file
Double-click on the .exe installation file to install Katana.

Follow the on-screen instructions. By default, Katana is installed to drive letter:\Program
Files\Katana6.5v3.

Proceed to Licensing Katana on Windows .

Installing Katana from the Command-Line

To install Katana on Windows from the command-line, follow the instructions below:

1.

Download the correct .exe installation file from our website at

https://www.foundry.com/products/katana.

Extract the .exe installation file from the .zip file.

To open a command prompt window, select Start > All Programs > Accessories > Command Prompt.

Use the cd (change directory) command to move to the directory where you saved the .exe installation

file. For example, if you saved the .exe installation file in C:\Temp, use the following command and press

Return:

cd \Temp

To install Katana, do one of the following:

« To install Katana to the current directory and display the installation dialog, type the name of the install
file without the file extension and press Return:

Katana6.5v3-win-x86-release-64

« To install Katana to a specified directory and display the installation dialog, use the /dir install option:

Katana6.5v3-win-x86-release-64 /dir="C:\Katana"

« To install Katana silently so that the installer does not prompt you for anything but displays a progress
bar, enter /silent after the installation command:

Katana6.5v3-win-x86-release-64 /silent

« To install Katana silently so that nothing is displayed, enter /verysilent after the installation command:

Katana6.5v3-win-x86-release-64 /verysilent

« To install Katana, but not 3Delight, use the /components option:

Katana6.5v3-win-x86-release-64 /components="!delight"

Note: This option does not stop Katana loading the 3Delight renderer at start up if it already exists
on the local machine.

* You can also use a combination of install options:

USER GUIDE
20

https://www.foundry.com/products/katana
https://www.foundry.com/products/katana

Installation and Licensing | Katana on Windows

Katana6.5v3-win-x86-release-64 /silent /dir="C:\Katana"
/components="!delight"

Note: By using the /silent or /verysilent install options, you agree to the terms of the Katana End
User Licensing Agreement. To see this agreement, please refer to End User License Agreement
(EULA).

Licensing Katana on Windows

The following licensing methods are available:

« Activation Keys - activation keys allow you to activate and generate your actual product license key, at a
later point after purchase, on the machine for which you require the license. They are provided for both
node locked and floating license, and generate the appropriate license type once installed using the
product's Licensing dialog or online using the Activate a Product page:

https://www.foundry.com/user/login?destination=/licensing/activate-product

* Node Locked Licenses - these can be used to license an application on a single machine. They do not
work on different machines and if you need them to, you'll have to transfer your license.

Node locked licenses, sometimes called uncounted licenses, do not require additional licensing software to
be installed.

* Floating Licenses - also known as counted licenses, enable application to work on any networked client
machine. The floating license is put on the server and is locked to a unique number on that server.

Floating licenses on a server requires additional software to be installed on the server to manage the
licenses and give them out to the client stations that want them. This software is called the Foundry
Licensing Tool (FLT) and can be downloaded at no extra cost from our website.

The following instructions run through the basic options for the first two licensing methods, but can find a
more detailed description in the Foundry Licensing Tools (FLT) User Guide available on our website:

https://www.foundry.com/licensing

To use Katana, you need either a node locked license or a floating license and a server running the Foundry
Licensing Tool (FLT). Katana uses RLM licensing, and the default local RLM location is:
C:\ProgramData\The Foundry\RLM

USER GUIDE

https://www.foundry.com/user/login?destination=/licensing/activate-product
https://www.foundry.com/licensing

Installation and Licensing | Katana on Windows

To obtain a license, you'll need your machine's System ID (sometimes called Host ID or rimhostid). Just so
you know what a System ID number looks like, here's an example: 000ea641d7a1.

Note: Bear in mind that, for floating licenses, you'll need the System ID of the license server, not
the machines on which you intend to run the application.

There are a number of ways you can find out your machine's System ID:

« Launch the application without a license, click Status in the bottom-left of the dialog, and then scroll down
the error report until you see your System ID.

» Download the Foundry License Utility (FLU) from https://www.foundry.com/licensing and run it. Your
System ID is displayed.

« Download the Foundry Licensing Tools (FLT) free of charge from https://www.foundry.com/licensing and
then run C:\Program Files\TheFoundry\LicensingTools7.0\ Foundry License Utility.exe

When you know your System ID, you can request a license for Foundry products:
« from the Foundry's Sales Department at sales@foundry.com.

* by registering your interest in the product by filling out the form on
https://www.foundry.com/user/register?request_uri=/products/4/trial/interactive.

When you start the application before installing a license, a Licensing dialog displays an error informing you
that no license was available. The installation process is dependent on what type of license you requested:

« License file - if you requested a license file, typically foundry.lic, this option allows you to browse to the
file location and install it automatically. See To Install a License from Disk for more information.

« Activation Key or license text - if you requested an Activation Key or license by email, this option allows
you to paste the key or license text into the Licensing dialog, which then installs the license in the correct
directory. See To Install an Activation Key or License Text for more information.

« A floating license - if you requested a floating license to supply licenses to multiple client machines, this
option allows you to enter the server address that supplies the client licenses. See To Install a Floating
License for more information.

USER GUIDE
22

https://www.foundry.com/licensing
https://www.foundry.com/licensing
mailto:sales@foundry.com
https://www.foundry.com/user/register?request_uri=/products/4/trial/interactive

Installation and Licensing | Katana on Windows

Note: You must install a floating license and additional software on the license server to use this
option.

To Install a License from Disk

o vk W

Save the license file to a known location on disk.

Launch the application.

The Licensing dialog displays.

Click Install License to display the available license installation options.
Click Install from Disk.

Browse to the location of the license file.

Click Open to install the license automatically in the correct directory.

Once you click Open, you should see the Licenses Updated message in the Licensing dialog and you
are presented with a Launch option.

Click Launch to open Katana.

To Install an Activation Key or License Text

1.

Launch the application.

The Licensing dialog displays.

Click Install License to display the available license installation options.

Click Activation Key / License Text and then either:

« Enter the Activation Key string in place of Insert Activation Key Here. A license key typically looks
something like this:
katana-0101-77d3-99bd-a977-93e9-8035
OR

« Copy the license text and paste it over the Copy/Paste license text here text. License text typically looks
something like this:
LICENSE foundry katana i 2013.0929 29-sep-2013 uncounted
hostid=000a957bfde5 share=h min timeout=30 start=29-sep-2012
issued=29-sep-2012 disable=VM ck=da32d7372f sig="60P0450MJRPO7E3DP
B42C99Y5UAPRMEMGNQ39PG22HAWGH3WFK2KPTXFWITYROGYASIBXCOPUS"

Click Install.

The license is automatically installed on your machine in the correct directory. Once you click Install, you
should see the Licenses Updated message in the Licensing dialog and you are presented with a Launch
option.

USER GUIDE
23

Installation and Licensing | Katana on Windows

5. Click Launch to open Katana.

Note: Activation Keys require an internet connection. If you access the internet through a proxy
server and cannot connect to the activation server, you may get an error dialog prompting you to
either:

« Click Use Proxy to enter the proxy server name, port number, username, and password. This
enables the application to connect to the activation server and obtain a license. The license is then
installed automatically, or

» Click on the web link in the dialog and use the System ID (also known as hostid) provided to
manually activate and install a license.

To Install a Floating License

If you requested a floating license from Foundry, you will receive your license key (foundry.lic) in an email or
internet download. You should also receive the Foundry License Tools (FLT) application. Once you've
installed the FLT, you can access the Foundry Licensing Utility (FLU) to help you install the license key on the
license server machine. The server manages licenses for the client machines on your network.

1. From the Start menu, navigate to All Programs > The Foundry > FLT 7.1v1, then right-click on the
"Foundry License Utility" and select "Run as Administrator".

2. Run the FLU on the client machine and paste the following line into the License Install tab:
HOST <server name> any 4101
replacing <server name> with the hostname of your server, for example:
HOST red any 4101

Further Reading

There is a lot to learn about licenses, much of which is beyond the scope of this manual. For more
information on licensing, displaying the System ID number, setting up a floating license server, adding new
license keys and managing license usage across a network, you should read the Foundry Licensing Tools (FLT)
User Guide, which can be downloaded from our website, https://www.foundry.com/licensing.

Uninstalling on Windows

To uninstall Katana on Windows , there are a few things you need to do:

USER GUIDE

https://www.foundry.com/licensing

Installation and Licensing | Katana on Linux

1. Navigate to Start > All Programs > The Foundry > Katana6.5v3 and select Uninstall.
The Katana Uninstall dialog displays.

2. Click Yes to uninstall Katana.

3. Delete, rename, or move your .katana folder, if it exists.

The .katana folder is usually found under the directory pointed to by the HOME environment variable. If
this variable is not set, which is common, the .katana directory is under the folder specified by the
USERPROFILE environment variable, which is generally one of the following:
drive letter:\Documents and Settings\login name\
drive letter:\Users\login name\
To find out if the HOME and USERPROFILE environment variables are set, and where they are pointing
at, enter % HOME% or %USERPROFILE% into the address bar in Windows Explorer. If the environment
variable is set, the folder it's pointing at is opened. If it's not set, you get an error.

4. Delete, rename, or move your cached files, which reside in the following directory by default:
~\AppData\Local\Temp\katana*

Where ~ is equal to %HOME% or %USERPROFILE% as detailed above.

Note: If you specified an alternate directory using the KATANA_TMPDIR environment variable,
purge those files as well as the default location. See Help > Developer Guide for more
information.

Katana on Linux

After installation, all Katana application are run from either desktop icons, the browser, or from the terminal
using launch modes or arguments.

Qualified Operating Systems

¢ Linux CentOS/RHEL 7.6 to 7.9 (64-bit)

Note: Other operating systems may work with Katana, but have not been fully tested. If you have
any problems with a particular operating system, please contact our support team.

USER GUIDE
25

Installation and Licensing | Katana on Linux

Installing on Linux

To install Katana on Linux, see either:
* Installing Katana from the Terminal, or

« Installing Katana Remotely from the Terminal.

Installing Katana from the Terminal

To install Katana on Linux from the terminal, follow the instructions below:

1. Download the correct .tgz installation file from our website at
https://www.foundry.com/products/katana.

2. Move the .tgz file into a temporary folder.

3. Extract and decompress the .tgz file inside the temporary folder.

tar xvf Katana<version>-linux-x86-release-64.tgz
This gives you an installer file.

4. Start the install script:
./install.sh

The install script supports several command-line options:
« -h or --help - displays the available options.
« --accept-eula - automatically accepts the EULA without displaying it.

- --path or --katana-path - specifies where Katana is installed and accepts the EULA without displaying
it. For example, to use the --path option to install Katana to the /opt/foundry/katana directory,

execute the install script with:
./install.sh --path /opt/foundry/katana

Note: By installing Katana with the --accept-eula or --path options, you agree to the terms of the
End User Licensing Agreement. To see this agreement, please refer to
https://www.foundry.com/eula.

« --3delight-path - specifies where 3Delight is installed.
« --no-3delight - disables the automatic installation of 3Delight.
5. Read and acknowledge the End User License Agreement (EULA) by pressing Y at the end of the text.

USER GUIDE
26

https://www.foundry.com/products/katana
https://www.foundry.com/eula

6.
7.

Installation and Licensing | Katana on Linux

Tip: If you've already read and agreed to the terms of the EULA, you can skip to the end of the text
by pressing Q.

Enter the installation directory for Katana or press Enter to accept the default install directory.
If you didn't add a license key during the installation, do that now using the instructions in Licensing on
Linux. Otherwise, proceed to Launching on Linux.
Additionally, you can install Katana silently by simply unzipping the installer file. This creates the
properly formed Katana directory tree in the current directory.

Installing Katana Remotely from the Terminal

To install Katana on Linux remotely from the terminal, follow the instructions below:

1.

Download the correct .tgz installation file from our website at
https://www.foundry.com/products/katana.

Extract the installer from the .tgz archive with the following terminal command:
tar xvzf Katana6.5v3-linux-x86-release-64.tgz

This gives you an installer file.

Use the following terminal command to log in to your render machine as root:
ssh root@render machine

Replace render_machine with the name of your render node.

Make a directory to install Katana to:

mkdir /usr/local/Katana6.5v3

Copy the installer file from the machine on which you downloaded it to your render machine with a
command like:

scp root@download machine: /tmp/Katana6.5v3-linux-x86-release-64-installer
root@render machine: /usr/local/Katana6.5v3/

Replace download_machine with the name of the machine to which you downloaded the installer file,
and render_machine with the name of your render node.

Unzip the installer file to unpack its contents into your Katana directory:
cd /usr/local/Katana6.5v3

unzip Katana6.5v3-linux-x86-release-64-installer

Repeat steps 3-6 for each render machine.

USER GUIDE
27

https://www.foundry.com/products/katana

Installation and Licensing | Katana on Linux

Licensing on Linux

The following licensing methods are available:

« Activation Keys - activation keys allow you to activate and generate your actual product license key, at a
later point after purchase, on the machine for which you require the license. They are provided for both
node locked and floating license, and generate the appropriate license type once installed using the
product's Licensing dialog or online using the Activate a Product page:

https://www.foundry.com/user/login?destination=/licensing/activate-product

* Node Locked Licenses - these can be used to license an application on a single machine. They do not
work on different machines and if you need them to, you'll have to transfer your license.

Node locked licenses, sometimes called uncounted licenses, do not require additional licensing software to
be installed.

« Floating Licenses - also known as counted licenses, enable application to work on any networked client
machine. The floating license is put on the server and is locked to a unique number on that server.

Floating licenses on a server requires additional software to be installed on the server to manage the
licenses and give them out to the client stations that want them. This software is called the Foundry
Licensing Tool (FLT) and can be downloaded at no extra cost from our website.

The following instructions run through the basic options for the first two licensing methods, but can find a
more detailed description in the Foundry Licensing Tools (FLT) User Guide available on our website:

https://www.foundry.com/licensing

To use Katana, you need either a node locked license or a floating license and a server running the Foundry
Licensing Tool (FLT). Katana uses RLM licensing, and the default local RLM location is:
/usr/local/foundry/RLM

Obtaining Licenses

To obtain a license, you'll need your machine's System ID (sometimes called Host ID or rimhostid). Just so
you know what a System ID number looks like, here's an example:

000eab41d7a1.

USER GUIDE
28

https://www.foundry.com/user/login?destination=/licensing/activate-product
https://www.foundry.com/licensing

Installation and Licensing | Katana on Linux

Note: Bear in mind that, for floating licenses, you'll need the System ID of the license server, not
the machines on which you intend to run the application.

There are a number of ways you can find out your machine's System ID:

« Download the Foundry Licensing Tools (FLT) free of charge from https://www.foundry.com/licensing and
then run the following command in a terminal shell:

/usr/local/foundry/LicensingTools7.0/bin/systemid

» Download the Foundry Licensing Utility (FLU) free of charge from https://www.foundry.com/licensing and
then run the following command in a terminal shell:
./FoundryLicenseUtility -1

When you know your System ID, you can request a license for Foundry products:
« from the Foundry's Sales Department at sales@foundry.com

* by registering your interest in the product by filling out the form on
https://www.foundry.com/user/register?request_uri=/products/4/trial/interactive.

Installing Licenses

When you start the application before installing a license, a Licensing dialog displays an error informing you
that no license was available. The installation process is dependent on what type of license you requested:

« License file - if you requested a license file, typically foundry.lic, this option allows you to browse to the
file location and install it automatically. See To Install a License from Disk for more information.

« Activation Key or license text - if you requested an activation key or license by e-mail, this option allows
you to paste the key or license text into the Licensing dialog, which then installs the license in the correct
directory. See To Install an Activation Key or License Text for more information.

« A floating license - if you requested a floating license to supply a license to multiple client machines, this
option allows you to enter the server that supplies the client licenses. See To Install a Floating License for
more information.

Note: You must install a floating license and additional software on the license server to use this
option.

1. Save the license file to a known location on disk.

2. Launch the application.

USER GUIDE
29

https://www.foundry.com/licensing
https://www.foundry.com/licensing
mailto:sales@foundry.com
https://www.foundry.com/user/register?request_uri=/products/4/trial/interactive

o vk~ W

Installation and Licensing | Katana on Linux

The Licensing dialog displays.

Click Install License to display the available license installation options.
Click Install from Disk.

Browse to the location of the license file.

Click Open to install the license automatically in the correct directory.

Once you click Open, you should see the Licenses Updated message in the Licensing dialog and you
are presented with a Launch option.

Click Launch to open Katana.

Launch the application.

The Licensing dialog displays.

Click Install License to display the available license installation options.

Click Activation Key / License Text and then either:

« Enter the Activation Key string in place of Insert Activation Key Here. A license key typically looks

something like this:
katana-0101-77d3-990d-a977-93e9-8035
OR

« Copy the license text and paste it over the Copy/Paste license text here string. License text typically
looks something like this:
LICENSE foundry katana i 2013.0929 29-sep-2013 uncounted
hostid=000a957bfde5 share=h min timeout=30 start=29-sep-2012
issued=29-sep-2012 disable=VM ck=da32d7372f sig="60P0450MJRPO7E3DP
B42C99Y5UAPRMEMGNQ39PG22H4AWGH3WFK2KPTXFWITYROGYASJIBXCOPUS"

Click Install.

The license is automatically installed on your machine in the correct directory. Once you click Install, you
should see the Licenses Updated message in the Licensing dialog and you are presented with a Launch
option.

Click Launch to open Katana.

Activation keys require an internet connection. If you access the internet through a proxy server and

cannot connect to the activation server, you may get an error dialog prompting you to either:

« Click Use Proxy to enter the proxy server name, port number, username, and password. This enables
the application to connect to the activation server and obtain a license. The license is then installed
automatically, or

« Click on the web link in the dialog and use the System ID (also known as hostid) provided to manually
activate and install a license.

USER GUIDE
30

Installation and Licensing | Katana on Linux

If you requested a floating license from Foundry, you will receive your license key (foundry.lic) in an email or
internet download. You should also receive the Foundry License Tools (FLT) application. Once you've
installed the FLT, you can access the Foundry Licensing Utility (FLU) to help you install the license key on the
license server machine. The server manages licenses for the client machines on your network.

1. Open a terminal and browser to the directory location where the FLU is located.

2. Run the following command as a Root user:

./FoundryLicenseUtility -c 410l@<server name>

replacing <server_name> with the hostname of your license server, for example:
./FoundryLicenseUtility -c 4101@red

The FLU creates an RLM license, and this installs a client license file on disk enabling the machine to get a
license from the server.

Further Reading

There is a lot to learn about licenses, much of which is beyond the scope of this manual. For more
information on licensing Katana, displaying the System ID number, setting up a floating license server,
adding new license keys, and managing license usage across a network, you should read the Foundry
Licensing Tools (FLT) User Guide, which can be downloaded from our website at
https://www.foundry.com/licensing.

Uninstalling on Linux

To uninstall Katana on Linux, there are a few things you need to do:
1. Navigate to /usr/local/ and delete the Katana 6.5v3 folder.
2. Delete, rename, or move your .katana folder, if it exists.

The .katana folder is found in your home directory, by default:

/home/<login name>/.katana

3. Delete, rename, or move your cached files, which reside in the following directory by default:
/var/tmp/katana

USER GUIDE

https://www.foundry.com/licensing

Installation and Licensing | Renderers

Note: If you specified an alternate directory using the KATANA_TMPDIR environment variable,
purge those files as well as the default location. See Environment Variables for more information.

Renderers

3Delight Renderer

Katana comes bundled with 3Delight: a uni-directional path-tracer designed to withstand the high demands
of production rendering.

Article: For more information about downloading and installing the 3Delight renderer and plug-in
for Katana, please refer to the Knowledge Base article: 3Delight for Katana

Note: The Katana Installer provides an option for installing 3Delight with Katana.

Third-Party Renderers

Pixar's RenderMan, Solid Angle’s Arnold and Chaos Group’s V-Ray are each supported by plug-ins supplied
directly by those companies.

For Pixar's RenderMan, please contact Pixar to get RenderMan for Katana (also called RfK). You also need to
install the relevant version of the RenderMan renderer (RenderMan Pro Server).

For Arnold, please contact Solid Angle to get Arnold for Katana (also called KtoA). This includes both the
Arnold renderer as well as the Katana plug-in.

For V-Ray, please contact Chaos Group to get V-Ray for Katana. This includes the V-Ray renderer as well as
the Katana plug-in.

All queries regarding third-party plug-ins should be directed to the relevant provider.

USER GUIDE
32

https://learn.foundry.com/katana/3.0/dev-guide/EnvironmentVariables.html
https://support.foundry.com/hc/en-us/articles/115000006510-Q100246-3Delight-for-Katana

Installation and Licensing | Connecting to a Renderer

Connecting to a Renderer

The 3Delight renderer and plug-in are bundled with Katana. No additional configuration is necessary after
installation.

Article: For more information about downloading and installing the 3Delight renderer and plug-in
for Katana, please refer to the Knowledge Base article: 3Delight for Katana

Katana is designed to be renderer agnostic. A number of third-party renderer plug-ins are available,
supporting renderers such as RenderMan, Arnold, V-Ray and 3Delight.

Before trying to connect Katana to a renderer, make sure the renderer is installed correctly. Consult the
manual that accompanies the renderer for details.

Note: For more information on writing a renderer plug-in for Katana utilizing the Rendering API,
see the developers' documentation that accompanies the installation. The developers'
documentation can be accessed through the Help > Developer Guide menu option inside Katana.

Katana uses the KATANA_RESOURCES environment variable to find the renderer plug-ins it needs.

The default renderer is specified using the DEFAULT_RENDERER environment variable. For example, if
you're using a bash shell:

export DEFAULT_RENDERER=d]I

This default is used by nodes and tabs that require renderer-specific information in instances where the
renderer is not specified by the recipe at the currently viewed node. If this environment variable is not set, dl
is used by default.

USER GUIDE

w
w

https://support.foundry.com/hc/en-us/articles/115000006510-Q100246-3Delight-for-Katana

Installation and Licensing | Network Configuration

Note: If the requested renderer plug-in is not available, Katana displays warning messages, and in
certain cases, error messages.

Network Configuration

When performing a Live Render, or Preview Render, Katana uses TCP/IP sockets for communication between
the render process and Monitor tab. Therefore, Katana needs to be able to resolve the workstation host
name by means of a DNS. For this to work ensure one of the following:

* Your corporate network has a valid DNS server running, capable of resolving the host name of your
machine.

« Add an entry to your /etc/hosts, which explicitly maps your host name to IP address.

Python Search Path

Katana's Python module search path is configured as follows, leaving the PYTHONPATH environment
variable unchanged for child processes:

KATANA INTERNAL PYTHONPATH =
KATANA DEBUG PRE PYTHONPATH :
<Katana internal Python paths> :
PYTHONPATH and site customizations
KATANA POST PYTHONPATH

This allows Katana to initialize its environment safely, avoiding inadvertent loading of unsupported modules.
You may add to the search path using Python site customizations or by setting the KATANA_POST_
PYTHONPATH environment variable.

Additionally, the KATANA_DEBUG_PRE_PYTHONPATH environment is provided, for debugging purposes
only, as it may lead to unexpected application behavior due to non-supported modules loading in place of
the application's.

Note: Changes to sys.path included in sitecustomize.py do not affect Katana internal Python
paths.

USER GUIDE

Installation and Licensing | Setting the Temporary File Directory

Setting the Temporary File Directory

When launching Katana, a temporary folder is created in the standard directory of temporary files and
folders. This is used to store data, such as caches for instance, for the current session.

The name of the Katana temporary directory uses the following pattern: katana_tmpdir_[process-ID]

By default, the Katana temporary directory is created in the folder as returned by the tempfile.gettempdir()
function from the tempfile module in the Python Standard Library. You can override the directory by setting
the TMPDIR environment variable to a specific file system location.

You can obtain the exact file system location that Katana uses through the KATANA_TMPDIR environment
variable, which, when interrogated from within a running Katana session, may contain value like the
following: /tmp/katana_tmpdir_ 26458

Note: The Katana temporary directory is removed once the Katana session terminates.

Managing Katana projects in Multi-
Platform Environments

When sharing Katana projects across different machines, it is sometimes necessary to adjust the format of
file paths for different operating systems or to account for different folder structures.

To make a Katana project portable across multiple platforms, file paths should be set up so they are relative
and not dependent on a system-specific folder structure. There are three ways to do this:

* Using parameter expressions
« Using an environment variable

« Relative file paths without using an expression

USER GUIDE

Installation and Licensing | Managing Katana projects in Multi-Platform Environments

Using Parameter Expressions

Relative file paths can be set up by using Python parameter expressions. For example, right-click on a
filename parameter, choose 'Expression’ as the Value Mode and enter an expression:

project.dir + '/textures/testFile.png'
project.dir will then be resolved to the directory of the Katana project file. This is also valid:

path.Jjoin(project.dir, ‘/textures/testFile.png’)

Tip: See the Katana Developer Guide for more information on Python expressions.

A reference expression is a form of parameter expression that can be evaluated without the overhead of a
Python interpreter.

As of Katana 3.6, parameter reference expressions support concatenation using the + operator. For example:

="/user.page + ' regionExtra'

Tip: See the Katana Developer Guide for more information on reference expressions.

Using an Environment Variable

Alternatively, you can set an environment variable to point to the system specific root folder. To evaluate the
variable in your parameter, there are two options:

 Use a parameter expression. For example:

getenv ("OS_PATH", tmpDir) + '/example/file/path'
« Some nodes like Alembic_In also support the use of environment variables in a constant value for a file
path parameter. For example:

USER GUIDE
36

https://learn.foundry.com/katana/current/dev-guide/ParameterExpressions/PythonExpressions.html
https://learn.foundry.com/katana/current/dev-guide/ParameterExpressions/ReferenceExpressions.html

Installation and Licensing | Managing Katana projects in Multi-Platform Environments

${0S_PATH}/example/file/path

Note: This is not supported for every node type, in this case please use the first option of
evaluating the environment variable via an expression.

Using a Relative File Path Without Using an Expression

Another option is to make use of relative file paths without using an expression. In this case you should
specify your file paths relative to the project directory.

If you are launching Katana from the command line or use a bash or batch script, you can use the cd
command to change the working directory for the environment you are launching Katana in.

For example, if your project is located here:

C:/Users/username/Documents/Katana/Projects

and you want to write relative path references to files located here:

C:/Users/username/Documents/Katana/Projects/textures

you should set your working directory to the location of your Katana project file using the cd command:

cd C:/Users/username/Documents/Katana/Projects

Now you can write file paths relative to your working directory:

/textures/testFile.png
If your current working directory is specified incorrectly, the texture file paths cannot be resolved.

For example, setting your working directory to:

cd C:/Users/username/Documents/Katana

resolves the texture file relative to:

C:/Users/username/Documents/Katana/textures/testFile.png

USER GUIDE

Launching Katana | Managing Katana projects in Multi-Platform Environments

Tip: If you are launching Katana from a command line, you can type the first few characters of a
directory or file name, then press Tab to autocomplete the file or directory path. This may help to
ensure your working directory is set correctly.

You can also use the dir (Windows) or 1s (Linux) commands to list all files and directories in the
current or specified directory.

If you are using a Python script to launch Katana, set the root using the Python os. chdir command similar
to the following:

import os
from os.path import expanduser

project directory = 'Projects'
os.chdir (os.path.join (expanduser('~"), 'Documents', 'Katana', project
directory))

The working directory is now set to:

C:/Users/username/Documents/Katana/Projects

Article: For more information on how to set up a launcher script:
Q100242: Creating a Katana launcher script for Windows
Q100272: Creating a Katana launcher script for Linux

Launching Katana

This chapter walks you through how to get Katana up and running on your platform.

Launching on Windows - Launching Katana on Windows

Launching on Linux- Launching Katana on Linux

Command-line Interface - Katana has a number of command line arguments to tailor its operation.
Katana Resources - Using the KATANA_RESOURCES environment variable.

Environment Variables - Setting and checking environment variables.

USER GUIDE
38

https://support.foundry.com/hc/en-us/articles/207354710
https://support.foundry.com/hc/en-us/articles/115000107050

Launching Katana | Launching on Windows

Launching on Windows

To launch the application on Windows, do one of the following:
* Double-click the Katana icon on the Desktop.
« Navigate to Start > All Programs > The Foundry > Katana6.5v3 and select Katana6.5v3.

« Using a command prompt, navigate to the Katana application directory (by default, \Program
Files\Katana6.5v3) and enter:

» bin\katanaBin.exe

If you already have a valid license, the graphical interface appears, and a command-line window opens. If
you don't have a license or haven't installed one yet, proceed to Licensing Katana on Windows .

You can also specify a Katana scene to load when Katana is launched. To do this:
1. Open the command prompt.

2. Navigate to the directory where you installed Katana.

3. Enter:

bin\katanaBin.exe C:\<yourDirectory>\<yourScene>.katana

Specifying the scene and the directory where it's located tells Katana to open this file when it launches.

There are a number of different modes for launching Katana:

« Interactive mode is the default mode. It requires no additional command-line arguments, and is the only
launch mode that starts Katana with the GUI.

+ Batch mode opens a Katana scene for render farm rendering.
« Shell mode exposes Katana's Python interpreter in the terminal shell.

« Script mode runs a specified Python script in Katana's Python interpreter.

In addition to the different modes, you can also set startup scripts to run on open in files named init.py,
located in a Startup folder, under the path defined in the KATANA_RESOURCES environment variable.
Alternatively, you can use a startup script in the form of an init.py file placed in the .katana folder in your
HOME directory. These startup scripts can be run regardless of the launch mode you choose.

For information on starting Katana in the other launch modes, see Command-line Interface.

USER GUIDE
39

Launching Katana | Launching on Linux

Launching on Linux

To launch the application on Linux, do one of the following:
* Double-click the Katana icon on the Desktop.

« Open the Katana application directory (by default, /usr/local/Katana6.5v3) and double-click the Katana
icon.

« Using a terminal, navigate to the Katana application directory and enter:

./katana

If you already have a valid license, the graphical interface appears. If you don't have a license or haven't
installed one yet, proceed to Licensing Katana on Linux.

You can also specify a Katana scene to load when Katana is launched. To do this:
1. Open a terminal.

2. Navigate to the directory where you installed Katana.

3. Enter:

./katana /yourDirectory/yourScene.katana

There are a number of different modes for launching Katana:

« Interactive mode is the default mode. It requires no additional command-line arguments, and is the only
launch mode that starts Katana with the GUI.

« Batch mode opens a Katana scene for render farm rendering.
« Shell mode exposes Katana's Python interpreter in the terminal shell.
« Script mode runs a specified Python script in Katana's Python interpreter.

« Profiling mode runs Katana with a special version of the Geolib3 Runtime that implements profiling.

In addition to the different modes, you can also set startup scripts to run on open in files named init.py,
located in a Startup folder, under the path defined in the KATANA_RESOURCES environment variable.
Alternatively, you can use a startup script in the form of an init.py file placed in the .katana folder in your
HOME directory. These startup scripts can be run regardless of the launch mode you choose.

For information on starting Katana in the other launch modes, see Command-line Interface.

USER GUIDE
40

Launching Katana | Command-line Interface

Command-line Interface

Katana's launch behavior and mode of operation can be controlled by passing command-line arguments.

Global Arguments

These arguments can be passed regardless of the selected launch mode, see Launch Modes.

Argument Description

-h, --help Displays a list of command-line arguments.

--asset ASSETID Loads the Katana project with the given asset ID or path.

--ocio PATH Uses the OpenColorlO configuration file at the given path.

--profile Runs Katana in profiling mode. See Op Cook Profiling.

--force-profile Runs Katana in profiling mode and start profiling immediately.
--profiling-dir DIR Sets the directory where profiling files, if any, are written.

-V, --verbose The level of verbosity of logging informational messages. Defaults to 1. Set to

0 to suppress most informational messages.

Launch Modes

Katana normally operates in interactive (GUI) mode. Katana can be launched in a specific launch mode by
using one of the following command-line arguments.

Mode Name Argument Description
Interactive No flags Runs Katana with the standard GUI.
Batch --batch Runs Katana without a GUI to render the output of a specific node

in the Node Graph. Batch mode supports further command-line

USER GUIDE

Launching Katana | Command-line Interface

arguments, see Batch Mode for more information.

Script --script PATH Runs Katana without a GUI, and executes the specified Python
script at the given path.

Shell --shell Runs Katana without a GUI, and allows Python commands to be
run interactively.

Katana License Requirements for
Launch Modes

There are two types of license for Katana, interactive licenses (katana_i) and render licenses (katana_r). The
type of license required depends on the mode Katana is launched in.

Katana Interactive Mode

Running Katana in Interactive (GUI) Mode requires a Katana interactive license (katana_i). This is the standard
launch mode for Katana and requires no arguments when running Katana using a Command Prompt or a
Terminal.

Katana interactive mode is typically used by artists or technical developers to set up or light projects, and to
render using the Preview, Live or Disk Render commands.

For more information on Katana Interactive Mode, see Interactive Mode.

Note: Using a Katana interactive license does not allow you to access the terminal modes - batch
mode, script mode or shell mode - these require a Katana render license.

Katana Terminal Modes

Katana has three terminal modes - batch mode, script mode and shell mode. All terminal modes require a
Katana render license (katana_r).

USER GUIDE

Launching Katana | Command-line Interface

e Batch Mode - used to render a Katana scene from a terminal.
e Script Mode - used to execute Python scripts in Katana's Python environment.
e Shell Mode - used to expose Katana's Python interpreter in the terminal shell.

Note: Licenses are used on a one-per-host machine basis. If you are rendering your Katana scenes
on your Render Farm, using either batch mode or script mode, then each render machine will
require a katana_r license.

Note: For more information on Installation and Licensing, see Installation and Licensing.

Interactive Mode

Interactive mode is the default mode, requiring no additional command-line arguments. It also loads
additional modules, such as the ScenegraphManager. Interactive is the only mode that launches Katana
with the GUI.

To start Katana in Interactive mode:

1. Open a terminal.

2. Navigate to the directory where you installed Katana.
3. Enter:

./katana

If a license is present, the interface displays. Otherwise, you need to license Katana. See Licensing Katana
on Windows or Licensing on Linux for more on this.

You can also specify a Katana scene to load. To start in Interactive mode, and open a specified Katana scene:
1. Open a terminal.

2. Navigate to the directory where you installed Katana.

3. Enter:

./katana /yourDirectory/yourScene.katana

You can also specify an asset ID using the --asset flag, to resolve and open a file from your asset
management system. The --asset flag takes a single argument, which is the asset ID to resolve. For example:

./katana --asset=mock:///show/shot/name/version

USER GUIDE

Launching Katana | Command-line Interface

Note: The format of the asset ID itself is dependent on your asset management system, and the
file you attempt to resolve must be a valid Katana scene.

Note: The --asset flag also applies to Katana's Batch mode.

For more on Katana's Asset API see Asset Management System Plug-in API.

Script Mode

Script mode allows you to execute Python scripts in Katana's Python environment. Script mode requires the -
-script flag, followed by a single argument specifying the script you want to run. This launch mode is most
useful for testing. You can import most Katana modules, and perform tasks such as loading Katana scenes,
changing some parameters, and rendering.

For example, to start Katana in Script mode using a script named yourScript.py:
1. Open a terminal.

2. Navigate to the directory where you installed Katana.

3. Enter:

./katana --script /yourDirectory/yourScript.py

To open a scene and start rendering from the scene's Render node, open the following Python script in
Script mode:

import NodegraphAPI
from Katana import KatanaFile
from Katana import RenderManager

def messageHandler (sequencelD, message) :
print message

yourKatanaScene = "/yourDirectory/yourFile.katana"
KatanaFile.Load(yourKatanaScene) # Loading scene
/yourDirectory/yourFile.katana

RenderNode = NodegraphAPI.GetNode ('Render') # Getting Render node
RenderManager.StartRender (

node=RenderNode, # Starting render

hotRender=True,

frame = 1,

USER GUIDE
44

Launching Katana | Command-line Interface

asynch = False,
interactive = False,
asynch renderMessageCB = messageHandler

Shell Mode

Shell mode exposes Katana's Python interpreter in the terminal shell. Shell mode requires the --shell flag,
and no arguments. All of the modules available in the Python tab in Katana are available in Shell mode.

To start Katana in Shell mode:
1. Open a terminal.
2. Navigate to the directory where you installed Katana.

3. Enter:

./katana --shell

Batch Mode

Batch mode allows you to render sequences of frames from a Katana scene all at once. It is started through a
command line, where you specify the file path, frame range and any other necessary options.

Note: You will only be able to access terminal modes, including Batch Mode, if you have a Katana
render license (katana_r). If you're a student, you can access one for free.

Batch mode is useful if you have a large number of frames to render as it will render out each individual file
in the background. You can continue working on a Katana scene file whilst it is being batch rendered as the
command uses the last saved version.

Before starting a batch render, ensure the render settings and the render flag are all set up correctly in
Katana. To set the render flag, select the node you wish you render from and press V on the keyboard. The
render flag can be determined through the command line, however setting it up beforehand simplifies the
string needed to run Batch mode and minimizes any room for error.

USER GUIDE
45

Launching Katana | Command-line Interface

Note: When you specify the Image Filename for the output render, ensure you use one or more

hashes as they will be replaced by the frame number in your rendered file name. For example:
fileName_<aov>_###.<ext>

Start a Batch Render

1. Open the Command Prompt.

2. Navigate to the directory where you have Katana installed using the cd command, for example:
cd C:\Program Files\Katana3.2vl\bin

3. Enter the following command to start a batch render:

katanaBin.exe --batch --katana-file=C:\yourDirectory\yourScene.katana
-t 1-1000

Where:

katanaBin.exe --batch --katana-file=/yourDirectory/yourScene.katana -t 1-1000

Launches Starts a Specifies the

Path to your Specifies the
Katana Batch Katana file to Katana file frame range to
render load render

4. Press Enter to start the render.

You can add more arguments to the command. For example, use --render-node to specify the node you

would like to render from if you haven't set your render flag in the Katana scene or if you would like to
change it:

katanaBin.exe --batch --katana-file=C:\yourDirectory\yourScene.katana --
render-node=renderHere -t 1-1000

1. Open a Terminal.

Navigate to the directory where you have Katana installed using the cd command, for example:
cd /opt/foundry/katana

3. Enter the following command to start a batch render:

./katana --batch --katana-file=/yourDirectory/yourScene.katana -t 1-
1000

USER GUIDE
46

Launching Katana | Command-line Interface

Where:

./katana|--batch --katana-file=/yourDirectory/yourScene.katana -t 1-1000

Launches Startsa Specifies the Path to your Specifies the
Katana Batch Katana file to Katana file frame range to
render load render

4. Press Enter to start the render.

You can add more arguments to the command. For example, use --render-node to specify the node you
would like to render from if you haven't set your render flag in the Katana scene or if you would like to
change it:

./katana --batch --katana-file=/yourDirectory/yourScene.katana --render-
node=renderHere -t 1-1000

Here is a full list of command line options for Batch Mode:

Option Usage
--katana-file Specifies the Katana recipe to load.
Syntax:

—-—-katana-file=<filename>

Example:

./katana --batch --katana-file=/tmp/test.katana -
-t=1-1000

—-—-render—-node=beauty
--asset Specifies the asset ID to resolve.

Syntax:

—-—asset=<asset ID>

Example:

./katana --asset=mock:///show/shot/name/version
-tor--t Specifies the frame range to render.

Syntax:

-t <frame range>

OR

-—-t=<frame range>

USER GUIDE
47

Option

--var

--threads2d

--threads3d

USER GUIDE

Launching Katana | Command-line Interface

Usage

Where <frame range> can take the form of a range (such as 1-5) or
a comma separated list (such as 1,2,3,4,5). These can be combined,
for instance: 1-3,5, which would render frames 1, 2, 3, and 5.

Example:
./katana --batch --katana-file=/tmp/test.katana
--t=1-5,8 --render-node=beauty

Sets the value of an existing Graph State Variable. This command-
line option can be specified multiple times to override the values of
multiple Graph State Variables.

Syntax:
--var <GSV name>=<GSV value>

Example:

./katana --batch --katana-file=/tmp/test.katana -
-t=1 --var Shot=Shl --var timeOfDay=night --var
variant=B --render-node=beauty

Specifies the number of additional processors within the
application. An additional processor is also used for Katana's main
thread.

This means that Katana uses 3 processors when --threads2d=2.

Syntax:
—-—-threads2d=<num threads>

Example:
./katana --batch --katana-file=/tmp/test.katana
--t=1-1000 --threads2d=2 --render-node=beauty

Specifies the number of simultaneous threads the renderer uses.

Syntax:
-—threads3d=<num threads>

Example:
./katana --batch --katana-file=/tmp/test.katana
--t=1-1000 --threads3d=8 --render-node=beauty

48

Option

--render-node

--render-internal-dependencies

--crop-rect

--setDisplayWindowToCropRect

--tile-render

USER GUIDE

Launching Katana | Command-line Interface

Usage
Specifies the Render node from which to render the recipe.

Syntax:

-—-render—-node=<node name>

Example:
./katana --batch --katana-file=/tmp/test.katana
--t=1-1000 --render-node=beauty

Allows any render nodes that don't produce asset outputs to be
rendered within a single katana --batch process. Asset outputs are
determined by asking the current asset plug-in if the output
location is an assetld, using isAssetld(). The default file asset plug-
in that ships with Katana classes everything as an asset. So at
present it is not possible to render any dependencies within one
katana --batch command without customizing the asset plug-in.

Specifies which part of an image to crop. The same cropping area is
used for all renders.

Syntax:
-—crop-rect=" (<left>,<bottom>, <width>, <height>)"

Example:

./katana --batch --katana-file=/tmp/test.katana -
-t=1-1000

--render-node=beauty --crop-rect="(0,0,256,256)"

Sets the display image to the same size as the crop rectangle set by
--crop-rect.

Used to render one tile of an image divided horizontally and
vertically into tiles. For instance, using

--tile-render=1,1,3,3 splits the image into 9 smaller images (or
tiles) in a 3x3 square and then renders the middle tile as the index
for tile renders starts at the bottom-left corner with 0,0. In the case
of 3x3 tiles, the indices are:

021222

49

Option

--tile-stitch

USER GUIDE

Launching Katana | Command-line Interface

Usage
011,121
001,020

The results are saved in the same location as specified by the
RenderOutputDefine node but with a tile suffix. For instance: tile_1_
1.beauty.001.exr

Syntax:

--tile-render=<left tile index>, <bottom tile
index>, <total tiles width>, <total tiles height>

Example:

./katana --batch --katana-file=/tmp/test.katana -
-t=1-1000

--render-node=beauty --tile-render=0,0,2,2
./katana --batch --katana-file=/tmp/test.katana -
-t=1-1000

--render-node=beauty --tile-render=0,1,2,2
./katana --batch --katana-file=/tmp/test.katana -
-t=1-1000

--render-node=beauty --tile-render=1,0,2,2
./katana --batch --katana-file=/tmp/test.katana -
-t=1-1000

--render-node=beauty --tile-render=1,1,2,2

Used to assemble tiles rendered with the --tile-render flag into a
complete image.

When stitching, you must still pass the --tile-render argument,
with the number of x and y tiles, so that the stitch knows how many
tiles to expect, and their configuration.

Syntax:

-—tile-render=<left tile index>, <bottom tile
index>, <total tiles width>, <total tiles height>
--tile-stitch

Example:
./katana --batch --katana-file=/tmp/test.katana -

50

Launching Katana | Command-line Interface

Option Usage

-t=1-1000 --render-node=beauty --tile-
render=0,0,2,2 --tile-stitch

--tile-cleanup Used to clean up transient tile images. Can be used in conjunction
with --tile-stitch to assemble a complete image, and remove
transient tiles in a single operation.

When using --tile-cleanup you must still pass the --tile-render
argument with the number of x and y tiles, so that cleanup knows
how many tiles to remove.

Syntax:

--tile-render=0,0,<total tiles width>,<total
tiles height> --tile-cleanup

Example:

./katana --batch --katana-file=/tmp/test.katana -
-t=1-1000 --render-node=beauty --tile-
render=0,0,2,2 —--tile-stitch --tile-cleanup

--prerender-publish In Batch mode, it executes the Pre-Render Publish Asset action on
the outputs but doesn't render images.

The value specifies the filename for dumping render pass
information.

Note: This can be used together with --versionup.

Syntax:

—--prerender-publish=<pass info>

Example:

./katana --batch --katana-file=/tmp/test.katana -
-t=1-1000 --render-node=beauty --prerender-
publish=/tmp/pass info.xml

--make-lookfilebake-scripts Used to write out a number of Python files that can be executed in
Batch mode to write look files.

Syntax:

USER GUIDE

Launching Katana | Command-line Interface

Option Usage

--make-lookfilebake-scripts=<script directory>

Example:

./katana --batch --katana-file=/tmp/bake.katana -
—t=1
--make-lookfilebake-scripts=/tmp/bake scripts
./katana --script /tmp/bake scripts/preprocess.py

./katana --script /tmp/bake scripts/1lf bake
default.py

./katana --script /tmp/bake
scripts/postprocess.py

--postrender-publish In Batch mode, it executes the Post-Render Publish Asset action
on the outputs but doesn't render images.

The value specifies the filename for dumping render pass
information.

Note: This can be used together with --versionup.

Syntax:

--postrender-publish=<pass info>

Example:

./katana --batch --katana-file=/tmp/test.katana -
-t=1-1000 --render-node=beauty --postrender-
publish=/tmp/pass_info.xml

--versionup Used to specify that you want to version up assets when publishing
to the asset management system.

Syntax:

—--versionup

Example:

./katana --batch --katana-file=/tmp/test.katana -

-t=1-1000 --render-node=beauty --versionup
--reuse-render-process Iterates over the sequence of frames to render, and exports Op

USER GUIDE
52

Launching Katana | Katana Resources

Option Usage

Tree files for all frames, then starts the renderer (/renderboot
process) only once on a sequence of exported Op Tree files.

Syntax:

——reuse—render—process

Example:

./katana --batch --katana-file=/tmp/test.katana -
-t=1-1000 --render-node=beauty --reuse-render-
process

Note: Setting threads3d or threads2d through Batch mode takes precedence over the
interactiveRenderThreads3D, and interactiveRenderThreads2D settings in Katana's Edit >
Preferences > application menu.

Article: How to render an image in multiple tiles in Batch Mode.

Katana Resources

Katana uses the KATANA_RESOURCES environment variable to provide a list of paths under which to look
for plug-ins and other customizations (such as shelves, tabs, and resolutions). This can also be a list of
directories, separated by a colon (if you're on Linux) or a semi-colon (if you're on Windows). The idea is to
allow you to build up a list of resource locations. If you're a developer writing plug-ins for Katana, you need
to make sure they go in the right place in order for them to be picked up properly.

Examples are provided in the following directory, and are loaded if this path is included in the KATANA_
RESOURCES environment variable:

$KATANA_ROOT/plugins/Resources/Examples
Adding New Paths

Any directories you add to the KATANA_RESOURCES path are searched by Katana for plug-in. For example,
you could specify:

USER GUIDE

U
w

https://support.foundry.com/hc/en-us/articles/115001671184

Launching Katana | Katana Resources

export KATANA_RESOURCES=/home/tom/dev/katana/Resources:/tools/site/katana/Resources

You should then see the following when Katana starts:

> katana

[INFO LicenseCheck]: Interactive License OK

[INFO python.ResourceFiles]: Additional Katana resource paths from SKATANA
RESOURCES:

[INFO python.ResourceFiles]: /home/tom/dev/katana/Resources

[INFO python.ResourceFiles]: /tools/site/katana/Resources

These are searched in addition to those listed in the Defaults section, discussed in more detail below.

Note: The $KATANA_RESOURCES variable behaves as a standard Linux environment variable.
Consequently, if you wish to append a directory to this, keeping anything that is already there, you
have to take care of when editing this.

Important Directories

The paths that you place on KATANA_RESOURCES are not actually searched directly. Instead, there is a
meaningful set of sub-directories that are used by different parts of the program. For Python modules, the
‘types’ listed refer to the first value of each tuple set in the module’s PluginRegistry list.

* Args - the .args files for shaders.
* AssetPlugins - Python-based AssetPlugin and FileSequencePlugin plug-ins.

Note: As of 3.0v1, Python-based AssetAPI plug-ins have been deprecated. Support for them has
been removed when Katana transitioned from Python 2.7 to Python 3.7 as part of moving to VFX
Reference Platform CY2020.

« GafferThree* - Python-based plug-ins (Script Items) that extend the GafferThree super tool. Custom
packages for GafferThree can be created using PackageSuperToolAPI.

* GenericAssign - templates for defining new GenericAssign-based nodes (.xml).

 Importomatic* - Python-based ImportomaticModule plug-ins that form plug-ins for the Importomatic
SuperTool.

« Layouts - creating a directory called Layouts in your KATANA_RESOURCES path allows you to load
layouts from files named KatanalLayout2.xml or other files ending in .katanalayout.xml. For example:

+ <KATANA_RESOURCES>/Layouts/KatanaLayout2.xml
« <KATANA_RESOURCES>/Layouts/production1.katanalayout.xml

USER GUIDE
54

Launching Katana | Katana Resources

Layouts saved from Katana's Layouts menu are still saved in the KatanaLayout2.xml file in the current
user's .katana resource directory in the OS home directory. For example:

* Windows: C:\Users\<login name>\.katana

* Linux: /home/<login name>/.katana
« Libs - any compiled C++ plug-ins for Katana, for any API; for example, C-based asset plug-ins (.so).
» Macros - nodes saved as macros from the Katana Ul (.macro).

 Ops - C++ plug-ins that can arbitrarily create and manipulate scene data. Ops can also be placed in the
Libs sub-folder within KATANA_RESOURCES. The Ops are loaded in Katana regardless of whether they are
placed in the Libs or Ops folders.

¢ Plugins - sundry Python modules, including types such as GafferProfile, KatanaPlugin,
RenderLocationPlugin, ViewerProxyLoader, UVTileFormats.

 RenderBin - this directory isn't actually a standard Katana directory, but many render plug-ins use this to
store binaries and plug-ins that are loaded by the renders themselves to talk to Katana.

» Resolutions - additional resolution files (.xml).

« Shaders - any additional shaders for a renderer. The only time this directory is considered by Katana itself
is to locate shaders for the viewer (.glsl).

« Shelves - a directory for each shelf, containing Python scripts for each shelf item.

« Startup - Python scripts that can be used to configure Katana at startup. The only file that is explicitly run
(with execfile) is one called init.py. If you wish to run other scripts or import modules, they would need to
be called from there.

* SuperTools* - Python modules that implement new SuperTools.
« Tabs* - Python modules (KatanaPanel) that implement new tabs that can be docked to panes in the Ul

* UIPlugins - Python modules that implement Ul-specific plug-ins, such as AssetWidgetDelegates and
KatanaPlugin.

Note: These plug-ins aren't loaded in --batch, --script, and --shell launch modes.

« ViewerManipulators - additional Python manipulators (KatanaManipulator) for the viewer.

Defaults

Katana always looks in the following (internal) places, regardless of what you set KATANA_RESOURCES to.
$KATANA_ROOT is where the Katana installation lives.

$ {KATANA ROOT}/bin/python/UI4/Resources

${KATANA ROOT}/plugins/Resources/Core

USER GUIDE
55

Launching Katana | Environment Variables

Generally, the search order is by ‘standard path behavior'. Namely, Katana looks at the directories, left to
right. What you may observe, though, differs a little depending on the type of plugin/directory being loaded.

Compiled Plug-ins

Many of the compiled plug-ins work on the basis that the ‘first one loaded’ sticks. This is not based on the
.s0 name, but instead the name passed to the REGISTER_PLUGIN. Repeat registrations with the same name
are ignored. The plug-ins in each directory are iterated by readdir so are loaded in ‘filesystem order’.

In the case of ViewerModifierPlugins, where the mapping is to a location type (based on an API call), the
effective winner for any location is the first named registration that accepts to a particular location type.

But what is the ‘first’ plug-in? In the case of multiple registrations of the same name, for example, a local
build of a central plug-in, both named ‘OuModifier’, you get the first on the path from left to right. However,
when multiple, independently-named registrations handle the same type, for example, 'LightModifier’ and
‘MyLightModifier’, you end up with the first one iterated from the internal plug-in map, which presently ends
up being ordered alphabetically.

Python

Python modules are generally sourced from directories (using __import_), from left to right. So, the first
module that registers a specific name in its PluginRegistry wins. Within any directory, plug-ins are loaded by
os.listdir, which documents its ordering as arbitrary. However, some code reverses this search order. Any
directories listed with an asterisk (*) above are right-to-left precedence. Additionally, shelves don't work
quite as you might expect, as the shelf mechanism searches left-to-right (non-reversed). This means that the
right-most files contents win out.

Environment Variables

Environment variables are named variables used to store a value, such as a specific file path, and can be used
to influence Katana's behavior. For example, Katana uses the information stored in them to define where to
place certain files.

Setting Environment Variables

The section teaches you how to set environment variables, check if a particular environment variable exists,
and displays a list of set environment variables.

USER GUIDE
56

Launching Katana | Environment Variables

On Linux

1. The procedure for setting an environment variable depends on what your default shell is. To get the
name of the shell you are using, launch a shell and enter echo $SHELL.

2. Depending on the output of the previous step, do one of the following:

« If your shell is a csh or tcsh shell, add the following command to the .cshrc or .tcshrc file in your home
directory: setenv VARIABLE value. Replace VARIABLE with the name of the environment variable and
value with the value you want to give it, for example, setenv KATANA_PATH /SharedDisk/Katana.

« If your shell is a bash or ksh shell, add the following command to the .bashrc or .kshrc file in your
home directory: export VARIABLE=value. Replace VARIABLE with the name of the environment
variable and value with the value you want to give it, for example, export KATANA_
PATH=/SharedDisk/Katana.

For a list of the environment variables that Katana understands, see Environment Variables.

On Windows

1. Right-click on My Computer and select Properties.
2. Go to the Advanced tab.
3. Click the Environment Variables... button.

The Environment Variables dialog opens.

4. Click the New... button either under User variables or System variables, depending on whether you
want to set the variable for the current user or all users. To set environment variables for all users, you
need to have administrator privileges.

5. Inthe Variable name field, enter the name of the environment variable you want to set. For a list of the
environment variables that Katana understands, see Environment Variables.

6. Inthe Variable value field, enter the value for the variable. The value can be a directory path, for
example.

7. Click OK.

Note: When editing existing system variables, or adding or deleting either user or system
variables, you may need to log off and on again before your changes to environment variables take
effect.

USER GUIDE
57

https://learn.foundry.com/katana/3.0/dev-guide/EnvironmentVariables.html
https://learn.foundry.com/katana/3.0/dev-guide/EnvironmentVariables.html

Launching Katana | Environment Variables

On Linux

1. Launch a shell.

2. Enter echo $VARIABLE. Replace VARIABLE wit the name of the environment variable. For example, to
check if KATANA_DISABLE_LIVEGROUP_CACHING is set, enter echo $KATANA_DISABLE_
LIVEGROUP_CACHING.

If the variable is set, its value is displayed in the shell window.

On Windows

1. Select Start > All Programs > Accessories > Command Prompt.

2. Inthe command window that opens, enter echo %VARIABLE%. Replace VARIABLE with the name of
the environment variable. For example, to check if KATANA_DISABLE_LIVEGROUP_CACHING is set,
enter echo %KATANA_DISABLE_LIVEGROUP_CACHING%.

If the variable is set, its value is displayed in the command window.

On Linux

1. Launch a shell.
2. Enter printenv.

A list of all environment variables that are set is displayed in the shell window.

On Windows

1. Select Start > All Programs > Accessories > Command Prompt.
2. Inthe command window that opens, enter set.

A list of all the environment variables that are set is displayed in the command window.

USER GUIDE
58

What is Katana?

Katana was originally designed to solve problems with scalability and flexibility; how to carry out look
development and lighting in a way that could deal with potentially unlimited amounts of scene data. It also

needed to be flexible enough to deal with the requirements of modern CG Feature and VFX production for
customized workflows, with the capability to edit or override anything.

Video: This video gives you an overview of what Katana is.

Katana leverages renderers’ support for recursive procedurals, where arbitrary scene data can be created on
demand. The Katana approach is to have a single procedural that is powerful enough to handle arbitrary
generation and filtering. Essentially, this is a procedural given a custom program in the form of a tree-based
description of filters. At render time, Katana's libraries are called from within this procedural to calculate
scene data as the renderer demands.

What Can Katana Do?

Katana allows you to define what to render by using filters that can create and modify 3D scene data. A
node-based interface allows users to define which filters to use, and interactively inspect their results.

Using filters you can arbitrarily create and modify scene data. You can, for example:

* Bring 3D scene data in from disk, such as from an Alembic geometry cache or camera animation data.
« Create a new instance of a material, such as a 3Delight shader.

+ Create cameras and lights.

 Manipulate transforms on cameras, lights and other objects.

« Use rule based expressions to set what materials are assigned to which objects.

« Isolate parts of the scene for different render passes.

» Merge scene components from a number of partial scenes.

« Specify which AOV's you want to use for multiple passes in a single render..

« Use Python scripting to specify arbitrary manipulation of attributes at any location in the scene hierarchy.

USER GUIDE
59

https://vimeo.com/180183791

What is Katana? |

Import Import Create
Camera Geometry Light
w ¥
Add material Add light
shader shader
Azzign shader Assign shader
to geometry to light
Merge
scenegraph
Set output
filepath

The scene data to be delivered to the renderer is described by a tree of filters, and the filters are evaluated
on demand in an iterative manner. Katana is designed to work well with renderers that are capable of
deferred recursive procedurals. Using recursive procedurals, the tree of filters is handed directly to the
renderer, with scene data calculated on demand, as the renderer requests it (lazy-evaluation). This is typically
done by a procedural inside the renderer that uses Katana libraries, during render, to generate scene data
from the filter tree.

Katana can also be used with renders that don't support procedurals or deferred evaluation, by running a
process that evaluates the scene graph and writes out a scene description file for the renderer. This approach
is without the benefits of deferred evaluation at render time, and the scene description file may be very
large.

Note: Since Katana's filters deliver per-frame scene data in an iterable form, Katana can also be
used to provide 3D scene data for processes other than renderers.

At its core, Katana is a system for the arbitrary creation, filtering, and processing of 3D scene data, with a user
interface primarily designed for the needs of look development and lighting. Katana is also designed for the
needs of power users, who want to create custom pipelines and manipulate 3D scene data in advanced ways.

Scene Graph Iterators

The key to the way Katana executes, filters, and delivers scene data on demand, is that scene data is only ever
accessed through iterators. These iterators allow a calling process (such as a renderer) to walk the scene

USER GUIDE
60

What is Katana? | Key Concepts

graph and examine any part of the data on request. Since that data can be generated as needed, a large
scene graph state doesn't have to be held in memory.

In computer science terms, it is the responsibility of the calling process to maintain its own state. Katana
provides a functional representation of how the scene graph should be generated, that can be statelessly
lazily-evaluated.

At any location in the scene hierarchy Katana provides an iterator that can be asked:
» What named attributes there are at that location?
« What are the values for any named attribute (values are considered to be vectors of time sampled data)?

« What are the child and sibling locations (if any)?

Katana in Look Development and Lighting

Katana's scene generation and filtering are presented as a primary artist facing tool for look development
and lighting by having filter functions that allow you to perform all of the classic operations carried out in
look development and lighting. Primarily:

« Creating instances of shaders, or materials, out of networks of components

« Assigning shaders to objects

« Creating lights

* Moving lights

« Changing visibility flags on objects

« Defining different render passes

Katana's node-based interface provides a natural way to create recipes of which filters to use. Higher-level
operations that may require a number of atomic level filters working together can be wrapped up in a single

node so that the final user doesn't have to be concerned with every individual fine-grain operation. Multiple
nodes can also be packaged together into single, higher-level compound nodes.

Key Concepts

A recipe in Katana is an arrangement of instructions - in the form of connected nodes - to read, process, and
manipulate a 3D scene or image data. A Katana project can be made up of any number of recipes, and
development of these recipes revolves around two tabs: the Node Graph and Scene Graph tabs.

USER GUIDE

What is Katana? | Key Concepts

Within the Node Graph tab, Katana utilizes a node-based workflow, where you connect a series of nodes to
read, process, and manipulate 3D scene or image data. These connections form a non-destructive recipe for
processing data. A node’s parameters can be viewed and edited in the Parameters tab.

To view the scene generated up to any node within a recipe, you use the Scene Graph tab. The scene
graph’s hierarchical structure is made up of locations that can be referenced by their path, such as /root.
Each location has a number of attributes that represent the data at that location. You can view, but not edit,
the attributes at a location within the Attributes tab.

These key concepts are explained in greater depth in the Quick Start Guide.

In this example of a very basic recipe:

« the Node Graph tab contains the recipe for creating the scene,

« the Scene Graph tab shows the scene generated at the beauty node (a renamed Render node),
« the Parameters tab shows the current parameters of the GafferThree node,

« the Viewer tab shows a 3D view from the point of view of the camera.

Parameters

D = GafferThree

lgt/gaffe

@ light

USER GUIDE
62

quick_start_guide.htm

What is Katana? | Key Concepts

The User Interface

Katana allows you to create recipes for filters, using a familiar node-based user interface (Ul). In the Ul, you
can also interactively examine the scene at any point in the node tree, using the same filters that the
renderer runs at render time (but executed in the interface).

When running through the Ul, filters are only run on the currently exposed locations in the scene graph
hierarchy. This means you can inspect the results of filters on a controlled sub-set of the scene.

The way you can view the scene generated at any node is similar to the way users of 2D node-based
compositing packages can view composited frames at any node. If you are accustomed to conventional 3D
packages that have a single 3D scene state, it may be a surprise that there is essentially a different 3D scene
viewable at each node. Instead of the scene graph being expanded as rays hit bounding boxes, it is iterated
as you open up the scene graph hierarchy in the Ul. Complexity is controlled by only executing filters on
locations in the scene graph that you have expanded.

A scene does not need to be entirely loaded in order to be lit. In Katana, you create recipes that allow scene
data to be generated, rather than directly authoring the scene data itself. It is only the renderer that needs
the ability to see all of the scene data, and then only when it needs it. Katana provides access to any part of
the scene data if you need to work on it. You can set an override deep in the hierarchy, or examine what
attribute values are set when the filters run, but you can work with just a sub-set of the whole scene data
open at a time. This is key to how Katana deals with scenes of potentially unlimited complexity.

Note: As Katana uses procedurally defined iterators, it's possible to define an infinitely sized scene
graph, such as a scene graph defining a fractal structure. An infinite scene graph can never be fully
expanded, but you can still work with it in Katana, opening it to different depths, and using rule-
based nodes to set up edits and overrides.

Note: Katana 2.x uses an application-wide Qt style sheet to apply font preferences to Qt widgets.
Custom widgets that use font metrics before widgets are shown need to be modified to add
QWidget.ensurePolished() calls before working with QtGui.QFontMetrics instances.

USER GUIDE

Glossary of Katana Terms | Key Concepts

Glossary of Katana Terms

This glossary provides short descriptions of the most important terms used throughout the Katana

application and documentation.

Knowledge of these core terms help you to understand the way Katana works and processes data more
clearly, and enable you to make the most of the Katana documentation.

Katana Core Terms

Nodes

Node Graph

Nodes are the units used in the Katana interface to build the Recipe for a Katana
project. Nodes feature Parameters that can be used to control their behavior. Nodes
can be created and connected in Katana's Node Graph tab in the Ul, and can also be
modified through Python scripting using NodegraphAPI.

Katana ships with many built-in types of nodes, but custom node types can also be
created through Python scripting. There are two major groups of node types shipped
with Katana:

» 3D nodes that produce scene graph that can be inspected in Katana's Scene

Graph tab.
» 2D nodes that produce images that can be viewed in Katana's Monitor tab.

Nodes and their Parameters effectively represent and control corresponding Ops that
form Op graphs that are processed by Katana's geometry library to generate the scene
data that can be viewed and inspected in Katana's Scene Graph and Attributes tabs.

Note: For more information about working with nodes in the Katana Ul,
please see, Editing the Node Graph. For working with nodes through Python
Scripting, please see the relevant Working With Nodes section of the Katana
developer guide.

Node Graphs in Katana are Recipes of connected nodes that are part of a Katana
project. The nodes in node graphs can be created and connected in Katana's Node
Graph tab in the Ul, and can also be modified through Python scripting using
functionality from the NodegraphAPI Python package.

USER GUIDE

64

https://learn.foundry.com/katana/current/dev-guide/Scripting/WorkingWithNodes/
reference_guide.htm
https://learn.foundry.com/katana/current/dev-guide/Scripting/CustomizingNodeTypes/index.html
https://learn.foundry.com/katana/current/dev-guide/Scripting/WorkingWithNodes/
https://learn.foundry.com/katana/current/dev-guide/Scripting/WorkingWithNodes/

Parameters

Recipe

Project

Ops

Op Arguments

Glossary of Katana Terms | Key Concepts

Parameters are a part of nodes, and typically control their respective node's behavior.
Parameters of nodes can be edited in Katana's Parameters tab in the Ul, by setting the
edit flag on a node in the Node Graph tab, and can also be edited through Python
scripting using parts of the NodegraphAPI. Values of parameters can be either
constant, determined by Python expressions, or driven by animation curves.

Recipes in Katana are node graphs of connected nodes that are part of a Katana
project. Recipes typically represent the steps taken or operations performed to create
3D scene data in a scene graph, or the image manipulations performed to create 2D
images that can be viewed in Katana's Monitor tab and written out to file.

Note: For more information about Recipes in Katana, see Creating a Katana
Project.

A Katana Project is the sum of all the nodes and their parameters that form the recipes
that are expressed in the project's node graphs. Projects are saved in Katana project
files with the .katana file extension.

Note: For more information on working with projects, please see Creating a
Project.

Ops are the building blocks of operations that create and manipulate 3D scene data in
Katana, and produce the scene graphs that can be inspected at any point in a Katana
node graph by setting the view flag on a particular node. Ops are instances of Op
Types, which are plug-ins written in C++ that use a particular Katana API to define their
inner workings: the Op API. Some functions available for C++ Ops are documented in
the Katana Developer Guide.

Similar to the various node types, Katana ships with many built-in types of Ops, but
custom Op types can also be created through C++ programming and using the Op API.
When the view flag on a node is set, the node is queried for its corresponding Ops. The
behavior of a node in terms of the creation or modification of 3D scene data can be
defined by a single Op, but can also be defined by a number of Ops arranged in an Op
Chain or Op Graph.

Op Arguments control the behavior of Ops that define the effect of nodes in a Katana
recipe. They roughly correspond to parameters on 3D nodes. When changing the
parameter of a node, corresponding Op Arguments are updated. If the node or any

USER GUIDE

65

https://learn.foundry.com/katana/current/dev-guide/Scripting/WorkingWithNodes/Parameters/index.html
https://learn.foundry.com/katana/current/dev-guide/ParameterExpressions/PythonExpressions.html
create_katana_project.htm
create_katana_project.htm
create_katana_project.htm
create_katana_project.htm
https://learn.foundry.com/katana/current/dev-guide/

Cooking

Filters

Lazy Evaluation

Graph State

Glossary of Katana Terms | Key Concepts

node downstream is being viewed, the scene is recooked.

Cooking is the act of executing the Ops that correspond to nodes in the Katana recipe,
in order to create scene graph locations and their attributes, which can then be viewed
and inspected in the Scene Graph and Attributes tabs. When setting the view flag on a
node in the node graph, the Ops that correspond to that node and all of the nodes
above it are executed/evaluated/cooked to produce the scene graph at that point in
the node graph. In technical terms, the cook() function of each corresponding Op type
plug-in, is being called to create or modify locations in the resulting scene graph.

Filters are the old equivalent in Katana 1.X releases, of Ops in Katana 2.X releases and
above. They represent the building blocks of operations that create and manipulate 3D
scene data in Katana 1.X releases.

One of the key aspects of Katana's processing paradigm, is that operations are only
evaluated when their results are needed.

For example, the Ops that correspond to a particular node are only cooked when the
node itself or a node downstream of it is being viewed, meaning it has its view flag set.
In the context of the Scene Graph tab, data for scene graph locations is only produced
when the scene graph hierarchy is expanded to reveal them in the tree view widget.

When working with Katana's APIs, lazy evaluation can have an effect on the results of
certain function calls.

Note: For an example of this, see the Knowledge Base Article How to Query
Attributes of Scene Graph Locations via Python using a Geolib3 Client.

Lazy evaluation also applies to aspects of Katana's Ul, where a mechanism named
freezing and thawing ensures that the Ul is only updated when necessary in response
to user interactions.

Katana maintains a Graph State data structure when traversing up the node graph. It
contains information such as the current frame and the shutter timings, and is passed
to Ops that are represented by nodes when cooking the scene graph. Nodes can read
from and write to the Graph State as part of identifying their inputs.

For example, a TimeOffset node reads the current time and increments or decrements
it by some amount, as controlled by its inputFrame parameter. The modified Graph
State is then passed to the node above for cooking its Ops. It is important to realize

USER GUIDE

66

https://support.foundry.com/hc/en-us/articles/115001930070-Q100358-How-to-query-attributes-of-scene-graph-locations-via-Python-using-a-Geolib3-Client
https://support.foundry.com/hc/en-us/articles/115001930070-Q100358-How-to-query-attributes-of-scene-graph-locations-via-Python-using-a-Geolib3-Client

Graph State
Variables

GenericAssign

Glossary of Katana Terms | Key Concepts

that the Graph State information flows up the node graph, unlike scene data, which
flows down the graph.

Some Python functions to work with Graph State are documented in the Katana
Developer Guide.

Graph State Variables (sometimes abbreviated as GSV) essentially allow users to

define key-value pairs within the Graph State, and can be set at the project or node
level. They can then be referenced and manipulated by other nodes, allowing for a
powerful workflow, where groups of nodes and entire node graph branches can be
enabled and disabled with ease.

Note: For more information, see Graph State Variables.

Project-level GSV are known as Global Graph State Variables, and node-level GSV are
known as Local Graph State Variables. The following types of nodes are available for
working with and/or modifying local GSV:

e VariableSet

e VariableSwitch

e VariableEnabledGroup
e VariableDelete

GenericAssign is an advanced and powerful concept in Katana, in which parameters of
nodes are associated with specific attributes on locations in the scene graph. Such
parameters effectively control the values of their corresponding attributes. Their
widgets in Parameters tabs are capable of showing values of attributes from the
incoming scene, allowing users to inspect and modify those attribute values.

An example of a node type that uses GenericAssign-based parameters is the
RenderSettings node type. The parameters of RenderSettings nodes correspond to
attributes in the renderSettings group attribute on the /root location in the scene
graph. When setting a value of a parameter of a RenderSettings node, the
corresponding attribute in the renderSettings group is set. When connecting a
RenderSettings node to an incoming node graph, the widgets of parameters of the
node show the values of the attributes they correspond to.

State badges that are part of the parameters' widgets show the value states of the
respective parameters, indicating whether the corresponding attributes are set to a
specific value by nodes upstream of the node that is being edited (incoming value), or

USER GUIDE

67/

https://learn.foundry.com/katana/current/dev-guide/Scripting/WorkingWithProjects.html
https://learn.foundry.com/katana/current/dev-guide/Scripting/WorkingWithProjects.html

Glossary of Katana Terms | Key Concepts

by the node itself (local value), or whether the attributes are not set to a specific value,
in which case they use a default value instead.

Scene Graph 3D nodes that are part of Katana recipes produce a hierarchical set of data, called the
Scene Graph, which can be interactively inspected in Katana's Scene Graph and
Attributes tabs in the Ul, and can be presented to a renderer or any output process.
Examples of data that can be held in the scene graph can include:
* Geometry
 Particle data
* Lights
e Instances of shaders
* Global option settings for renderers.
Note: For more information on the Scene Graph, see Using the Scene Graph.
Locations Locations are the units that make up the Scene Graph hierarchy. Many other 3D
applications refer to these as nodes, but in Katana they are referred to as locations to
avoid confusion with the nodes used in the Node Graph. Locations can uniquely be
identified using their name and the names of all of their ancestor locations in the scene
graph, which form a scene graph location path, for example:
/root/world/geo/pony
Note: For more examples of how to work with locations in the Scene Graph,
see Using the Scene Graph and Manipulating the Scene Graph.
Attributes Attributes are containers for data held on locations in the scene graph. Examples of
data stored in attributes are:
3D transforms such as 4x4 matrices
e Vertex positions of geometry,
 Value settings for an instance of a shader.
Attributes of a selected scene graph location can be inspected interactively in Katana's
Attributes tab, but not edited, as their values are determined by nodes and parameters
of the Katana project.
USER GUIDE

68

Glossary of Katana Terms | Key Concepts

Note: For examples of common attributes that locations can have, see
Attribute Conventions in the Katana Developer Guide.

For more detailed information on creating, manipulating or deleting
attributes, see Working with Attributes.

Attribute Types There are different types of attributes for different basic types of data:

Integer numbers
Floating-point numbers
Double-precision numbers
Strings

In addition to these types of data attributes, attributes can be grouped in hierarchies
using group attributes.

A special type of attribute, the null attribute, is used for specific cases, such as to
declare a certain attribute as not set, so that a default value for the attribute is used

instead.

Katana Ul Terms

Value Policies

Parameter Policies

USER GUIDE

Value Policies in Katana provide data for display in widgets in
Katana's Ul. Value policies provide a layer in between underlying
data sources, such as parameters of nodes in the node graph
document, and Ul widgets in tabs like the Parameters tab. There are
different types of value policies, tailored to specific data sources and
specific use cases.

The Python base class for value policies is
QT4FormWidgets.AbstractValuePolicy. Value policies take care of
translating from events in the underlying data sources to Qt widget
events, for example, to repaint widgets after a parameter's value has
been changed using a NodegraphAPI call.

Parameter Policies in Katana are value policies that provide a layer in
between parameters of nodes in the node graph document and
widgets in the Parameters tab. Those widgets show values of
parameters, and can be used to edit those parameter values.

69

https://learn.foundry.com/katana/dev-guide/AttributeConventions/index.html
https://learn.foundry.com/katana/current/dev-guide/Scripting/WorkingWithNodes/index.html

Attribute Policies

GenericAssignParameterPolicy

USER GUIDE

Glossary of Katana Terms | Key Concepts

Parameter policies are most relevant when developing parameter
Uls for custom types of nodes, for example SuperTools, using Python
scripting APIs.

Note: For examples of how this can be used in SuperTools,
please see the respective Editor.py files of the example
SuperTools that ship with Katana under:

$KATANA_
ROOT/plugins/Src/Resources/Examples/SuperTools

The Python base class for parameter policies is
Ul4.FormMaster.BaseParameterPolicy. It is derived from the
AbstractValuePolicy class. A parameter policy is typically created for
a specific parameter of a specific node by passing a
NodegraphAPIl.Parameter instance that represents the respective
parameter to the Ul4.FormMaster.CreateParameterPolicy()
function. This returns an instance of a class that is derived from the
BaseParameterPolicy class.

Attribute Policies in Katana provide a layer in between attributes of
locations in the scene graph and widgets in the Attributes tab that
show values of those attributes.

Attribute policies are created internally by Katana to provide
attribute data for display in the Attributes tab when locations in the
Scene Graph tab are selected. There's rarely a need to create
attribute policies manually.

The Python base class for Geolib3-based attribute policies is
Ul4.FormMaster.FnAttributePolicy.AttributePolicy. It is derived
from the AbstractValuePolicy class.

GenericAssign Parameter Policies (GAPP) in Katana are parameter
policies that provide a layer in between GenericAssign-powered
parameters of nodes in the node graph document and widgets in the
Parameters tab. They can be seen as a hybrid between parameter
policies and attribute policies:

* GenericAssign aspect: GAPPs receive the results of cooking

70

Freezing and Thawing

USER GUIDE

Glossary of Katana Terms | Key Concepts

the scene graph that is produced by nodes upstream of the
respective GenericAssign-powered node by way of a built-in
Geolib3 Client that receives events from the Geolib3 Runtime.
This is similar to how attribute policies provide data from
attributes of scene graph locations for display in the Attributes
tab.

e Parameter policy aspect: GAPPs provide cooked attribute
data for use in parameter widgets in the Parameters tab. This is
similar to how parameter policies provide data from
parameters of nodes for display in the Parameters tab.

Freezing means that Katana-specific events that are normally
processed when underlying data changes are temporarily ignored. It
applies to value policies, and to tabs in Katana application windows.
This ensures that they're not needlessly updated when changes are
made to the node graph document or when scene graph location
data is cooked, for example in the case that widgets or tabs are not
actually visible to the user.

Thawing of value policies or tabs is the reverse of freezing: after the
processing of Katana-specific events has temporarily been
suspended, or has never been started before, thawing means that
processing of such events and updating Ul components as a result is
resumed or started.

Freezing and thawing is implemented by registering and
unregistering handlers for specific Katana event types, depending on
whether the respective value policies or tabs are frozen.

Note: For information on registering callbacks and event
handlers, refer to Callbacks and Events in the developer
guide.

Typically, when the user switches from one tab to the next in a pane
inside of a Katana window, the previously visible tab is frozen, and the
newly visible tab is thawed. Thus, no widgets in the now hidden tab
are updated in response to Katana events, but widgets in the newly
visible tab are. When working with parameter policies in the context

https://learn.foundry.com/katana/current/dev-guide/Scripting/CallbacksAndEvents.html

Glossary of Katana Terms | Key Concepts

of parameter Uls for custom types of nodes, for example SuperTools,
it is important to note that Python callback functions need to be
added to such a value policy in order to be notified when the
underlying value of the policy changes. If no such callbacks are added
to a value policy, the value policy is considered frozen.

Note: For more information, see the descriptions of
GenericAssign and Lazy Evaluation in the Katana Core
Terms section of the Glossary, and
GenericAssignParameterPolicy in the Ul Terms section.

ScenegraphManager The ScenegraphManager Python module is part of the Nodes3DAPI
Python package. It maintains a single instance of a Scenegraph class
that is responsible for tracking a number of Working Sets that
maintain the open, closed, selection, and pinning states of locations
in Katana's scene graph.

For more information about pinning, see Changing What is Shown in
the Viewer.

The Scenegraph instance can be retrieved by calling
ScenegraphManager.getActiveScenegraph(). The instance can
then be used, for example, to access the list of paths of scene graph
locations that are currently selected:

sg = ScenegraphManager.getActiveScenegraph ()
print (sg.getSelectedLocations ())

The Scenegraph class also maintains a history of selected scene
graph locations, using an internal SelectionHistory class, for the
purpose of allowing users to step through the history using the
History Forward and History Backward commands in the Viewer
tab.

Katana Rendering Terms

Preview Render A Preview Render is a type of Interactive Render, meaning a render launched from a

USER GUIDE
72

Live Render

Disk Render

Glossary of Katana Terms | Key Concepts

Katana Ul session, in which the rendered image and a progress bar are displayed in
Katana's Monitor tab. In a Preview Render, the renderer process quits when the
rendered image is completed. This is different to a Live Render, in which the renderer
process is kept alive.

Preview Rendering has historically been called interactive rendering in early versions
of Katana.

Note: For more information about Preview Rendering, see Performing a
Render.

A Live Render is a type of Interactive Render, meaning a render launched from a
Katana Ul session, in which the renderer process is kept alive while the rendered image
is displayed in Katana's Monitor tab. When making changes to parameters of nodes in
the Katana project, the renderer is notified of these changes, and the rendered image
updated in the Monitor tab.

It's possible to limit for which scene graph locations updates are sent to the renderer

during a Live Render session, by using the Live Render Updates columnin
Katana's Scene Graph tab. This is typically used for projects that produce very large
scene graphs.

Live Rendering has historically been called re-rendering in early versions of Katana.

Note: For more information about Live Rendering, see Performing a
Render.

A Disk Render is a type of render in which the rendered image is written to a file on
disk, and then loaded into the Monitor tab when the render has finished. The progress
bars in the Monitor tab are not updated while a Disk Render is in progress.

Disk Rendering has historically been called hot-rendering in early versions of Katana.

While the Preview and Live Render options are available from any node's context menu,
a Disk Render can only be triggered from a Render node.

Note: For more information about Disk Rendering, see Render Types.

USER GUIDE

Interactive
Render

Interactive
Render Filters

Render
Dependency

Glossary of Katana Terms | Key Concepts

An Interactive Render is a render launched from a Katana Ul session. There are two
types of interactive renders available in Katana:

e Preview Render
e Live Render

Interactive Render Filters (commonly abbreviated as IRF) allow users to set up
common recipe changes for interactive renders, meaning Preview Renders and Live
Renders, without having to add nodes to effect such changes at various points in a
project's recipe. An IRF can consist of more than one change to the recipe, and it is the
equivalent of appending nodes to the end of the node from which an interactive render
is started.

IRFs are defined in InteractiveRenderFilters nodes and can be selectively activated
and deactivated in the Interactive Render Filters popup. This popup is accessible by

clicking the Interactive Render Filters button ﬁ at the top of the Katana interface.

Note: Interactive Render Filters are ignored for Disk Renders.

An example use for IRFs is to set them up to reduce the render resolution for
interactive renders without affecting Disk Renders, thus making debugging of such
renders much quicker. Other examples of changes that can be set up by IRFs might
include anti-aliasing settings, shading rate changes, or the number of light bounces.

Note: For more information about setting up Interactive Render Filters, see
Setting up Interactive Render Filters.

You can also refer to the Knowledge Base Article Increasing preview efficiency
with Interactive Render Filters.

When starting a render from a Render node, other render passes that the render may
depend on can be rendered to disk automatically by rendering with dependencies.

Historically, this feature was used to produce shadow maps that are then used for a
main render pass.

Note: For more information, see Render Dependencies.

USER GUIDE

74

https://support.foundry.com/hc/en-us/articles/115001769830-Q100356-Increasing-preview-efficiency-with-Interactive-Render-Filters-
https://support.foundry.com/hc/en-us/articles/115001769830-Q100356-Increasing-preview-efficiency-with-Interactive-Render-Filters-

User Interface

This section walks you through the main components of the Katana UlI.

The Default Workspace

An illustrated overview of the Katana workspace.

The Default Tabs

Tabs are themed panels that present Katana functionality.
Menu Bar Components

A list of the functions available in the menu bar. Plus details of the Message and Notification Centers.
Customizing Your Workspace

A brief introduction to changing the layout.

Adjusting Layouts

How to modify the layout of the tabs.

Saving, Loading, and Deleting Layouts

Katana lets you save your preferred layout.

Managing Keyboard Shortcuts

About the shortcuts.xml file.

The Default Workspace

Here is an illustration of a simple Katana workspace.

USER GUIDE

User Interface | The Default Tabs

1. The menu bar, complete with menus, such as File and Help, and menu icons, such as the Interactive
Render Filter icon, and the Messages menu. For further details, see Menu Bar Components.

The top-right pane, containing the Parameters and Catalog tabs.
The bottom-right pane, containing the Attributes, Render Log, and Viewer tabs.

The Timeline. The Timeline is explained in greater depth in Using the Timeline.

AR R R A

The bottom-left pane, containing the Scene Graph, Project Settings, and Python tabs.
For more on the contents of the various tabs, see the The Default Tabs below.

6. The top-left pane, containing the Node Graph, Monitor, Curve Editor, and Dope Sheet tabs.

The Default Tabs

The following are the tabs displayed by default. More tabs are available in the Tabs menu.

Tab Function

Node Graph This is where you build your node tree (a tree graph that represents the recipe for
manipulating a 3D scene).

USER GUIDE
76

Tab
Monitor
Curve Editor
Dope Sheet

Scene Graph

Project Settings

Python

Parameters

Catalog
Attributes
Render Log

Viewer

User Interface | Menu Bar Components

Function

This is where you view the results of your renders and composites.
Lets you edit animation keys as curves.

Lets you edit animation keys as a spreadsheet of keys and ranges.

This is where you view the scene data, generated at the current view node in the
Node Graph, in a hierarchical representation. The objects - such as geometry,
particle data, volumetric data, materials, cameras, and lights - that make up the
scene graph are called locations, and are referenced by their path, such as
/root/world/cam/camera.

This is where you can view and edit parameters for the whole project.

This is where you can enter Python commands as well as view their outputs. It acts as
a Python interactive shell within Katana.

This is where you adjust the parameters associated with nodes currently selected for
editing.

Lets you view and organize previous renders.
Lets you view the attribute values held at each location in the scene graph.
Lets you view text output from the renderer.

This is where you can view and manipulate your scene using a 3D representation.
Only objects whose locations that are visible in the Scene Graph tab are displayed.

Menu Bar Components

The Katana menu bar includes the following functions:

Menu

File

Functions

Commands for disk operations, including creating, loading, and saving
Katana projects.

USER GUIDE

Menu
Edit
Render

Util

Layouts
Tabs

Help

@
&

USER GUIDE

User Interface | Menu Bar Components

Functions
Undo, redo, and preferences.
Rendering the output.

A group of miscellaneous menu items including farm management and
cache handling.

Adjusting, saving, activating, and deleting layouts.
Adding floating panes to the interface.
Accessing documentation, APIs, and information on the current version.

Collection of Python shelf scripts.

Flush caches: forces assets, such as look files, to be dropped from
memory and reloaded when needed.

Toggles implicit resolvers. This gives a better impression of the data sent
to the renderer at the cost of extra computation. For more on implicit
resolvers, see Turning on Implicit Resolvers.

When enabled, rendering only includes items selected in the Scene
Graph tab.

The auto key icon: when enabled, changing parameters automatically
adds a new key.

Specify what interactive render filters to use for any new interactive
renders. For more on interactive render filters, see Setting up Interactive
Render Filters.

Cancels a live render that is currently in progress.

Specifies whether live rendering is set to update:
00 - manually,

00 - when changes to materials, lights, or geometry transformations are
made or a parameter change is applied (Pen-up),

-00- continuously when changes are made to materials, lights, or
geometry transformations, including some manipulations in the Viewer
tab (Continuous).

78

User Interface | Menu Bar Components

Menu Functions

(:) When live rendering is set to Manual, this button triggers an update. This
button is not clickable for either Pen-up or Continuous modes.

[~ varises:none | Displays any graph state variables that have been set in the Project
Settings tab. If no variables have been set, the icon says variables: none;
if there are variables set, these are displayed in yellow and can be
changed dynamically to influence those in the Project Settings tab, or
the other way around.

For more information on how to set variables, refer to Setting Graph
State Variables in Graph State Variables.

O When enabled, displays the Message Center and any messages contained
therein.
A When enabled, displays the Notification Center and any notifications

contained therein.

The Message Center

Katana uses the standard Python logging module and, by default, logs messages of types info, warning,
error, and critical. There is also a debug message that can be enabled from within the Message Center.
Katana records messages on activities such as loading scenes, and converting scripts between different
render versions. The message button is on the right-hand side of the menu bar, and uses the following
colors to categorize the messages:

« Critical Messages - marked orange [,

« Error Messages - marked red l.

« Warning Messages - marked yellow OJ.

« Information Messages - marked green .

« Debug Messages - marked purple l.

If you click on the message menu icon [, the messages window opens. The message menu icon itself
changes color to match that of the most serious message in the list (so can be any of those listed above, or
unfilled). The Message Center shows a truncated summary of each message. If you select the message and
copy it, you also copy the full text, which you can then paste into a text editor.

USER GUIDE
79

User Interface | Menu Bar Components

Clicking Messages within the Message Center opens the dropdown menu where you can enable or disable
the display of specific message categories, copy selected messages, or delete selected messages.

Messages shown in the Ul are generated by the root logger, which is configured with the ${KATANA_
ROOT}/bin/python_log.conf file. To change the level of message generated, edit the logger_root level
parameter in python_log.conf to one of the options listed below:

« DEBUG - generates messages of debug level and higher.

« INFO - generates messages of info level and higher.

* WARNING - generates messages of warning level and higher.
« ERROR - generates messages of error level and higher.

* CRITICAL - generates critical messages only.

For more information on message logging, using either the C++ or Python methods, see Message Logging.

The Notification Center

Katana uses the standard Python logging module to record user notifications. These differ from the
messages in the Message Center, as they are not designed to be related to error messaging, so much as
internal messages you want other users to be aware of. Below is an example of how you can use the
NotificationManager class to record or display notifications in the Notification Center:

for 1 in range(4) :
notificationRecord = UI4.Util.NotificationManager.NotificationRecord
('Title%d' % (1 + 1), 'Text %d' % (1 + 1))
UI4.Util.NotificationManager.AddRecord (notificationRecord)

A

icon lights up #*. Click it to toggle the Notification Center window. Any notifications that haven't been
deleted from the Notification Center are displayed in the window, along with the date of the notification,
whether any action is necessary, and additional comments, if applicable.

If triggering the NotificationManager causes new notifications to be logged, the Notification Center

USER GUIDE
80

User Interface | Customizing Your Workspace

MName
Titled
ltle2
litle3

Titlel

Clicking Notifications within the Notification Center opens the dropdown menu where you can ignore,
unignore, or delete, specific notifications. You can also right-click on any given notification for the same

options as those in the Notifications dropdown. Clicking on the help a icon, opens the full notification
text in a separate window.

Customizing Your Workspace

If you have used 3D applications in the past, you may notice that Katana’s workspace has many familiar
features, such as a timeline, a hierarchical Scene Graph tab, an OpenGL viewer, and a 2D monitor.

You can create layouts designed for whatever function you happen to be performing. For instance: lighting,
look development, or material editing. You can then save your preferred layouts for future use.

During the customization process, you can:

* Resize panes to create space where it's most needed.

» Maximize the pane under the mouse cursor.

« Move and split panes to create new work areas, for example, to have two Viewers side-by-side.
» Remove panes and all tabs nested inside them.

« Add and remove tabs as required.

» Move tabs to easily access the elements you often need.

* Float and nest tabs to create more space or group similar functions together in the same pane.
» Add a Timebar to the main Katana window or any tab.

« Make the main Katana window fullscreen, hiding the window borders.

Once you are happy with the layout, you can save it for future use.

USER GUIDE

User Interface | Adjusting Layouts

Adjusting Layouts

To make accessing the elements you often need as quick and easy as possible, it's a good idea to adjust the
default layout(s). Additionally, you can toggle between viewing the main Katana window in fullscreen mode
or standard mode by selecting Layouts > View Fullscreen. Below are more useful layout changes that may
help you customize Katana to your own preference.

Panes

You can resize individual panes, by hovering the mouse over the divider line until the cursor changes to the
resize icon. Click and drag the cursor to resize the pane.

Tip: When moving the divider line, by default, if it crosses multiple panes, the entire line is moved.
To only move the divider line for the local pane, Ctrl+drag.

If you want to maximize a pane so that it expands to the size of the window:

« Click a in the top-left corner of the pane,
» Hover over the pane and press Spacebar, or

* Double-click the tab of the pane to maximize.

Alternatively, you can return to the regular interface, by clicking & or pressing Spacebar.

Note: If you have any tabs dock widgets, these remain in place when you maximize a pane.

Note: Pressing Spacebar in the Monitor tab does not maximize the pane, instead it swaps the
Front and Back images.

You can move an existing pane to a new location in the interface by hovering over the move pane Il iconin
the top-left corner of the pane until the cursor changes to the move icon, then clicking and dragging the
pane to a new location. The orange highlight around the destination pane helps you determine where the
pane is moved and whether the destination pane is split horizontally or vertically.

If you want to add a floating pane to the interface, click Tabs > [tab name].

USER GUIDE

User Interface | Adjusting Layouts

To remove a pane altogether, and all tabs nested inside it, right-click on any of the tab names and select
Close all.

Adding Tabs

You can add a tab to a specific pane by clicking A in the top-left corner of the pane and selecting the tab
you want to add. If you then want to move that tab, or another existing tab, to a new location in the
interface, click and drag it to a new location. The orange highlight around the destination pane helps you
determine where the tab is nested, and if the destination pane is split horizontally or vertically.

Floating Windows

If you want to turn a tab into a floating window, right-click on the name of the tab and select Detach tab.
Alternatively, if you want to nest a floating tab, click on the name of the tab and drag it to where you want it
to dock. Use the orange highlight around the destination pane to help you determine where the tab is
nested and whether the destination pane splits horizontally or vertically.

Docking Tabs

To dock a tab within Katana's main window, right-click on the name of the tab and select Move Tab To, then
select from the following options:

e Left Dock

* Right Dock

e Top Dock

e Bottom Dock

Tabs in dock widgets can be dragged to one of the other dock widget areas, and can also be turned into

floating panes by clicking the Detach Tab button @ in the title bar of the dock widget, by double-clicking
its title bar, or by dragging a docked tab away from the dock widget areas of the main window.

Docked tabs are saved and restored as part of Katana layout XML files. A Save # Dock Widgets checkbox
has been added to the Save Current Layout dialog that opens when choosing the Layouts > Save Current
Layout menu command. By default, the checkbox is turned on. The checkbox can be turned off to not save
docked tabs as part of the layout.

USER GUIDE

User Interface | Saving, Loading, and Deleting Layouts

Timelines

There are a few visibility options for timelines in tabs. You can show or hide a timeline at the bottom of the
main Katana window by selecting Layouts > Show Main Timeline, or you can show or hide a timeline at the
bottom of any tab by right-clicking on the tab name and selecting Show Timeline.

Editing Node Type Parameters

Clicking the tabs il icon, and selecting Node opens a node type panel. This allows you to edit the
parameters of nodes of the specified type, for example the parameters of several GafferThree nodes. By

default, the options under ®. Node are GafferThree, LookFileManager, and MaterialStack. If you want
to add other node options to the Node dropdown, set the KATANA_NODETYPETAB_NODETYPES
environment variable with the name of the node or nodes, separated by commas. For example, KATANA_
NODETYPETAB NODETYPES=CameraCreate,PrimitiveCreate.

Note: If you specify nodes with the KATANA_NODETYPETAB_NODETYPES environment

variable, it overwrites the default Katana nodes specified under @ . Node. If you want to retain

these nodes, in addition to those you specify, they need to be added to the environment variable
list.

You can also access these options from Tabs > Node.

To remove individual tabs, make sure you are viewing the tab you want to remove and click on the close tab

x icon in the top-right corner of the pane, or right-click on the name of the tab and select Close tab.

Saving, Loading, and Deleting
Layouts

USER GUIDE
84

User Interface | Managing Keyboard Shortcuts

Saving Layouts

You can save as many of your favorite layouts as needed, retrieving them as necessary.

To save a layout:

1. Once you are happy with your layout, select Layouts > Save Current Layout.
The Save Current Layout dialog opens.

2. Inthe dialog, enter a name for the new layout.

3. Ifyourlayout includes any floating tabs and you want those to be saved with the layout, check Save #
Floating Panes (where # corresponds to the current number of floating panes).

4. If your layout includes any dock widgets and you want those to be saved with the layout, check Save #
Dock Widgets (where # corresponds to the current number of dock widgets).

5. Click Save to preserve your layout.

Loading Layouts

To load a previously saved layout, select it from the Layouts menu in the menu bar.

Deleting Layouts

1. Select Layouts > Edit Saved Layouts.
2. Inthe dialog that opens, select the layout to delete from the list available.

3. C(lick Delete Layout and Save.

Managing Keyboard Shortcuts

The $HOME/ . katana/shortcuts.xml configuration file can be used to override the default keyboard
shortcuts of actions and key events that are registered with Katana's new Keyboard Shortcut Manager.

Example of a shortcuts.xml File

Below is an example of a shortcuts.xml file:

USER GUIDE
85

User Interface | Getting Help

<shortcuts>
<shortcut 1d="430£81d33d338680a0c64ae%ea3llcd7"
name="SceneGraphView.ExpandBranchesToAssembly"
shortcut="A"></shortcut>
</shortcuts>

The ID of a keyboard shortcut element is assigned by the developer that registers the action or key event. It
is a hash based on the original name of the action or key event. While the name of an action or key event
changes, the ID remains the same for future versions of Katana. This ensures that the correspondence of
custom keyboard shortcuts to the respective actions or key events remain the same, even if names change in
future Katana releases.

The name attribute of a shortcut XML element only appears for readability, making it easy to identify the
action or key event to which the shortcut has been assigned. The names in the shortcuts.xml file are not
updated automatically when names of actions or key events are changed in the application.

You can view the currently assigned keyboard shortcuts of actions and key events, for which custom
keyboard shortcuts can be assigned, in the Keyboard Shortcuts tab. You can copy an XML representation of
an item in the keyboard shortcuts tree to the selection buffer clipboard by right-clicking the item and
selecting Copy as XML from the context menu. Pasting such an XML representation into the
shortcuts.xml file allows you to override the custom keyboard shortcut assigned for the respective
action or key event.

In future releases of Katana, more and more of Katana’'s menu commands and other actions and key events
are adopted to using the new Keyboard Shortcut Manager, so that they can be customized as well.

Getting Help

In the scope of this user guide, it's not possible to go into detail with Python and all the scripts available.
However, there are several sources of more information that you may find useful if you need help using
Python.

Example Projects

Katana ships with a number of example projects covering a wide range of topics from The Basics and Look
Development to Scripting and Graph State Variables. To load a project, navigate to Help > Example
Projects to display a list of available scripts.

USER GUIDE
86

User Interface | Getting Help

Look File Overriding Open Project

Look File Overriding
Manager node

ow them to be modified.

You can double-click a project in the list or select the project you want to load and click Open Project.

APl Reference

In the API References, you may find some of the things you need in terms of Python examples and ways of
using Python in Katana. You can navigate to these references by clicking Help > API Reference and
selecting the required API from the dropdown menu, or by clicking Help > Developer Guide, which leads
you to a comprehensive page that links you to scripting resources, API references (including plug-in APIs),
and legacy documentation.

Viewing More Examples

Python

Only a few samples of Python are described in this section but there are scripts also available in the following
locations:

+ On Windows :
drive letter\Program Files\Katana6.5v3\plugins\Src

* On Linux:

USER GUIDE
87

User Interface | Getting Help

/usr/local/Katana6.5v3/plugins/Src/Resources

To view an example, select one of the .py files from the Examples folder and open it in any text editor or, to
see what Python files Katana uses as part of the application, view the .py files in the Core folder.

Lua

Only a few samples of Lua are described in this section but there are also scripts available in the The Op API
section and within the application under Help > Example Projects. Any of the OpScript-related projects
under the Scripting section contain Lua examples.

C++

Only a few samples of C++ are described in this section, but there are also scripts available in the following
locations:

On Windows :

drive letter\Program Files\Katana6.5v3\plugins\Src
* On Linux:

/usr/local/Katana6.5v3/plugins/Src

To view an example, select one of the .cpp files and view them in any text editor.

Using the Help Function

If you are working in the Python tab, one of the quickest ways of getting help on specific things, is to call the
help function with the object you're interested in. For example, the following statement gives you a
description of what the setattr function does:

help(setattr)
This generates the help text for the specified function in the output pane.

If you're unsure how the function should be written or completed, begin typing and then press Tab. A list of
possible matches appears in the output pane.

USER GUIDE
88

Creating a Project

Projects and Recipes

There are no fixed rules as to what constitutes a Katana project. A Katana project is simply a collection of
recipes that are worked on together and stored in a single .katana file. A project could be a shot, a scene, or
look development for one or more assets.

Each recipe within a project can be totally self-contained or it can be linked to others through dependencies.
As an example, look development could have one recipe that creates a Katana look file (.klf) for a piece of
geometry and another recipe that renders out a turntable of that same geometry complete with its newly
created Katana look file assigned.

How you group your recipes into Katana projects is up to you and your studio.

If you'd like a quick start guide to take you through creating nodes to rendering, have a look at the Quick
Start Guide page in this section.

Creating, Saving, and Loading a
New Project

To create a new Katana project:
1. Select File > New (or press Ctrl+N).

2. If needed, click New Project in the Unsaved Changes dialog window to confirm.

Note: Ctrl+N does not work within the Node Graph.

USER GUIDE

quick_start_guide.htm
quick_start_guide.htm

Creating a Project |

To save your current Katana project:
Select File > Save (or press Ctrl+S).

If the file has not been saved before, the file browser dialog displays. See steps 2 to 4 below to select a
location to save.

Saving to a New File

To save your current Katana project to a new file:

1. Select File > Save As... (or press Ctrl+Shift+S).
The file browser dialog displays.

2. Navigate to the directory to save the file.

3. Add the filename to the text field below the main window.

Madified

my_file.katana

4. Click Accept.

Note: If you're using a custom asset management system, the dialog you see may be different.

USER GUIDE
90

Creating a Project | Importing and Exporting a Project

To load a Katana project:

1. Select File > Open... (or press Ctrl+0).

2. If needed, click Load New Project in the Unsaved Changes dialog window to confirm.
3. Select a Katana project from the file browser dialog (see Using the File Browser below).
4. Click Accept.

Loading a Recently Saved Project

To load a recent Katana project:

1. Select File > Open Recent > ... and select from one of the previously saved projects in the dropdown
menu.

2. If you have a project open already and you've made unsaved changes you don't wish to keep, click Don't
Save, in the Open dialog to continue.

Tip: You can clear the list of recently opened projects by selecting File > Open Recent > Clear
Menu.

Reverting Back to the Last Save

You can revert back to the last time you saved, to do so:
1. Select File > Revert.
2. Click Revert Scene in the Unsaved Changes dialog window to confirm.

The Katana project reverts back to the last save.

Importing and Exporting a Project

To import a Katana project into the current project:

1. Select File > Import... (or press Ctrl+1).

2. Select a Katana project from the file browser dialog (see Using the File Browser below).
3. Click Accept.

USER GUIDE
91

Creating a Project | Changing a Project’s Settings

The imported project’s nodes float with the cursor inside the Node Graph.

4. Click somewhere within the Node Graph to place the imported project at that location.

You can also import a Katana project as a LiveGroup. For more information on LiveGroups, and for help on
how to import a project as a LiveGroup, refer to the LiveGroups and LiveShadingGroups section.

Exporting from Katana gives you the ability to do the equivalent of File > Save As... but for a limited number
of nodes.

To export part of the current project:

1. Select the nodes you wish to export.

2. Select File > Export Selection... (or press Ctrl+E).
The file browser dialog displays.
Navigate to the directory to export the file.

4. Add the filename to the text field below the main window.

Name Size Modified

Filter: * katana

5. Click Accept.

Changing a Project’s Settings

A project's settings are shared between each of the recipes created within that project. These can all be
changed from within the Project Settings tab.

USER GUIDE

Setting
inTime
outTime
currentTime

timelncrement

katanaSceneName

resolution

plugins

asset

fileSequence

variables

Creating a Project | Changing a Project’s Settings

Description

The starting frame number for the timeline.
The ending frame number for the timeline.
The current frame number.

Changes the frame increment for the move forward and
backwards icons in the timeline.

The name of the Katana project you have open. If you are
working on an unsaved project, this field is blank.

The default resolution for 2D source files, such as ImageColor.
Not used for the rendering of 3D scenes, they use the
RenderSettings node instead.

The asset manager to use (defaults to File).

Plug-in to determine how to interpret a file sequence.

This sub-section is blank if you haven't added any Graph State Variables to your project. Otherwise, the

variables and their values are listed.

compDefaults > fileln
missingFrames

inMode

outMode

compDefaults

useOverscan

compDefaults > motionBlur

USER GUIDE

How an ImageRead node behaves when a frame is missing.

What an ImageRead node displays for frames before its first
frame.

What an ImageRead node displays for frames after its last
frame.

Whether to use overscan when rendering. Overscan is extra
pixel information around the main render window.

Setting

shutter

numSamples

views > main

abbreviation

uicolor

views > left

abbreviation

uicolor

views > right

abbreviation

uicolor

viewerSettings

normalsDisplayScale

proxyCacheSize

viewerSettings > persp

near

far

USER GUIDE

Creating a Project | Changing a Project’s Settings

Description

The open/close time of the shutter, relative to the current

frame. Changing the value in the second field is the primary way

to control the amount of motion blur applied.

Number of motion blur steps to compute and merge. Render
times are proportional to this value.

The abbreviation used for the main view when working with
stereo controls in the Monitor tab.

Specify the color of Ul elements in the Monitor tab when the
main view is active.

The abbreviation used for the left view when working with
stereo controls in the Monitor tab.

Specify the color of Ul elements in the Monitor tab when the
left view is active.

The abbreviation used for the right view when working with
stereo controls in the Monitor tab.

Specify the color of Ul elements in the Monitor tab when the
right view is active.

Changes the size of normals when displayed in the Viewer tab.

Number of proxy geometry objects to keep in memory.

Distance to the near clipping plane for the perspective camera.

Distance to the far clipping plane for the perspective camera.

Setting
viewerSettings > ortho

near

far

orthoWidth
viewerSettings > ortho > front

near

far

orthoWidth
viewerSettings > ortho > side

near

far

orthoWidth
viewerSettings > ortho > top

near

far

orthoWidth
monitorSettings

overlayColor

USER GUIDE

Creating a Project | Changing a Project’s Settings

Description

Default distance to the near clipping plane for the orthographic
cameras.

Default distance to the far clipping plane for the orthographic
cameras.

Default width for the orthographic cameras.

Distance to the near clipping plane for the front orthographic
camera.

Distance to the far clipping plane for the front orthographic
camera.

Distance to the width for the front orthographic camera.

Distance to the near clipping plane for the side orthographic
camera.

Distance to the far clipping plane for the side orthographic
camera.

Distance to the width for the side orthographic camera.

Distance to the near clipping plane for the top orthographic
camera.

Distance to the far clipping plane for the top orthographic
camera.

Distance to the width for the top orthographic camera.

Color to use when displaying alpha overlays.

95

Creating a Project | Assets and Asset Managers

Assets and Asset Managers

Katana has been designed from the ground up to work within an asset based production environment. In
fact, the philosophy behind Katana - the non-destructive recipe based approach - works to its fullest when
used with assets that change and update in an iterative workflow. The decoupling of asset creation and their
use in shots, allows a team to work in parallel.

Whether in a small, medium, or large studio, an asset management system helps maintain the large number
of assets and revisions that artists create and use.

With its extensible Asset Management API, Katana can be made to slot into any production workflow that
incorporates an asset management system. Examples of how to incorporate an asset manager using the
Asset Management APl are included with the Katana install. A full explanation of this process goes beyond
the scope of this guide. For all examples within this guide, we assume you are using the File asset manager
that ships as the default with Katana. For further details on the asset manager employed by your facility,
consult your pipeline manager.

By default, Katana uses the file system to store assets. But Katana has the ability to plug into a studio’s asset
management system through its Asset Management API. Connecting Katana using this system is beyond the
scope of the Katana User Guide and you should consult your pipeline manager and the technical guide that
accompanies the installation for further information (the Katana Technical Guide is found under Help >
Documentation).

Once connected, you can change the asset manager from within the Project Settings tab. You can select
which asset manager to use by doing the following:

1. In the Project Settings tab, click the plugins > asset dropdown.

2. Select the asset manager from the filterable list.

Using the File Browser

The file browser is the basis for the File asset manager.

USER GUIDE

Creating a Project | Using the File Browser

Modified

The following correspond to the numbers on the dialog image above:

1.

Navigation controls - let you move through the directory structure, bookmark favorite directories, and
create new directory folders.

Path name field - displays the current directory path or enter a filepath to the file you want to open.

Filter menu - filter what files you can see in the file browser.

Tip: Windows only: You can show/hide the drives that Windows auto-creates by right-clicking
the directory list, selecting Show Defaults, and checking or unchecking the drive.

f2014 20:50:18

Defaults

L
Lo
¥
L
v
L
L
L
ey
-

¥| sequences split =eq Filter: = tiff:*

USER GUIDE
97

Creating a Project | Using the File Browser

Navigation Controls

Use the following controls to navigate between directories:

« Click the Create New Directory button to create a new directory at your current position in the file
hierarchy.

* Click the Up One Directory button to go up one directory closer to the root.
« Click the Previous Directory button to go back one directory.

« Click the Next Directory button to go forward one directory.

« Click the + button to add a directory bookmark.

« Click the edit button to edit the name or path name to a bookmark.

¢ Click the - button to remove a directory bookmark.

Path Name Field

The path name field allows you to do the following:
* Navigate to a directory by typing the path name in the field.
« Enter a script name by browsing to a directory path and entering the file name after the displayed path.

« Limit the file list to specific file types by using the Filter dropdown menu and sequences checkbox.

Filters and Sequences

To use the Filter dropdown menu and sequences checkbox:

« Select *.<file extension> to display all files of that extension type, for instance *.png.

« Select * to display all files (except hidden files), regardless of what they're associated with.
« Select .* * to display all files, including hidden files.

« Select */ to display directory names, but not their contents.

« Check sequences to display image sequences as single titles, as in fgelement.####.png 1-50 rather than
fgelement.0001.png, fgelement.0002.png, and so on.

« Split incomplete sequences into separate sequences using the split seq checkbox.

Note: File sequences with no file extension, for example, fgelement.0001, fgelement.0002, and so
on, are not displayed as single titles the first time you view the directory in the file browser.
However, they are displayed as single titles once you have navigated to another directory and back
again.

USER GUIDE
98

Creating a Project | Autosaves

Select Multiple Files

To select multiple files with the file browser:

1. Browse to the folder where the files are located.

2. Ctrl+click on all the files you want to open to select them.
3. Click Open.

All the selected files open.

Autosaves

Your autosave preferences can be set under Edit > Preferences > application > crashFile.

The crashFile gives you two options, numberOfActions and time, to choose how frequently you want an

autosave of your current scene to take place.

1. numberOfActions - specifies the number of actions before automatically saving the current project to a
file from which the project can be restored after a crash.

2. time - specifies the time in minutes before automatically saving the current project to a file from which
the project can be restored after a crash.

Note: Setting either preference to zero disables the corresponding autosave trigger. If both are
set to zero, no autosave files are created.

USER GUIDE
99

Creating a Project | Autosaves

Note: After an autosave file has been created another one cannot be saved until 15 seconds have
past, even if the conditions set by numberOfActions or time are met.

Loading an Autosave File

There are two ways to load an autosave file, you can either open it using a command line or you can locate

the file within your temporary directory.

To load an autosave file using a command line:

1. Open a new Command Prompt (cmd) for Windows, or a Terminal for Linux.
2. Specify the path to the Katana executable and add the --crash command line option as demonstrated

in the commands below.

Windows launch command:
C:\Program Files\[KATANA VERSION]\bin\katanaBin.exe --crash

BN Command Prompt |ﬂ|

Microsoft Windows [Uersion 6.1.760811
Copuright <c? 2009 Microsoft Corporation. All rights reserved.

m | o»

C:sUzeprs~CE_SY¥D_PCZ2>"C:“Program Files“Katana3d.@vi“bhin“katanaBin.exe' ——crash

Linux launch command:
/opt/Foundry/[KATANA VERSION]/katana --crash

USER GUIDE

Creating a Project | Autosaves

3. Execute the command to open Katana.

Katana will open the Katana Crash File Selector window before launching the Katana GUI. This
window displays any and all Katana project files found in your temporary directory.

> Katana Crash File Selector l 2 23 |

ol
cCE
=

4. The latest autosaved file is the crashFile saved when an unexpected exit occurred. Select the latest file
and press the Load button to load the project in Katana.

Note: If the crashed scene file had not yet been saved, Katana calls the resulting autosave
Untitled.

5. Once open, make sure to save the file in the location of the original project before continuing to work.
You may want to consider saving this under a different name to the original project, to create a version
history of the file.

When Katana creates a crashFile, it is saved to the machine’s temporary directory. The file can be restored
manually from there using the following steps:

Windows:

USER GUIDE

Creating a Project | Autosaves

1. Open the start menu and enter %TEMP% in the search bar:

' See more results

% TEMP2Y « | | Shutdown | » |

2. Open the Temp folder and locate the most recent Katana crashFile. The file name should follow a
convention similar to the following.
default show_default shot <projectFileName> <crashFilelId>.<version>.katana

Note: If the crashed scene file had not yet been saved, Katana calls the resulting autosave
Untitled.

3. Open the project in Katana and re-save the file elsewhere.

Linux:

1. Navigate to the temporary directory, which should be located at /tmp, using either the Terminal or a
file browser.

USER GUIDE .

Creating a Project | Autosaves

2. Locate the most recent Katana crashFile.
3. Open this in Katana and re-save the project file elsewhere.

(@) KATANA USER GUIDE 103

Editing the Node Graph

Nodes are the basic building blocks of a Katana recipe. You create and connect nodes to form a tree of the
operations you want to perform.

These pages describe how to build and connect nodes within the node graph, and how to edit a node's
parameters using the Parameters tab.

Navigating Inside the Node Graph

As you set up your recipe, you may need to move between clusters of nodes quickly. Katana offers various
navigation methods and shortcuts to help you navigate the Node Graph tab quickly.

* Panning - middle-click and drag the mouse pointer over the workspace. The recipe moves with your
pointer.

« Zooming in - move your mouse pointer over the area you want to zoom in on, and press + (Plus key)
repeatedly until the workspace displays the recipe at the desired scale, or press Alt+left/right-click and
drag right. Alternatively, move the mouse pointer over the area you want to zoom in on, and scroll up with
the mouse wheel.

» Zooming out - move your mouse pointer over the area you want to zoom out from, and press - (Minus
key) repeatedly until the workspace displays the recipe at the desired scale, or press Alt+left/right-click
and drag left. Alternatively, move the mouse pointer over the area you want to zoom out from, and scroll
down with the mouse wheel.

USER GUIDE

Editing the Node Graph | Adding Nodes

Note: In many Linux windows managers, the Alt key is used by default as a mouse modifier key.
This can cause problems in 3D applications where Alt is used for camera navigation in 3D
environments.

You can use key mapping to assign the mouse modifier to another key, such as the # (Super or
Meta) key, but the method changes depending on which flavor of Linux you're using. Please refer
to the documentation on key mapping for your particular Linux distribution for more information.

« Fitting selected nodes in the node graph - in the Node Graph tab, press F. If no nodes are selected, then
the entire node tree fills the Node Graph.

« Fitting the entire node tree in the node graph - in the Node Graph, press A.

Adding Nodes

You can add nodes to the Node Graph using the Tab menu, the New menu, or the right-click menu.

To add a node using the Tab menu:

1. With the mouse over the Node Graph tab, press the Tab button.
Katana displays a list of all available nodes.

2. Narrow the list of nodes by either:
« typing the starting letters of the node name, or

« typing the capital letters that make up the node name (for instance, typing MA for the MaterialAssign
node).

MaterialAssign

3. To select the node you want to add from the list, either:
e click it, or

« scroll to it with the Up and Down arrow keys and press Return.

USER GUIDE
105

Editing the Node Graph | Node Basics

4. Click on an empty space in the Node Graph to place the node.

Tip: To add another copy of the last node created using this method, simply press Tab and then

Return. Katana accepts wildcards while typing the name of the node to create. For instance, *_In
would give you the following options:

AttributeFile_In

To add a node using the New menu:

1. In the Node Graph tab, click New and select the node you want to add.
2. Click on an empty space in the Node Graph to place the node.

To add a node using the right-click menu:

1. Right-click on the Node Graph (or press N) and select the node you want to add from the menu.
2. Click on an empty space in the Node Graph to place the node.

Tip: While the node is floating with the mouse cursor, you can cancel the node's creation by
pressing Esc. To have Katana automatically connect the new node to the currently selected node,
check the option Edit > Auto Connect New Nodes Based On Selection within the Node Graph.
Instead of placing the node and then connecting it, you can connect the node straight into the
node tree by either clicking on a connection, or clicking on another node’s input or output,
followed by clicking an empty space in the Node Graph.

Node Basics

Changing a Node's Name

You can edit node names in a number of different ways:

USER GUIDE
106

Editing the Node Graph | Node Basics

« In the Parameters tab, or in the navigation bar of the Node Graph tab while looking inside a Group node,
you can rename a node by pressing F2 or Return with the mouse pointer over the node name.

* In the Node Graph tab, you can rename a selected node by pressing F2 or N.

* In the Node Graph tab, you can rename a node under the mouse pointer by pressing Return.

Some nodes derive their name from one of their parameters, for instance passName in Render nodes, or
name in Material nodes. In these cases, you can edit the parameter directly or indirectly by one of the above
methods. Changing the node name with either methods updates the name in all instances.

Material_Plastic

Note: Node names cannot contain spaces. Any spaces or invalid characters that are used in the
node name are converted into underscores. For example, the node name "Material Plastic"
becomes "Material_Plastic".

There are several indicators that can display on the nodes in the Node Graph. The following table describes
what each indicator means.

Indicator What it means

This node is selected.

This node’s parameters are being edited in the Parameters tab.

This node is being viewed. The scene graph generated up to this node is
Material currently displayed in the Scene Graph tab.

USER GUIDE

107

Editing the Node Graph | Node Basics

Indicator What it means

This node is disabled.

Edits to the currently selected location using an interactive manipulator within
the Viewer tab are fed back to this node.

An error occurred in the processing of the scene graph at this node.

An error occurred in the processing of the scene graph at a node within this
node.

Tip: To see which node, Ctrl+middle-click on the node to view inside.

Edits to the currently selected location using an interactive manipulator within
the Viewer tab are fed back to the node inside this node.

Tip: To see which node, Ctrl+middle-click on the node to view inside.

A node inside this node has its parameters being edited in the Parameters tab.

Group

Tip: To see which node, Ctrl+middle-click on the node to view inside.

A node inside this node is being viewed. The scene graph generated up to that
node is currently displayed in the Scene Graph tab.

Tip: To see which node, Ctrl+middle-click on the node to view inside.

USER GUIDE
108

Editing the Node Graph | Node Basics

Node Buttons

Node Buttons are used in the Ul to represent nodes that exist in the current project's node graph. For
example, a Node Button in the Scene Graph tab represents the currently viewed node, and Node Buttons in
the Parameters tab represent the nodes whose parameters are edited.

Node Buttons show the name of the node they represent, show a view and/or edit icon if the node has its
view and/or edit flags set, and use the color of the node for the button's background, if a node color is set.

Node Buttons have been designed to mimic the ways you can interact with nodes in the Node Graph tab.
With the pointer over a Node Button, you can use the following keyboard shortcuts to make changes to the
node represented by the Node Button:

Keyboard Action

Shortcuts

E Sets the edit flag on the node. This shows the parameters of the node in the Parameters
tab.

F2 When a single node is selected, opens a pop-up to edit the name of that node.

N Opens the right-click node creation menu at the current pointer position.

When a single node is selected and visible in the Node Graph tab, opens a pop-up to
edit the name of that node.

\' Sets the view flag on the node. This shows the scene graph that is produced by the node
in the Scene Graph tab.

Shift+E Toggles the edit flag of the node.
Shift+V Toggles the view flag of the node.
D Toggles the disabled state of the node.

Return, Enter When the pointer is over a node, opens a pop-up to edit the name of that node.
Ctrl+left-click Reveals and selects the node in the Node Graph tab.

Middle- Drags a representation of the node.

USER GUIDE
109

Editing the Node Graph | Selecting Nodes

Keyboard Action

Shortcuts

click+drag

Right-click Opens the same context menu that can be opened for a node in the Node Graph tab.

Disabling and Re-Enabling Nodes

You can toggle a node between enabled and disabled. To toggle whether a node is enabled:
Hover over the node and press D.

OR
1. Select the node(s).
2. Inthe Node Graph, select Edit > Toggle Disabled State of Selected Nodes (or press Alt+D).

Mate?aﬁssign

Selecting Nodes

Katana offers a number of options for selecting nodes. Selected nodes are highlighted in yellow.

To select a single node, click once on the node. To select multiple nodes, press Shift while clicking on each
node you want to select, or drag on the Node Graph to draw a marquee. Katana selects all nodes inscribed
by the marquee.

USER GUIDE

Editing the Node Graph | Connecting Nodes

LODSslect1

CameraCreate1 CustornTexh pi MaterialStack1

Merge3

Single node selected. Multiple nodes selected.

To select all nodes upstream of the currently selected node(s), click on a node and press Ctrl+Up Arrow.
Katana selects all nodes that feed data to the selected node.

To select all nodes downstream, of the currently selected node(s), click on a node and press Ctrl+Down
Arrow. Katana selects all nodes downstream from the selected node.

ScenegraphXml_In1

LODSelect1

CameraCreate1 CustomTexture_OpScript1 MaterialStack1 C c CustomTexiure_OpScript]

Merged Merge3

Upstream nodes selected. Downstream nodes selected.

To add to a selection, Shift+click to select more nodes without clearing the current selection.

To deselect a node, Shift+click.

Connecting Nodes

As you build up a scene, you'll need to create connections between nodes or change the connections that
already exist. Any nodes that are not connected to the overall node tree do not have any effect.

Nodes have input and output ports that are used to connect one node to another. Input ports are rectangles,
usually located at the top of a node. Output ports are triangles, usually located at the bottom.

Connecting a Node into the Recipe

There are a number of different ways to connect a node into the recipe, you can:

USER GUIDE

Editing the Node Graph | Merging Nodes

1. Click the output port of the first node you want to connect.
2. Drag the resulting arrow to the input port of the second node.

3. Release the mouse button when the input highlights in yellow.

OR
1. Hover the cursor over the first node you want to connect.
2. Press the Backtick key () once.

3. Hover the cursor over the second node and press the Backtick key again.

OR

1. Drag one node over the input or output of a second node, and release the mouse button to establish a
connection.

2. Click on an empty space in the Node Graph to then place the node there.

OR
1. Hover the cursor over the first node you want to connect.
2. Press a number from 1 to 9 to choose the output port at that position.

3. Hover the cursor over the second node and press a number from 1 to 9 to connect to the input port at
that position.

1. Drag the node into the space between two already connected nodes.
When the cursor is over the connection, the connection becomes active (turns yellow).
2. Release the node you are dragging.

It automatically wires itself into the network between the two nodes.

Merging Nodes

You can merge any number of selected nodes in the Node Graph tab either through the tab's Edit menu or
the available keyboard shortcut. Merging selected nodes creates a Merge node that links up the selected
nodes' outputs to the inputs of the Merge node. A Merge node with a single input is effectively a no-Op
node.

To merge selected nodes, either press M when in the Node Graph tab or select Edit > Merge Selected
Nodes from the Node Graph tab's menu bar.

USER GUIDE

Editing the Node Graph | Removing, Replacing, and Deleting Nodes

Removing, Replacing, and Deleting
Nodes

Removing a Node

There are two different ways to disconnect a node without deleting it:
 remove the inputs/outputs manually, or

« extract it, which removes all connections and attempts to repair the recipe by connecting the nodes that
are around the extracted node.

To disconnect a node, drag the head or tail of the connecting arrow to an empty area of the workspace.

To extract a node, removing all the connections to the node without deleting it:
1. Select the node you wish to extract.
2. Inthe Node Graph, select Edit > Extract Selected Nodes (or press X)

This removes all connections from the selected node, extracting it from the recipe.

Replacing Nodes

To replace one node with another you can use the R key to replace a node using the same Tab menu.

To replace a node using the R key:

1. In the Node Graph, select the node you want to replace.

2. Press R and start typing the name of the node you want to create.
Katana displays a list of matches.

3. To select the node you want to add from the list, either:
e clickoniit, or
« scroll to it with the Up and Down arrow keys and press Return.

The new node replaces the selected node in the Node Graph.

Deleting Nodes

To delete selected nodes

USER GUIDE

Editing the Node Graph | Copying, Pasting, and Cloning Nodes

1. Select the node(s) you want to delete.
2. Press Delete.

Katana removes the node(s) from the scene.

To delete all nodes not contributing to the current Scene Graph, in the Node Graph, select Edit > Delete All
Non-Contributing Nodes. Disabled nodes that would contribute if enabled are not deleted.

Copying, Pasting, and Cloning
Nodes

Copying and Pasting Nodes

To copy, paste, and perform other editing functions in the node tree, you can use the standard editing keys
(for example, Ctrl+C to copy and Ctrl+V to paste). Copied nodes inherit the values of their original, but
these values, unlike those in cloned nodes (see below), are not actively linked - that is, you can assign
different values to the original and the copy.

To copy nodes to the clipboard:
1. Select the node(s) you want to copy.

2. Inthe Node Graph, select Edit > Copy (or press Ctrl+C).

To paste nodes from the clipboard:

* In the Node Graph, select Edit > Paste (or press Ctrl+V).
Katana adds the nodes to the scene.

To cut nodes from the Node Graph
1. Select the node(s) you want to cut.
2. Inthe Node Graph, select Edit > Cut (or press Ctrl+X).

Katana removes the node(s) from the scene and writes the node(s) to the clipboard.

Cloning Nodes

You can clone nodes and place them elsewhere in a recipe. Cloned nodes inherit the values of their parent,
but unlike copied nodes, they also maintain an active link with their parents’ values. If you alter the values of

USER GUIDE »

Editing the Node Graph | Grouping Nodes

the parent node, the clone automatically inherits these changes.

To clone nodes:
1. Select the node or nodes you want to clone.
2. Inthe Node Graph, select Edit > Clone.

Katana clones the node or nodes and creates an expression between each parameter of the parent node
and that of the clone. Any change on the parent is therefore reflected in the child.

To declone nodes:

1. Select the node or nodes you want to declone.

2. Inthe Parameters tab, select 'f > Reset Parameters.

Katana removes the clone status of the selected nodes and resets all its parameters to the nodes’
defaults.

Grouping Nodes

Group nodes are used to group together a number of nodes into a single node, which can help to simplify
the node graph.

Creating Group Nodes

To create a Group node, in the Node Graph tab, select a number of nodes and press G. A new Group node,
with the previously selected nodes as its children, is created. Any connections between selected nodes are
preserved.

To create an empty Group node:
1. Inthe Node Graph tab, either:
* Press Tab and select Group from the node list,
« Right-click and select Other > Group from the menu, or
« From the Node Graph tab's menu, navigate to New > Other > Group.
The Group node floats with the cursor.
2. Clickinside the Node Graph tab to place it at that location.

A new empty Group node is created.

You can duplicate Group nodes like any other node, which also creates duplicates of any child nodes.

USER GUIDE

Editing the Node Graph | Grouping Nodes

Navigating in Hierarchies of Group Nodes

Group nodes are similar to folders in a file system, in that they can be used to group other nodes, including
other Group nodes, thereby creating hierarchies of nested Groups.

A breadcrumbs bar at the top of the Node Graph tab uses Node Buttons to represent the Group node
whose contents are shown in the tab, as well as all of its ancestor Group nodes. You can click any Node
Button in the breadcrumbs bar to enter the corresponding ancestor Group node.

To enter a Group node, either:
« Select the Group node to enter and press Ctrl+Return,
* Ctrl+middle-click the Group node to enter,

« Select the Group node to enter, and navigate to Go > Enter Selected Group in the Node Graph tab's
menu.

« Click the Node Button that represents the node in the breadcrumbs bar, or

+ Drag the Group node into the breadcrumbs bar.

To leave a Group node that was entered, either:

« Press Ctrl+Backspace,

* Click the - icon in the title bar of an entered Group,

« Click the Node Button that represents the parent node of the Group node (if any),
 From the Node Graph tab's menu, navigate to Go > Up,

« Click the Node Button that represents the parent node of the Group node (if any) in the breadcrumbs bar,
or

* Click the Go To Root button in the breadcrumbs bar (if the Group node exists in the root level of the node
graph).

To jump up to the root level of the node graph, either:

* Press Ctrl+Shift+Backspace,

» From the Node Graph tab's menu, navigate to Go > To Root, or
* Click the Go To Root button in the breadcrumbs bar.

Connecting Group Nodes

Group nodes can have any number of input and output ports, to which nodes from outside of the Group can
be connected, in order to connect to nodes inside the Group.

USER GUIDE

Editing the Node Graph | Grouping Nodes

The simplest way to create input or output ports is to expand the Group node bubble to show its contents.
Nodes from outside of the Group can then be directly connected to nodes inside the Group, which
automatically creates the input or output port on the Group as required.

Note: For more on Group nodes, and their incoming and outgoing connections, see Help >
Developer Guide.

PrimitiveCraate

Merge

Editing Group Nodes

Group nodes do not provide any parameters by default. However, you can add custom parameters to Group
nodes, and link parameters of child nodes inside the Group nodes to those parameters through parameter
expressions. That way, a Group node's parameters can act as the interface of the Group as a whole.

In order to edit the parameters of a Group node, either:
» Click the green edit flag on the Group node in the Node Graph tab,
» Move the pointer over the Group node, and press the E key, or

« Select the Group node, and press Alt+E.

Note: See the section on Adding User Parameters for more information.

USER GUIDE

Editing the Node Graph | Backdrop Nodes

Backdrop Nodes

You can use Backdrop nodes to help document your recipes, making them easier to read and navigate. They
can be placed at the side of important nodes to explain their use for future users, around a collection of
nodes that perform a particular function, or just as a title for your entire recipe. How you use them is up to
you!

Creating a Backdrop Node

A Backdrop node is created in the same way as any other node, through the Tab menu, the right-click menu,
or with the New menu within the Node Graph. As well as these methods you can also create a Backdrop
node around a number of nodes using the method below.

To fit a Backdrop node around the currently selected nodes:
1. Select the nodes the Backdrop node is to encompass.

A minimum of two nodes must be selected.
2. Select Edit > Fit Backdrop Node to Selected Nodes.

If you select a Backdrop node with the selected nodes, Katana uses that Backdrop node, otherwise a new
Backdrop node is created.

Editing a Backdrop Node

To change the parameters of a Backdrop node:
1. Double-click within the horizontal lines at the top of the node.
This brings up the EditBackdrop Node dialog.

USER GUIDE

Editing the Node Graph | Backdrop Nodes

Show In Bookmarks

Send To Back

2. In the dialog you can:
« Enter or edit the text in the main text box.
« Change the size of the text with fontScale.
« Change the background color.

« Toggle whether this Backdrop node should be part of the jump-to menu with Show In Bookmarks
(See Navigating with Backdrop Nodes).

« Toggle whether this Backdrop node should be drawn behind other nodes with Send to Back.
3. Click Ok to save changes.

You can also resize a Backdrop node by dragging from the bottom-right corner.

One extremely useful function of Backdrop nodes is their ability to act as jump to points throughout a
project.

1. Inthe Node Graph, select Go > Jump to Bookmark (or press J) to bring up the Backdrop nodes jump
to menu.

Katana displays all the Backdrop nodes that have the bookmark flag enabled with their background color
displayed to the left.

USER GUIDE

Editing the Node Graph | Dot Nodes

1. SETTING SHOW STANDARDS

Tip: The first line of a Backdrop node is used as its title for the Jump to Bookmark menu.

2. Start typing the name of the node you wish to navigate to.
This narrows down the displayed list.

3. To select the Backdrop node to navigate to, either:
* clickoniit, or

« scroll to it with the Up and Down arrow keys and press Return.

If you want to select all nodes within the bounds of a Backdrop node (as well as the node itself), you can
Ctrl+click within the two horizontal bars at the top of the node.

To lock Backdrop nodes so they can’t be edited or selected, select Edit > Lock All Backdrop Nodes. All
Backdrop nodes are locked, but if you create a new Backdrop node it is not locked.

To unlock all Backdrop nodes, select Edit > Unlock All Backdrop Nodes.

Dot Nodes

Dot nodes are used to help tidy a recipe and make the flow of the connections clearer. They also have a
unique ability in that disabling a Dot node ignores the contribution of all the nodes upstream.

To insert a Dot node:

USER GUIDE
120

Editing the Node Graph | Advanced Display Options

1. Decide where to place the Dot node by:
« selecting the node before the connector you want to bend, or

* hovering the mouse over the connection you wish to bend.

2. Press. (period) to create a Dot node.

Tip: You can also create the Dot node in the same way as any other node using the Tab
menu, New menu, or right-click menu.

3. Drag the Dot node as necessary to reposition the connections.

Advanced Display Options

You can change how a node is displayed to improve clarity and readability and to provide additional
information about a node’s behavior. You can also reduce the contrast around nodes and their connections
by selecting Edit > Draw Graph with Low Contrast, in the Node Graph. You can do this in conjunction
with dimming unconnected nodes, described in more detail below.

To change a node’s background color to one of the preset colors:
1. Select the node or nodes to change.

2. Inthe Node Graph, select Colors, and choose a color from the presets.

Note: If in the Node Graph, Edit > Dim Nodes Unconnected to View Node is selected, or a
node is ignored, its background color does not change.

To change a node’s background color to a custom color:

1. Select the node or nodes to change.

2. Inthe Node Graph, select Colors > Set Custom Color, and choose a color from the Color Picker
window.

Note: To reset a node's color back to the default, select the node, then choose Colors > None.

USER GUIDE

Editing the Node Graph | Advanced Display Options

To improve visibility you can dim all nodes not relevant to the currently viewed scene graph. In the node
graph, select Edit > Dim Nodes Unconnected to View Node or press Alt+. (period) in the Node Graph
tab.

Merge

MaterialAssignStack

GafferThree

ShadowBranch

For instance, with the Switch node, you can use the Dim Nodes Not Contributing to Viewed Node option
in the Edit menu of the Node Graph tab to visualize which portion of the node graph has been selected by
the Switch node.

Note: The Dim Nodes Not Contributing to Viewed Node feature does not take into account
nodes whose parameters are referenced in parameter expressions on nodes that are contributing
to the currently viewed node.

Some nodes are linked to other nodes through expressions. To display this relationship with a dark dashed
line in the Node Graph, select Edit > Show Expression Links (or press Q) from within the Node Graph tab.

USER GUIDE

Editing the Node Graph | Advanced Display Options

By default, some nodes have icons displayed to their left making it clearer what their function is. This
behavior is toggled within the Preferences dialog.

Render4

To toggle node icons:

1.

2
3.
4

Select Edit > Preferences to bring up the Preferences dialog or press Ctrl+, (comma).
Click nodegraph in the list on the left.
Change showNodelcons to Yes to display the icons, or No to hide.

Click Ok to make the changes permanent.

Thumbnails provide a guide to the image generated at a particular node within the recipe. Most 2D nodes
can display thumbnails, as can the Render node. Although some nodes display thumbnails by default, others
need it activated.

To toggle thumbnail display for thumbnail capable nodes, right-click and select Display Thumbnail.

To update a thumbnail, right-click and select Regenerate Thumbnail.

USER GUIDE

Editing the Node Graph | Editing a Node's Parameters

Note: Thumbnails don't update automatically!

Editing a Node's Parameters

Each node has parameters that alter how the node behaves within the recipe. These parameters can be
changed within the Parameters tab.

A parameter’s value comes from one of three things:

* A constant.

For example: 9, test, or /root/world/cam/camera

* An expression.

For example: 16-3, scenegraphLocationFromNode(getNode('CameraCreate’)), or getNode
('CameraCreate’).fov. Please refer to the Developer Guide for more information.

« A curve: only available for numeric inputs. See Animation.

Node Parameter Basics

Default Parameters Tab Icons

Nodes displayed in the Parameters tab have a number of default icons.

Open/Close the node grouping.

The name of the node, which can be changed in the parameters or by clicking on the name.
The type of node selected.

Toggle the node tooltip.

Toggle the node shelf.

o vk W=

Toggle the graph state variables window.

USER GUIDE

Editing the Node Graph | Editing a Node's Parameters

7. Toggle user comments for the node.
8. Toggle the parameters menu.

9. Toggle the parameter search window.

Opening and Closing a Node's Parameters

Once a node’s parameters are visible within the Parameter tab they are grouped with the node type and

name at the top. This can be opened and closed with the A\ P icons next to the node type.

Note: If the Parameter tab is not visible you can either, add it to a pane by clicking the E

icon on the relevant pane and selecting Parameters, or create a new floating pane, by clicking
Tabs > Parameters.

Accessing a Node's Parameters

To edit a node’s parameters, they need to be in the Parameters tab. To do this, select the node(s) whose
parameters you want to edit, then:

¢ In the Node Graph, select Edit > Edit Selected Nodes (or press Alt+E).
* Hover the mouse pointer over the node you wish to edit and press E .
« Click within the faint square to the right of a node.

 Double-click on a node. This also sets the current scene graph view to that node. See Using the Scene
Graph for more information.

A node that has its parameters in the Parameters tab has a green square on the right-hand side.

Editing a Node's Parameters

Each node has parameters that alter how the node behaves within the recipe. These parameters can be
changed within the Parameters tab.

USER GUIDE
125

Editing the Node Graph | Editing a Node's Parameters

A parameter’s value comes from one of three things:

» A constant.

For example: 9, test, or /root/world/cam/camera

* An expression.

For example: 16-3, scenegraphLocationFromNode(getNode('CameraCreate’)), or getNode
(‘CameraCreate’).fov. Please refer to the Developer Guide for more information.

« A curve: only available for numeric inputs. See Animation for more information.

Each parameter type has a control associated with it, and listed below are a few ways you can change the
common parameter types.

You can change a numeric value by:

« Double-clicking in the field to select the whole value and entering a new value in the input field.

Note: Positive and negative numbers are supported. You can also enter integers (12345),
Floating/Double points (12.345), scientific notations (1e2345), and hexadecimal numbers
(Ox9abcd).

Tip: Katana also allows you to enter formulas into fields, making it easy to do quick calculations.
For example, if you wanted to halve a value of 378, you could simply type 378/2 into a field and
press Enter to get 189.

You can increment or decrement field values by hundreds, tens, tenths, hundredths, and so on. The
maghnitude of change depends on the initial position of your cursor. For example if you wanted to increment
the initial value of 20.51 by ones, you would insert your cursor before the 0.

To increment or decrement a field value:

« Click to insert the cursor just prior to the digit you want to increment or decrement and press the up arrow
to increment by one unit, or the down arrow to decrement by one unit.

Tip: You can also increment and decrement values using the mouse wheel (if available).

« Click and drag on the parameter name, also known as scrubbing. Dragging to the left decreases the value,
and dragging to the right increases.

USER GUIDE
126

Editing the Node Graph | Editing a Node's Parameters

Note: If the stickyDrag option has been enabled in the nodegraph preferences, you can click on
the parameter label and move the mouse left to decrease the value or right to increase it.

To access the Preferences dialog, either select Edit > Preferences from the main menu bar or
select Edit > Preferences from the Node Graph tab's menu bar.

Tip: To make the changes coarser, hold down the Shift key while scrubbing, to make them finer,
hold down the Ctrl key. Pressing Shift with the up and down arrows makes the change coarser, or
pressing Ctrl makes it finer. Also, to change the increment and decrement amount, right-click and
select the sensitivity from the Sensitivity menu.

Use the color picker or the pixel probe to change the color.

To change the value in a dropdown menu:
1. Click on the dropdown menu.
2. Then, either:

» Click on the new value from the list.

* Use the Up and Down Arrow keys to highlight the new value and press the Return key.

A string can be used to represent a texture name, scene graph location, node name, or whatever a plug-in
may need. Depending on what it is representing it can be displayed in a number of ways. These can be:

« a plain text input field,
* a scene graph location, or

« a filename.

Scene graph location parameters are used to either point to where a new location is inserted into the scene
graph or to reference an existing location.

USER GUIDE
127

Editing the Node Graph | Editing a Node's Parameters

When the node creates a new location within the Scene Graph tab, the icon presents you with common
path prefixes to aid in placing the new location. When the node modifies an existing location, the — icon
allows you to get the path from either:

« the current Scene Graph tab selection, or

« the current Node Graph node selection.

If you choose the second option, Katana creates an expression that points to the scene graph location
created by the selected node.

To find the location that the parameter references and select it within the Scene Graph tab, click & and
select Select In Scenegraph.

Note: Some nodes that create scene graph locations can be linked to a parameter via an
expression so whatever scene graph location is created by the node becomes the value of the
parameter. To generate the link Shift+middle-click and drag from the node to the parameter.

CEL parameters can be made up of one or more statements. Each statement can be one of three things:
* a path,
« a collection (a CEL statement stored on a scene graph location), or

* a custom CEL statement.

Common Parameter Widgets

These widget groups are common to many nodes in Katana and are outlined here. For more information
regarding the addition of user parameters and specific widget types, refer to Widget Types and Adding User
Parameters.

Asset and File Path Widget Types

The Asset (assetldInput) and File Path (filelnput) widget types allow you to navigate to assets and files on
your file system. Several node types that ship with Katana use the Asset and File Path widget types for

USER GUIDE
128

Editing the Node Graph | Editing a Node's Parameters

parameters of various names, for example: abcAsset, file, filePath, lookfile, procedural, saveTo, and
source.

Parameters that use the Asset and File Path widget types can be found on the following types of nodes:

* Alembic_In * LookFileGlobalsAssign
 AttributeFile_In » LookFileMaterialsIn

» CameralmagePlaneCreate * LookFileMaterialsOut

* GafferThree * LookFileMultiBake

* ImageCoordinate » LookFileOverrideEnable
* ImageRead * Material

* LiveGroup » RendererProceduralArgs
* LookFileAssign RenderOutputDefine

» LookFileBake

Menu Command Description

-

Browse... Brings up the file browser or your studio's asset management browser and
enables you to select the asset to use.

Set Node Name From Path Changes the name of the node to match the filename but without the path or
extension.

Attribute Name Widget Type

The Attribute Name (attributeName) widget type allows you to type, or drag and drop attributes from the

Attributes tab, onto parameters of type String in the user parameters. When dropping a dragged attribute,
the target parameter's value is set to the name of the dropped attribute instead of the value of the dropped
attribute. Names of ancestor group attributes are separated by dots, for example, xform.translate.

Parameters that use the AttributeName widget type can be found on the following types of nodes:

» AttributeSet

USER GUIDE
129

Editing the Node Graph | Editing a Node's Parameters

Menu Command Description
Text field
newParameter Type, or drag and drop attributes from the Attributes tab to set the

parameter's value to the name of the attribute.

Attribute Type Widget Type

The Attribute Type (attributeType) widget type allows you to select from a drop-down menu, or drag and
drop attributes from the Attributes tab, onto parameters of type String in the user parameters. When

dropping a dragged attribute, the target parameter's value is set to the name of the dropped attribute's
type, for example, float.

Parameters that use the AttributeType widget type can be found on the following types of nodes:

 AttributeSet

Menu Command Description

Text field

newParameter Select an attribute type from the drop-down menu, or drag and drop
attributes from the Attributes tab, to set the parameter's value to the
attribute type.

CEL Statement Widget Type

The CEL Statement (cel) widget type allows you to build and edit CEL statements that are stored in string
parameters on nodes. Several node types that ship with Katana use the CEL Statement widget type for

parameters of various names, for example: CEL, cel, toCel, fromCel, celSelection, disableAt, exclusivity,
lights, objects, off, and on.

Parameters that use the CEL Statement widget type can be found on the following types of nodes:

« AttributeCopy » LightLinkEdit * Prune

« AttributeEditor » LightLinkSetup * RendererProceduralArgs

 AttributeFile In LocationGenerate * RendererProceduralAssign
USER GUIDE

130

* AttributeSet

» CollectionCreate
* GafferThree

» GenericOp

* LightLink

Menu Command

Add Statements

Paths > Action
Add Scenegraph Selection

Remove Scenegraph
Selection

Remove Selected Paths
Select All

Select Selected Paths In
Scenegraph

Copy Selected Paths to
Clipboard

USER GUIDE

Editing the Node Graph | Editing a Node's Parameters

* LodSelect * ReverseNormals

* LodValuesAssign ScenegraphObjectSettings

* LookFileAssign * VelocityApply

* Material * ViewerObjectSettings

» OpScript * VisibilityAssign
Description

« Paths - Adds a Paths list to this CEL parameter.
* Collections - Adds a Collections list to this CEL parameter.
 Custom - Adds a Custom parameter to this CEL parameter.

» Append Scene Graph Selection - Adds a Paths list to this CEL parameter
and places selected scene graph locations in the new list.

* Replace With Scene Graph Selection - Removes any parameters within
this CEL parameter and creates a new Paths list and populates it with any
selected scene graph locations.

 Copy CEL Statement As Text - Copies this CEL statement to the clipboard.

« Paste CEL Statement - Removes any parameters within this CEL parameter
and pastes the CEL statement in the clipboard to this parameter.

* Replace With Parameter Expression - Converts the current CEL parameter
into an expression.

Adds the currently selected scene graph location to this list.

Removes the currently selected scene graph location from this list.

Removes the path(s), selected in this Paths list, from this list.
Selects all the paths in this list.

Selects the scene graph locations of the selected paths in this list.

Copies the selected paths from this list to the clipboard.

Menu Command
Show Extended View...
Collections > Action

Add Collections From
Scenegraph Selection...

Add Scene Root
Collections...

Remove Selected Paths
Select All

Copy Selected Paths to
Clipboard

“Find And Select" Selected

[tems...

Union dropdown

Editing the Node Graph | Editing a Node's Parameters

Description

Brings up a dialog with the contents of this Paths list.

Brings up a dialog box with a list of the collections from the currently selected
scene graph locations. You can then select from these collections to add
them to this list.

Brings up a dialog box populated with the collections currently on /root. You
can then select from these collections to add them to this list.

Removes the selected collection(s) from this list.
Selects all the collections in this list.

Copies all the selected collections and their paths to the clipboard.

e Union
« Difference

o Intersect

Does not occur in all nodes with CEL widgets. Only occurs on additional
statements added to the widget after an initial statement.

Color Widget Type

The Color (color) widget type allows you to pick a color by specifying RGB or RGBA component values
directly in the Parameters tab, or through a color picker dialog. Several node types that ship with Katana use
the Color widget type for parameters of various names, for example: bottomLeft, bottomRight, color,
constantColor, fadeToColor, gamma, and previewColor.

Parameters that use the Color widget type can be found on the following types of nodes:

» GafferThree

* ImageBackgroundColor

 ImageChannels

USER GUIDE

* ImageColor * ImageRamp

 ImageClamp * ImageText

 ImageContrast * ImageThreshold

132

* ImageCheckerboard

Menu Command

color

’
Vi
Average
Min

Max

Front

Back

Auto-Disable Upon Release

color > RGB
red
green
blue
alpha
color > HSL
hue
saturation
USER GUIDE

Editing the Node Graph | Editing a Node's Parameters

* ImageFade * LightCreate
* ImageGamma * ViewerObjectSettings
* Imagelnvert

* ImagelLevels

Description
The color (RGBA values) for the given parameter.

Picks the color (RGBA) values of the selection.

Sets the color picker to use the average values.
Sets the color picker to use the minimum values.
Sets the color picker to use the maximum values.
Sets the color picker to use the front values.

Sets the color picker to use the back values.

Toggle the ability to automatically disable the picker on mouse-button
release.

Sets the red value of the pixels.
Sets the green value of the pixels.
Sets the blue value of the pixels.

Sets the alpha value of the pixels.

Sets the hue of the pixels.

Sets the saturation of the pixels.

Editing the Node Graph | Editing a Node's Parameters

lightness Sets the lightness of the pixels.
alpha Sets the alpha value of the pixels.
color > HSV

hue Sets the hue of the pixels.
saturation Sets the saturation of the pixels.
value Sets the value of the pixels.

alpha Sets the alpha value of the pixels.

color options continued

Enable Display Transform Toggles gamma correction in the color picker, which is especially useful
when working with OCIO.

Restrict RGBA Components Restricts the alpha to 0,1 and the color channels to 0,a.

Common 2D Node Widget Type

The Common 2D Node (node2d) widget type allows you to pick channels that are affected by a particular
2D node and specify masking parameters. This widget type is not exposed for use as a custom user
parameter.

The Common 2D Node widget type can be found in each Image node, except for Image BackgroundColor,
ImageChannels, ImageCheckerboard, ImageColor, ImageCoordinate, ImageCrop, ImageRamp, ImageRead,
ImageText, and ImageWrite.

Note: Not all of the Image nodes have the Mask parameter.

Menu Command Description

Specify whether the controls are set for the main, left, or right views, or set
the controls to Enable All.

_ When a specific component (R, G, B, or A) is enabled, the controls affect only
that component.

¥ [view]

USER GUIDE

Menu Command
mix
Mask ™

channel

invert

fringe

Editing the Node Graph | Editing a Node's Parameters

Description

Dissolves between the bg image at 0 and the full merge effect at 1.

The channel from the out_mask input to use as a mask:
* R - use the red channel as the mask.

* G - use the green channel as the mask.

* B - use the blue channel as the mask.

* A - use the alpha channel as the mask.
By default, the merge is limited to the non-black areas of the mask.

Inverts the use of the mask channel so that the merge is limited to the non-
white areas of the mask.

When enabled, the mask is modified so that, by default, the merge is limited
to the fringe (semi-transparent areas).

This is common alpha treatment, which modifies a normal mask such that it
only affects the fringe (semi-transparent) areas.

New Scene Graph Location Widget Type

The newScenegraphLocation (newScenegraphlLocation) widget type allows you to specify the path of a
scene graph location that is to be created by the respective node. It is used, for example, for the name
parameter of CameraCreate nodes.

This widget type is not exposed for use as a custom user parameter, but can be accessed by setting the
widget type hint to newScenegraphLocation. Several node types that ship with Katana use the
newScenegraphLocation widget type for parameters of various names, for example: location, locations,

and name.

Parameters that use the newScenegraphLocation widget type can be found on the following types of

nodes:

» Alembic_In

» CameraCreate

* ImageCoordinate
s LightCreate

USER GUIDE

 PonyStack
* PrimitiveCreate

» TeapotCreate

135

Menu Command

Parent to Scenegraph
Selection

Parent to
/root/world/geo/...

Parent to
/root/world/Igt/...

Parent to
/root/world/cam/...

@ Select In Scene Graph

Editing the Node Graph | Editing a Node's Parameters

Description

Sets the parent location of the object created to be the current scene graph
selection.

Sets the parent location of the object created to be /root/world/geo/.
Sets the parent location of the object created to be /root/world/Igt/.

Sets the parent location of the object created to be /root/world/cam/.

Selects the location specified by this parameter in the Scene Graph tab.

Note: This option may be included in both the ¥ dropdown menu
and as an icon to the right of the parameter name, or may only be
present in one of these locations.

Locations Widget Type

The Locations (locations) widget type allows you to select scene graph locations by paths or expressions. It
is not an exposed widget type for use as a custom user parameter. Out of all node types that ship with
Katana, only Isolate nodes use the Locations widget type, namely for their isolateLocation parameter.

Menu Command
Path
Expressions

Append Scene Graph
Selection

Replace with Scene Graph
Selection

USER GUIDE

Description

Adds another path to this parameter's list of paths.

For each selected scene graph location, a new path is added to this
parameter's list of paths and populated with the location.

Removes all existing paths and replaces them with paths populated with the
currently selected Scene Graph tab locations.

Editing the Node Graph | Editing a Node's Parameters

Append Node Graph Node For each selected Node Graph node, a new path is added to this parameter's
Locations list of paths and an expression that links the scene graph location created by
that node to the path.

Replace with Node Graph ~ Removes all existing paths and replaces them with a path for each selected
Node Locations Node Graph node and links the scene graph location created by that node
to the path.

Append Node Graph
Locations as Parameter
Expressions

Replace Node Graph
Locations as Parameter
Expressions

Clear All Removes all paths from this parameter.

Look File Pass Name Widget Type

The Look File Pass Name (lookfilePassname) widget type allows you to set the pass name to use from a
chosen Look File. This widget type is not exposed for use as a custom user parameter, but can be accessed
by setting the widget type hint to lookfilePassname. Node types that ship with Katana use the Look File
Pass Name widget type for the passName parameter.

Parameters that use the Look File Pass Name widget type can be found on the following types of nodes:
* LookFileMaterialsin
* LookFileOverrideEnable

» LookFileResolve

Menu Command Description

Choose Look File Pass
from Selection...

USER GUIDE

Editing the Node Graph | Editing a Node's Parameters

Rectangle Widget Type

The Rectangle (rectangle) widget type allows you to specify rectangular bounds to use by a node. This
widget type is not exposed for use as a custom user parameter. Several node types that ship with Katana use
the Rectangle widget type for parameters of various names, for example: bounds, resolution, or rect.

Parameters that use the Rectangle widget type can be found on the following types of nodes:

Menu Command Description

bounds or rect > ~
Copy from Monitor ROI

Copy to Monitor ROI

Scene Graph Location Widget Type

The Scene Graph Location (scenegraphLocation) widget type allows you to specify the path of an existing
scene graph location that a node is meant to work with. Several node types that ship with Katana use the
Scene Graph Location widget type for parameters of various names, for example: baseLocation,
cameralocation, location, locations, path, paths, sourceLocation, and targetPath.

Parameters that use the Scene Graph Location widget type can be found on the following types of nodes:

« AimConstraint * GafferThree OpScript
* AttributeCopy * HierarchyCopy * OrientConstraint
* AttributeSet * InfoCreate * ParentChildConstraint
* BillboardConstraint * Isolate * PointConstraint
 BoundsAdjust * LightLink « ReflectionConstraint
» CameraClippingPlaneEdit * LightLinkEdit * Rename
« CameralmagePlaneCreate » LightLinkSetup * RendererProceduralArgs
» CameraScreenWindowConstraint ¢ LightLinkEdit RendererProceduralAssign
* ClippingConstraint * LocationCreate RenderOutputDefine
* CollectionCreate * LookFileBake RenderSettings
USER GUIDE

138

» ConstraintCache

» CoordinateSystemDefine
* DollyConstraint

* FaceSetCreate

» FOVConstraint

Menu Command

L} Adopt Scenegraph
Selection

ﬂ Adopt Selected
Nodegraph Node

'.' Select In Scenegraph

Adjust Path Relative To
‘basePath'’

Editing the Node Graph | Editing a Node's Parameters

» LookFileMultiBake

* Material

» ScreenCoordinateConstraint
 Transform3D

« NetworkMateriallnterfaceControls < TransformEdit

» NetworkMaterialParameterEdit

» NetworkMaterialSplice

Description

The currently selected Scene Graph tab location is used to populate the
parameter.

Creates an expression from the currently selected Node Graph node linking
the scene graph location created by that node to this parameter.

Selects the location specified by this parameter in the Scene Graph tab.

Note: This option may be included in both the ™ dropdown
menu and as an icon to the right of the parameter name, or may
only be present in one of these locations.

Converts the current targetPath to a path relative to the basePath. If the
targetPath is an expression, it is converted to a constant.

Note: This option does not appear in all instances and may only be
available when both the basePath and targetPath parameters exist
for a node.

Scene Graph Locations Widget Type

The Scene Graph Locations (scenegraphLocationArray) widget type allows you to specify a list of paths of
existing scene graph locations that a node is meant to work with. Several node types that ship with Katana
use the Scene Graph Locations widget type for parameters of various names, for example:
destinationLocations, lightPaths, locations, paths, and rootLocations.

Parameters that use the Scene Graph Locations widget type can be found on the following types of nodes:

USER GUIDE

139

» AimConstraint

* AttributeSet

* BillboardConstraint
* ClippingConstraint
» ConstraintCache

» ConstraintListEdit

* DollyConstraint

» FOVConstraint

* HierarchyCopy

Menu Command
Path

Append Scenegraph
Selection

Replace with Scenegraph

Selection

Append Nodegraph Node

Locations

Replace with Nodegraph

Node Locations

Clear All

Find Instances beneath
Scene Graph Selection...

Editing the Node Graph | Editing a Node's Parameters

¢ InfoCreate

* LightLink

* LightListEdit

* LocationCreate

*» LookFileBake

* LookFileMultiBake
* PointConstraint

» ScreenCoordinateConstraint

Description
Adds another path to this parameter's list of paths.

For each selected scene graph location, a new path is added to this
parameter's list of paths and populated with the location.

Removes all existing paths and replaces them with paths populated with the
currently selected Scene Graph tab locations.

For each selected Node Graph node, a new path is added to this parameter's
list of paths and an expression that links the scene graph location created by
that node to the path.

Removes all existing paths and replaces them with a path for each selected
Node Graph node and links the scene graph location created by that node
to the path.

Removes all paths from this parameter.

Note: This option is only found on the rootLocations parameter.

Transform Controls Widget Type

The Transform Controls widget type allows you to manipulate the transformation matrix. This widget type
is not exposed for use as a custom user parameter. Node types that ship with Katana use the Transform
Controls widget type for the transform parameter.

USER GUIDE

140

Editing the Node Graph | Editing a Node's Parameters

Parameters that use the Transform Controls widget type can be found on the following types of nodes:
» CameraCreate

* GafferThree

* LightCreate

* PonyStack

* PrimitiveCreate

» TeapotCreate

Menu Command Description
transform
interface Sets the transform control layout:

* SRT Values - exposes the scale, rotation, and translation controls.

» Transform Matrix - exposes a matrix to control transformations.

Note: If you select Transform Matrix, the translate, rotation, and
scale fields are replaced by a matrix field instead.

transformOrder Sets the order in which transforms are applied: Scale Rotate Translate, Scale
Translate Rotate, Rotate Scale Translate, Rotate Translate Scale,
Translate Scale Rotate, Translate Rotate Scale.

rotationOrder Sets the order in which rotation is applied: XYZ, XZY, YXZ, YZX, ZXY, ZYX.

transform > interface: SRT Values

translate Controls camera translation on the xyz axes.
rotate Controls camera rotation on the xyz axes.
scale Controls camera scale on the xyz axes.

transform > interface: Transform Matrix

matrix Controls transformations using a matrix in place of individual SRT controls.

Note: This field is only available if you have selected Transform
Matrix in the interface field.

USER GUIDE

Editing the Node Graph | Editing a Node's Parameters

Transform Tools Widget Type

The Transform Tools widget type allows you to manipulate transformation data for scene graph locations.
This widget type is not exposed for use as a custom user parameter. Node types that ship with Katana use
the Transform Tools widget type for the transform parameter.

Parameters that use the Transform Tools widget type can be found on the following types of nodes:

» CameraCreate
« GafferThree

* LightCreate

* PrimitiveCreate

» TeapotCreate

Menu Command

transform > Tools ™

Snap to Position of Scene
Graph Selection

Copy Scene Graph
Selection World Transform

Copy Scene Graph
Selection Local Transform

Fit to Bounds of Scene
Graph Selection

Register to Scene Graph
Camera

Reset Transform

USER GUIDE

Description

Moves the position of the light to the position of the item selected in the
Scene Graph tab.

Copies the world SRT values of the item selected in the Scene Graph tab into
the translate, rotate, and scale parameters under Object tab > transform.

Copies the local SRT values of the item selected in the Scene Graph tab into
the translate, rotate, and scale parameters under Object tab > transform.

Fits the light to the bounds set by the item selected in the Scene Graph tab.

Places an object at a specified distance from a camera that is selected in the
Scene Graph tab, oriented to face the camera, and scaled to fit the camera's
screen window exactly. This is designed for use with primitive planes and may
set unexpected transforms on other object types.

This option is only available if a camera or light is selected in the Scene Graph
tab.

Resets any previous transforms, bringing the light back to the origin (0,0,0).

Editing the Node Graph | Editing a Node's Parameters

Parameter State Badges

Some parameters, and all attributes, have an icon to help you determine how the current value is being
assigned. These are referred to as state badges.

Icon What it means

This parameter or attribute has not been set and is getting its value from a predefined
default.

This parameter is being forced to use the predefined default value.

This parameter has a local change and is being set at this node.

This parameter or attribute has been set and is not getting its value from the default. A
parameter with this icon would have already been set further up the node tree.

This attribute is inherited from a parent location further up the scene graph hierarchy.

=2 EE EBEEEH H

This parameter or attribute has an active reference to a parameter in another file.
Changes to the other file update this parameter when reloaded.

Adding User Parameters

You can add user parameters to any node, but they're particularly useful in groups and macros, where user
parameters on the parent node can drive parameters on child nodes. User parameters can also drive
parameters on nodes in the recipe outside of the group or macro. It can be useful to present the user of a
group or macro with a series of known, valid choices in the form of a pop-up menu. You can create this, as
shown below, by editing the user parameters.

1. Start with a recipe consisting of a Group node with a child PrimitiveCreate node, and a connection out of
the group from the PrimitiveCreate to a Merge node.

USER GUIDE

Editing the Node Graph | Editing a Node's Parameters

Merge

Select the Group node and press Alt+E to edit it.

In the Group node’s Parameters tab, click 'f > Edit User Parameters.

On the user parameter, click Add > String.

A new user parameter of type string is created.

Change the widget type of your user parameter to Popup Menu by clicking the 'f' menu on the user
parameter and selecting Widget Type > Popup Menu.

This changes the user parameters widget type to pop-up menu, where each entry in the menu is a string.
Edit the pop-up menu to add new entries, each corresponding to a valid PrimitiveCreate node type. To

do this, in the o menu of the new parameter, click Widget Options.... In the resulting widget options

dialog, click Add > New Entry, and name them "sphere", "cube", and "cone".

Link the user parameter pop-up menu to the type parameter of the PrimitiveCreate node by right-
clicking on the user parameter pop-up menu and clicking Copy, then selecting the PrimitiveCreate node.
Right-click on its type parameter, and select Paste > Paste Expression.

The type parameter’s background turns blue to let you know it's set by an expression.

USER GUIDE

Editing the Node Graph | Editing a Node's Parameters

Tip: If you want the user parameters to be shown at the top level on the Group node, you can click

'f > Show User Parameters At Top Level in the Group node's parameters before you finish
editing the user parameters.

8. Finish editing the Group node’s user parameters by clicking 'f > Finish Editing User Parameters.

9. Select the group, then click the pop-up user parameter to change between the "sphere”, "cube”, and
"cone" options. The type parameter of the PrimitiveCreate node changes to match.

Tip: Katana offers a shortcut to automatically create and populate user parameters. Perform step 3
from the example above, then Shift+click the PrimitiveCreate node as well as the group.
Shift+middle-click and drag from the PrimitiveCreate node’s type parameter onto the Group
node's Add menu. A new user parameter of the correct type (in this case a pop-up menu),
populated with the applicable entries, is created. You still need to link the new menu to the
PrimitiveCreate node’s type parameter, but this should speed up the process.

Widget Types

Depending on the user parameter defined in a shader's Args File, different Widget Types are available to
choose from. The main user parameters are the Number, String, and color parameters. The widget types
available for a Number shader parameter are shown below.

Rename Parameter...

Widget Type v Default

Null

The widget types for a String shader parameter are shown below.

USER GUIDE

Rename Parameter...

Widget Type
Wi Option

Edit Help Text....

Editing the Node Graph | Editing a Node's Parameters

ding Popup Menu
ot But

Té CIEIE
Script Editor
Null

The widget types and widget hint values for the different user parameters are shown in the table below:

Widget Type Widget Hint Values

Description and Example

Number, String, Button, Toolbar, TeleParameter, and Node Drop Proxy

Boolean boolean

Popup popup

Mapping Popup mapper
Menu

USER GUIDE

Displays two values or options, such as true or false.

<param name="opacity" widget="boolean"/>

Displays entries specified in the Widget Optionsin a
dropdown menu.
<param name="opacity" widget="popup">
<hintlist name="options">
<string value="1.0"/>
<string value="1.5"/>
<string value="2.0"/>
</hintlist>

</param>

Similar to Popup Menu, but with the option to map
values. See Widget Options for more information.
<param name="opacity" widget="mapper">
<hintdict name="options">
<float value="0.0" name="A"/>
<float value="0.5" name="B"/>
<float value="1.0" name="C"/>

</hintdict>

146

Widget Type

Check Box

Widget Hint Values

checkBox

Editing the Node Graph | Editing a Node's Parameters

Description and Example

</param>

Similar to Boolean, but displayed as a checkbox.
<param name="opacity"

widget="checkBox"/>

String, Button, Toolbar, TeleParameter, and Node Drop Proxy

Scene Graph
Location

CEL Statement

Resolution

Asset

File Path

Script Button

TeleParameter

scenegraphLocation

cel

resolution

assetldInput

filelnput

scriptButton

teleparam

USER GUIDE

Widget for specifying locations in the Scene Graph
tab, for example, /root/world/geo/pony1

<param name="loc"

widget="scenegraphLocation"/>

Specify a CEL Statement. For more information, see
Collections and CEL.

<param name="loc" widget="cel"/>

A resolution, for example: 1024x768.
<param name="loc"

widget="resolution"/>

Widget to represent an asset. The fields that are
displayed in the Ul and the browser that is used for
selection can be customized using the Asset
Management System API.

<param name="EnvMap"

widget="assetIdInput"/>

String parameter representing a file on disk. Uses the
standard Katana file browser for selection.

<param name="texname"

widget="fileInput"/>

A button executing a Python script when clicked.
<param scriptText="print 'Hello'"
name="btn"
buttonText="Run Script"
widget="scriptButton"/>

Creates a parameter that 'teleports' parameters from
another source (node, SuperTool, or similar).

<param name="EnvMap"

147

Widget Type Widget Hint Values
Script Editor scriptEditor

Dynamic Array dynamicArray
Multi-line Text text

String Only

Attribute Name attributeName

Attribute Type attributeType
Group Only
Multi multi

USER GUIDE

Editing the Node Graph | Editing a Node's Parameters

Description and Example

widget="teleparam"/>

A field for entering a script as the parameter.
<param name="EnvMap"

widget="scriptEditor"/>

A number or string array of dynamic size. Not available
through the Ul wrench menu.
<numberarray parameter hints="
{';widget': '
dynamicArray'}" name="testNumArray" size="3"
tupleSize="1">
<number parameter name="iQ"
value="0"/>
<number parameter name="il"
value="0"/>
<number parameter name="i2"
value="0"/>

</numberarray parameter>

Enables a string field to support multiple lines of text.
For example, you can set KatanaBlinn.args with the
following line:

<param name="BumpMap" widget="text"/>

to set BumpMap to take multiple lines of text and
display the expected Ul.

String parameter value which is the full name of an
attribute, with names of ancestor group attributes
separated by dots:

xform.translate

String parameter value which is the name of the

attribute's type:
float

Creates a group set of parameters within a group.

Editing the Node Graph | Editing a Node's Parameters

Widget Type Widget Hint Values Description and Example
Number Array Only
Color color Creates a color widget that allows you to set the RGB,

HSL, and HSV values.
String Array Only

Scene Graph scenegraphlLocationArray Creates three Scene Graph Locations widgets that
Locations allow you to set locations.

Note: See Help > Developer Guide for more on setting hint strings on User Parameters.

Note: See also Adding User Parameters.

Widget Options

Based on the specified widget type, there are a number of options available. In case of a color parameters for
example, these options allow settings like the restriction of the components (RGBA) to a range between 0
and 1. For numeric parameters, the display format and slider options, such as range and sensitivity, can be
specified.

entryOne
enfryTwo

entryThree

Cancel

USER GUIDE
149

Editing the Node Graph | Editing a Node's Parameters

For example, in the widget options of a Mapping Popup menu, if you specify a list of numbers and their
labels, they are displayed as a dropdown list.

Note: For more information about user parameters and widget options, refer to Adding User
Parameters or for a list of specific widget options for each widget type, refer to Widget Types.

Conditional Behavior

You can make the behavior of user parameters within a macro or group conditional, dependent on any user
parameter values. For example, create a group, containing a scene that includes 3Delight and Arnold
shaders. Select which shader to use from a pop-up menu, then show and hide shader options using
conditional behavior.

Conditional Visibility Example

First, follow the steps below to set up a scene you can use to learn about conditional visibility.

1.

Create a Katana scene with a PrimitiveCreate node, a Material node, a CameraCreate node, and a Merge
node.

Connect the outputs of the PrimitiveCreate, Material, and CameraCreate nodes to inputs on the Merge
node.

Create a MaterialAssign node, and place it downstream of the Merge node.

Add GafferThree and RenderSettings nodes in a series, downstream of the MaterialAssign node. Finally,
add a Render node at the end of the chain.

USER GUIDE
150

Editing the Node Graph | Editing a Node's Parameters

PrimitiveCreate Material CameraCreate

MaterialAssign

GafferThree

RenderSettings

Render

Note: You can overload Material and GafferThree nodes with more than one shader type. For
example, a Material node can hold both 3Delight and Arnold shaders.
At render time, only shaders relevant to the selected renderer are considered.

5. Inthe Material node, add a 3Delight surface shader of type Material3Delight, and an Arnold surface
shader of type standard.

6. Inthe GafferThree node, add both a 3Delight spotlight, and an Arnold spot_light, switching profiles to
do so.

Note: For more information on how to add lights and assign shaders to them, refer to Getting to
Grips with the GafferThree Node.

7. Position the lights.

8. Select all of the nodes except for Render, and press G to group all of the selected nodes together. The
result is a Group node with a single output, connected to a Render node.

Once you've set up the scene, you can go into the Group node and change the RenderSettings node
renderer parameter to switch between your available renderers. However, you can also use conditional
visibility to streamline this operation by adding a pop-up menu to the Ul of the Group node and linking to
the renderer parameter on the RenderSettings node by expression.

Follow the steps below to switch between 3Delight and Arnold rendering options using conditional visibility:

USER GUIDE

Editing the Node Graph | Editing a Node's Parameters

1. Select the Group and click 'f > Edit User Parameters.
2. Select Add > String and then select Widget Type > Popup Menu from the new parameter’s 'f menu.

Select Widget Options... from the new parameter’s 'f menu.

4. Inthe widget options dialog, select Add > New Entry, so there are two entries in the menu. Edit one
entry to read "dI" and the other to read "arnold", then click OK.

In the Group node’s Parameters tab, right-click on the pop-up menu widget and select Copy.

6. Expand the contents of the Group node in the node graph. Select the RenderSettings node and press
Alt+E to edit the parameters in the Parameters tab. Right-click on the node’s renderer parameter, and
select Paste Expression.

The background of the renderer parameter turns blue, to indicate that it's driven by an expression.

The value of the RenderSettings node renderer parameter is linked by expression to the selected entry in the

Group node’s pop-up menu. If you select 'f > Finish Editing User Parameters from the group’s
Parameters tab, the pop-up menu now displays as a parameter.

Create New User Parameters for Conditional Visibility

The state of the pop-up menu can also conditionally affect visibility of other user parameters in the Group
node. Using the examples scene you've already set up from Conditional Visibility Example, create new user
parameters on the group to control the diffuse color values on the 3Delight and Arnold shaders contained
within it.

This example also shows how to add conditional behavior so that only the color controls for shaders relevant

to the selected renderer are shown:

1. In the Group node’s Parameters tab, select the o > Edit User Parameters, then click Add > Color,
RGB twice.

2. Right-click on the first Color, RGB user parameter and select Copy. Expand the contents of the group in
the node graph, then Shift+middle-click and drag the Material node to the Parameters tab to view it.

3. Expand the parameters for the Material3Delight, right-click on the color parameter (base layer), and
select Paste Expression.

4. Inthe Group node’s Parameters tab, right-click on the second Color, RGB user parameter and select
Copy.

5. Expand the parameters for the Material node's arnoldSurfaceShader, right-click on the kd_color
parameter, and select Paste Expression.

The diffuse color values of the 3Delight and Arnold shaders are linked by expression to the color widgets in

the group's parameters. If you select Finish Editing User Parameters from the group’s 'f menu, the color

USER GUIDE
152

Editing the Node Graph | Editing a Node's Parameters

widgets display in the group’s Parameters tab. Their values affect the diffuse colors of the 3Delight and
Arnold shaders.

Hide Conditional Visibility Options

Only one shader at a time is considered, so it would be useful to hide the settings for the shader not
applicable to the selected renderer.

1.

4.

In the Group node’s Parameters tab, click 'f > Edit User Parameters. Select 'f > Conditional
Visibility Options... for the first Color, RGB widget.

The Conditional Visibility Options dialog opens.

The conditional visibility options editor sets "and/or" conditions for showing the selected widget.
Conditions are evaluated against a specified user parameter, in the format:

if <selected parameter> is <selected condition> relative to an entered value, then show the widget.

In the Conditional Visibility Options dialog, select Add Condition > contains. In the text entry field,
enter "dI".

@ Conditional Visibility Options ? b

The condition in this case is if <the pop-up menu> contains < the string dl> then show the target user
parameter.

In the Conditional Visibility Options window, click on the & icon to choose the user parameter to test
against, and select the pop-up menu from the list.

Repeat the process above for the second Color, RGB widget, and the Arnold entry in the pop-up menu.

If you select the group'’s 'f > Finish Editing User Parameters, and view the completed Group node’s

Parameters tab, only one color widget at a time displays in the group’s Parameters tab. Which one is
dependent on the value chosen in the pop-up menu.

USER GUIDE

Editing the Node Graph | Editing a Node's Parameters

Creating Help Text for User
Parameters

Within a newly created user parameter, you have the option to create help text.

1. Inthe new parameter's 'f menu, select Edit Help Text... from the options.

2. The Edit Help Text dialog is split into two panes: editor and preview. Using the dropdown menu at the
top of the dialog, you can choose to:

« View Editor and Preview - type into the editor, on the top pane, and see the results in the preview
pane, on the bottom.

« View Only Editor - type into the editor only, without previewing the results.

* View Only Preview - view the preview window only, without viewing the editor. This is useful for
review purposes.

View Editor and Preview

Help text for your new parameter.

Help text for your new parameter.

As well as typing into the editor, you can insert images and links using the Insert Image = and Insert

Link # icons above the editor pane.

Note: The image and link options are only available if you have the editor displayed.

USER GUIDE

Editing the Node Graph | Editing a Node's Parameters

3. The dropdown menu at the bottom of the dialog allows you to specify what kind of help text the
message is: normal, warning, or error.

4. Click OK to save your changes. You can now see your message by clicking on the question mark icon to
the left of the parameter.

PrimitiveCreate.user.Parameter

Or your new parameter

You can also generate help text for a user parameter programmatically instead of setting it through the Ul.
To do this, set the help text string like the example below:

myParameter = NodegraphAPI.GetNode ('Group') .getParameter
('user.exampleUserParameter')hints = eval (myParameter.getHintString())
hints['help'] = """

This is some example help text

 Visit Foundry's website'

myParameter.setHintString(str (hints))

USER GUIDE
155

Animation

Computer based animation owes its core concepts to the techniques employed by pencil-drawn animators
since the dawn of the animation business. In order to reduce time, the lead animators of large studios would
draw key poses - known as keyframes or keys - defining the extreme positions within a scene.

A different animator would then fill in the poses between the keyframes using a technique called tweening,
thereby creating the illusion of movement. For some scenes, breakdowns were created to show how the
transition from one keyframe flowed to the next. Katana does the animation heavy lifting by interpolating
the values between keyframes. You can tell Katana how you want these in-between frames to be generated
by specifying a segment function.

20.0000

Two keyframes on frames zero and fifty with a linear segment function applied to the first. The most versatile
segment function is the bezier curve; it uses a mathematical formula to calculate a curve between two
anchor points. Bezier curves use four points to interpolate a curve: two anchor points (these are the
keyframes) and two control points.

USER GUIDE

20.0000

The same two keyframes with the bezier segment function applied. The arrowheads represent the location of
the two control points. A tangent and its control points control the slope of the curve around the tangent’s
keyframe.

The selected control point handles, shown Here, a straight line between control points
in yellow, form a tangent around the would not pass through the keyframe;
keyframe. hence the tangent is broken.

Breakdowns within the Curve Editor maintain the relative time between the keyframe before and the
keyframe after.

50.0000

1.9947

Keyframes have been placed on frames 30, Moving the third keyframe from frame 70 to
50, and 70. The middle keyframe, on frame frame 60, automatically moves the
50, has been converted into a breakdown. breakdown to frame 45.

USER GUIDE

157

Keyframes, breakdowns, segment functions, and tangents all combine to create a curve that represents how
a value changes over time. A curve is plotted on a graph within the Curve Editor tab with time (in frames)
along the x axis and the parameter’s value plotted on the y axis. When a parameter uses a curve, its
background color within the Parameter tab changes to green. Light green signifies that the parameter has a
keyframe at the current frame; a dark green parameter signifies that the value is interpolated.

1 5@ 1
A bright green parameter signifies a A dark green parameter signifies the value
keyframe on the current frame. for the current frame is interpolated.

Setting Keys

You can set keys either manually or Katana can automatically set a key every time you change the parameter
value. To have Katana automatically create keys when you enter a new value, you need to turn on Auto Key
mode for that parameter.

Toggling Auto Key
While a parameter has the Auto Key icon highlighted g , entering a value in the parameter field creates a
new keyframe at the current frame.

To toggle Auto Key mode:
* Right-click on the parameter to toggle and select Auto Key.

OR

* Click the Auto Key icon, g / ! , next to the parameter.

Setting Keys Manually

To set a key manually:
1. Move the Timeline to the correct frame.

2. Set the parameter to the desired value.

USER GUIDE
158

Right-click the parameter and select Key. If a key has not been set on the parameter before, select
Curve. Selecting Curve not only sets a key, it also converts that parameter from a Constant or
Expression to a Curve.

Note: You can also set keys within the Curve Editor tab using Insert mode, as well as converting
an interpolated value into a key. See Setting Keys and Baking a Segment of the Curve for more
information.

Baking a Curve

Whether from an expression or a keyframed curve, you can convert part or all of a curve to keyframes.

Generating Keyframes from a Curve or Expression

Right-click on the parameter.

2. Select Bake to FCurve....

The Bake to Curve dialog displays.

Change the dialog values to suit the curve you are creating. You can change the:

- startFrame - the frame to start generating keys.

« endFrame - the last frame to generate a key.

« interval - how often to generate a key (in frames).

Click Bake.

The parameter changes from an expression to a curve and keys are generated from startFrame to
endFrame.

All the newly generated keys are assigned the linear segment function.

USER GUIDE
159

The expression abs(sin(frame*pi/40)) The baked curve with a startFrame of 0, endFrame of
displayed in the Curve Editor. 80, and an interval of 10.

Note: Although most commonly used with expressions, Bake to FCurve... can be used to
automatically generate keyframes for any type of parameter, whether it's an expression, a constant,
or already a curve.

Exporting and Importing a Curve
Curves can be exported and imported.

To export a curve:
1. Right-click on the parameter to export.

2. Select Export FCurve... .

To import a curve:
1. Right-click on the parameter to change.

2. Select Import FCurve... .

Displaying Keyframes

You can use the Curve Editor tab, Dope Sheet tab, and Timeline to view and manipulate keyframes. They
only show a parameter’s keyframes if the parameter has the Show Curve icon highlighted.

To toggle the Show Curve icon:
1. Right-click on the parameter.

2. Select the Show Curve menu item.

OR

[
Click . or to the left of the parameter input field.

USER GUIDE
160

Curve Editor Overview

The Curve Editor is the heart of animating within Katana. Here you can move keyframes; change their
segment function, tangents and weights; set breakdowns; and make any curve manipulations necessary to
get the curve you need.

=~ D - B | =t (e - o S—

The Curve Editor is split into three areas:

1. The left-hand side is a hierarchical view of all parameters with Show Curve enabled.

2. The right-hand side shows these parameter values plotted over time. The parameter value range is on
the left and the time frame across the bottom. This area is referred to as the Curve Editor graph.

3. The bottom of the Curve Editor has a toolbar containing ways to manipulate the keyframes.

Tip: Although the Curve Editor is primarily for manipulating curves, it can also be used to view the
results of an Expression. To view an Expression in the Curve Editor, enable Show Curve for the
Expression parameter.

Using the Hierarchical View

On the left of the Curve Editor is a hierarchical view of the curves and expressions that have Show Curve
enabled. You can use this view to expand and collapse the parameters, lock the curves against editing, and
toggle the curves that are shown in the Curve Editor graph.

USER GUIDE

Expanding or Collapsing a Curve
Double-click on the part of the parameter name to expand or collapse.

OR

Click E':'_ to expand or {?- to collapse.

Note: Collapsing a parameter in the hierarchical view only changes whether its children are
displayed in the hierarchical view. Its only use is to keep the hierarchy more manageable.

Selecting a Curve in the Hierarchical View

Click on a parameter name to select its curve - it must be the leaf name as that corresponds to the actual
parameter.

Tip: You can select more than one parameter by Ctrl+clicking further parameters and
Shift+clicking to select all the parameters from your last selection to where you click.
Locking or Hiding a Curve
You can lock a parameter to stop its curve from being editable within the Curve Editor.

To locking a parameter and stop it from being editable within the Curve Editor, click B\ within the

hierarchical view in the Curve Editor. If you then want to unlock the parameter again, click &

Note: Parameters that are expressions are always locked and cannot be modified within the Curve
Editor.

Even though a parameter has Show Curve selected, you may not want to display it within the Curve Editor
graph.
To hide a parameter curve within the Curve Editor, click _ within the hierarchical view in the Curve Editor.

If you then want to show the parameter curve again, click . within the hierarchical view in the Curve
Editor.

USER GUIDE
162

Switching the Display of a Parameter’s Children

When only some of the children of a parameter are shown, E is displayed.

To switch the display state of the children of a parameter name, click E within the hierarchical view in the
Curve Editor.

By clicking E the two child curves have changed their display states - one becoming hidden and the other
visible.

Setting Keys

You can set keys quickly and easily within the Curve Editor with the insert mode. The insert mode enables
you to click on the graph at any point and insert a new key at that position.

To insert keys with insert mode:
1. Select the curve for the new keys.

2. Press the Insert key.

USER GUIDE

This puts you into insert mode.
Click a point on the graph to insert a new key at that position.
4. Repeat step 3 to insert as many keys as required.
Select a different curve within the hierarchical view to insert keys on that curve.

5. To finish adding keys and disable insert mode, press Insert again.

Selecting and Moving Keyframes

You can selecting keyframes by clicking on them or by marquee dragging over them. If you want to select all
keyframes for a curve, double click the curve. To add a keyframe to the current selection, hold Shift while
selecting the keyframe(s). If you want to remove that keyframe again, or any keyframe in the selection, hold
Ctrl while selecting the keyframe(s).

You have two ways to move keyframes within the Curve Editor: using the mouse or using the X and Y input
fields.

To move keyframes using the mouse:
1. Select the keyframe(s) you want to move.

2. Click-and-drag one of the selected keyframes.

To move a single keyframe using the input fields:

1. Select the keyframe you want to move.

2. Make any changes in the input fields below the graph:
« Enter a new frame number in the X input field.

* Enter a new value in the Y input field.

The values entered into X and Y are absolute and not relative. For instance, entering 10 in the X input field,
moves the keyframe to frame 10.

To move multiple keyframes using the input fields:

1. Select the keyframes you want to move.

USER GUIDE

2. Make any changes in the input fields below the graph. All changes are relative, for instance 3 would add
3 to the current value or frame number and -3 would subtract 3 from the current value or frame number:

« Enter a relative frame number in the X+ input field.

« Enter a relative value in the Y+ input field.

Changing the Display Range and Display Elements

Katana provides a number of ways to change the frame range and parameter value range in the Curve Editor

graph.

Action

Panning

Panning in the graph
Panning in a single axis
Zooming

Zooming in or out

Framing

Framing all keyframes in
the graph

Framing all keyframes in
the graph in the X axis

Framing all keyframes in
the graph in the Y axis

Framing the selected
keyframes

Framing the selected

USER GUIDE

Description

Middle-click and drag within the graph area.

Shift+middle-click and drag within the graph area.

Use the scroll wheel to scroll up (zoom in) and down (zoom out). Alternatively,
press the + (Plus) key to zoom in or press the - (Minus) key to zoom out.

Right-click and select Frame > All > Frame All (or press A).

Right-click and select Frame > All > Frame All X Only.

Right-click and select Frame > All > Frame All Y Only.

Right-click and select Frame > Frame (or press F). Alternatively, right-click and

select Frame > Selected > Frame Selected.

Right-click and select Frame > Selected > Frame Selected X Only.

165

Action Description
keyframes in the X axis

Framing the selected Right-click and select Frame > Selected > Frame Selected Y Only.
keyframes in the Y axis

You can display other information in conjunction with the parameter curves. Additional elements that can be
displayed include: a domain slider to show the value on a curve for a given time; a curves velocity and
acceleration; and a label to identify which curve corresponds to which parameter.

Displaying the Domain Slider

To toggle the display of the Domain Slider, right-click and select Show > Domain Slider (or press D). The
Domain Slider, the orange vertical bar, can be moved left and right across the frame range to display the
value for the highlighted curve at a particular frame.

Displaying a Velocity Curve

You can use a velocity curve for a parameter to help you spot non-tangential keyframes; these are
characterized by breaks in the velocity curve. Non-tangential keyframes can be jarring when making realistic
movement through animation. The velocity curve is calculated by analyzing the changes in the y axis of the
curve at small increments along the x axis.

USER GUIDE
166

The purple velocity curve is broken (not continuous) at frame 40, as is the highlighted tangent.

To toggle the display of a curve’s velocity:
1. Select the curve(s) within the hierarchical view.
2. Right-click an empty part of the graph and select Show > Velocity.

The velocity curve is shown in lavender.

Displaying an Acceleration Curve

You can use the acceleration of a curve to provide a useful insight into the forces that act on that curve. For
instance, an object whose only force is gravity should have a horizontal acceleration curve (assuming it
doesn't hit anything).

Between frames 0 and 5, the acceleration curve shows a consistent force is acting on the parameter (the
acceleration curve is straight).

To toggle the display of a curve’s acceleration:

1. Select the curve(s) within the hierarchical view.

USER GUIDE
167

2. Right-click anywhere on the graph and select Show > Acceleration.

The acceleration curve is shown in pink.

Displaying Curve Labels

To toggle the display of curve labels, right-click and select Show > Heads Up Labels (or press H). The curve
label, based on the parameter name, sits just above the curve on the left-hand side.

Snapping Keyframes

When moving keyframes within the Curve Editor tab, you can snap their values in place. Snapping to the X
axis affects the frame number and snapping to the Y axis affects the parameter’s value.

You can snap the frame number of a keyframe while moving it in the Curve Editor tab in two ways:

* Right-click and select Grid Snapping > X Snap to Integers.

Katana snaps keyframe changes to whole frame numbers.

* Right-click and select Grid Snapping > X Snap to Grid.

Katana snaps keyframe changes to the vertical grid lines.

Note: Selecting either of these menu options does not change the current Y axis snap settings.

To snap only a keyframe's value while moving it in the Curve Editor tab, right-click and select Grid
Snapping > Y Snap to Grid. Katana snaps value changes to the horizontal grid lines.

If you want to turn off keyframe snapping altogether,

« Right-click and select Grid Snapping > X Snapping Off.

USER GUIDE
168

Katana no longer snaps keyframe changes in the x axis.

« Right-click and select Grid Snapping > Y Snapping Off.

Katana no longer snaps keyframe changes in the y axis.

« Select off from the dropdown menu to the right of the Reset Tangents button at the bottom of the Curve
Editor.

Katana no longer snaps keyframe changes in any direction.

Katana also comes with some pre-defined snapping options in a dropdown menu to the right of the Reset
Tangents button at the bottom of the Curve Editor. These are:

- off - Katana no longer snaps keyframe changes in any direction.
- frames - Katana snaps the x axis to whole frame numbers but does not snap the keys in the y axis.
- grid - Katana snaps the keyframes to grid intersection points.

« custom - the last snap setting you selected that does not match frames, grid, or off. (This option only
becomes available once you have made a snap setting change that does not match frames, grid, or off.)

Tip: To cycling through the preset snapping options (Off, Frames, Grid, and Custom), right-click
and select Grid Snapping > Cycle Snapping (or press S).

Locking and Deleting Keyframes

To locking keyframes in order to prevent accidental editing:
1. Select the keyframes to lock.
2. Right-click and select Keyframe > Lock.

Katana locks the keyframes and turns them orange.

USER GUIDE
169

Note: Locking a keyframe only applies to inside the Curve Editor tab.

To unlock keyframes again:
1. Select the keyframes to unlock.
2. Right-click and select Keyframe > Unlock.

Katana unlocks the keyframes and turns them yellow.

If you want to delete keyframes:
1. Select the keyframes to delete.

2. Right-click and select Keyframe > Delete (or press Delete).

Turning a Keyframe into a Breakdown

Katana supports a special kind of keyframe known as a breakdown. Breakdowns help you describe the
motion between two keyframes by providing an intermediate value. Breakdowns maintain the same relative
time with the keyframes either side, this helps maintain timing. For instance, with keyframes on frames 0 and
60 and a breakdown on frame 20, moving the keyframe on frame 60 to frame 30 would automatically move
the breakdown to frame 10, thereby maintaining the 1:2 ratio of frames before and after. If a breakdown falls
at the beginning or end of a curve, then moving the keyframe next to it moves the breakdown.

USER GUIDE
170

When the keyframe on frame 60 is moved to frame 30, the
breakdown on frame 20 automatically moves to frame 10.

To convert a keyframe into a breakdown:
1. Select the keyframe(s) to convert.

2. Right-click and select Keyframe > Breakdown.

Tip: To change a breakdown back to a keyframe, repeat the steps above.

Note: Breakdowns are only different to keyframes while within the Curve Editor. Elsewhere, such
as within the Dope Sheet, breakdowns are treated as normal keyframes.

Segment Functions

Katana interpolates the values between one keyframe and the next based on the segment function assigned
to the first of the two keyframes. Three special segment functions can also be assigned to the segment
before the first keyframe or after the last: cycle(), cycle_offset(), and mirror().

To change the segment function for either a keyframe or for the segment at the beginning or end of a curve
1. Select the keyframe(s) or segment to change (to select a segment click on it).
2. Then, either:
« Right-click and select Segment Type >
OR

« Select the segment function from the dropdown menu in the bottom-right corner of the Curve Editor.

USER GUIDE

st Tangents

Available Segment Functions

The following are a list of available segment functions:

* bezier()

The bezier segment function is the most versatile. It uses four points - the keyframes at the start and end,
and two control points - to define the segment. The control point position is shown with an arrowhead. The
weight of a control point, which determines how strong its influence is over the generated curve, is
determined by the length of the handle.

o constant()

The constant segment function uses the keyframe’s value for the entire segment.

» constant_next()

The constant_next segment function uses the next keyframe’s value for the entire segment.

USER GUIDE

» ease()

The ease segment function flattens out the segment at its beginning and end. This is similar to having flat
tangents on the two control points when using bezier curves.

« easein()

The easein segment function starts the segment flat and then maintains the same acceleration until it
reaches the next keyframe. This results in the velocity curve for the segment being a straight line that starts
at zero.

» easeout()

The easeout segment function finishes the segment flat while maintaining a constant acceleration
throughout the segment. This results in both the velocity curve for the segment being a straight line that
ends at zero.

USER GUIDE

« linear()

The default segment function. The values from one keyframe move in a straight line to the next keyframe.

« match()

The match segment function gives the segment the same velocity (rate of change) at both the start and
end of the segment.

» matchin()

A segment with the matchin segment function begins with a velocity that matches that at the end of the
previous segment, the segment ends with zero velocity. This has the effect of making the tangent at the
start match the slope of the previous segment and the tangent at the end flat.

USER GUIDE
174

« matchout()

A segment with the matchout segment function begins with zero velocity and ends with a velocity that
matches that at the beginning of the next segment. This has the effect of making the tangent at the start
flat and the tangent at the end match the slope of the next segment.

« spline()

The spline segment function uses the Catmull-Rom spline function that uses four keyframes to calculate
the value at a given frame. As the frame approaches a keyframe, the curve tends towards the value at the
keyframe, eventually passing through it.

Available Extrapolation Functions

Extrapolation functions are used to extend the behavior of a curve before the first keyframe and after the
final keyframe. The available options are:

USER GUIDE
175

« cycle()

The cycle extrapolation function repeats the curve an infinite number of times either before (if applied to the
segment before the first keyframe) or after (if applied to the segment after the last keyframe).

« cycle_offset()

The cycle_offset segment function only works on the segments at the start or end of a curve. It should not
be used on a keyframe. It repeats the curve an infinite number of times; each time the curve repeats the
new beginning keyframe starts from the end keyframe from the previous cycle, thus offsetting the curve.

e mirror()

The mirror segment function only works on the segments at the start and end of a curve. It continuously
flips the curve vertically.

USER GUIDE
176

Tip: Itis also possible for you to type your own segment or extrapolation function in the
dropdown menu. The function must use Python syntax:
x() can be used to represent the current frame. For instance, sin(x()*pi/20).

Changing the Control Points of a Bezier Segment Function

Of all the segment functions, the bezier is the most versatile. With the addition of two control points, you
have much finer control over how the curve flows between keyframes.

When you change the segment function at a keyframe, you change how the curve is interpolated from that
keyframe to the next. When you change the tangent at a keyframe, you affect the control points that sit
either side of that keyframe.

The range of any changes to the The control points influenced by
segment function. tangent changes.

To change the tangent type at a keyframe:
1. Select the keyframe(s) to change the control points.

2. Right-click and select Tangent > Type >

To changing between weighted and non-weighted tangents:
1. Select the keyframes whose tangents you want to change.
2. Right-click and select Tangent > Weighted.

Katana toggles the tangent between weighted and non-weighted.

With a non-weighted tangent using the manipulator only changes the angle of the control point. Weighted
tangents enable you to change the amount of influence a control point has over the segment function by

USER GUIDE

changing the distance from the keyframe to the end of the tangent. The bigger the distance, the more
influence the control point has.

Available Tangent Types

The following are a list of tangent types:

« Fixed

The Fixed tangent type doesn’t change the current control points but they no longer update as keyframes
around them are moved. This becomes the tangent type once any tangent has been manually moved.

« Flat

The Flat tangent type makes the control points sit horizontally either side of the keyframe. All the
keyframes are using the Flat tangent type.

e Linear

The Linear tangent type places the control point directly in line with the keyframe that acts as the other
anchor point for the segment. If both control points for a bezier segment are linear, the segment is a
straight line from one keyframe to the next. The first and middle keyframes use the linear tangent, the right
keyframe does not.

« Smooth

The Smooth tangent type places the control points either side of a keyframe forming a line that runs
parallel to a line formed by the keyframes either side. The line formed by the control points remains parallel
to the line created by the keyframes.

USER GUIDE
178

« Smooth Normal

The Smooth Normal tangent type places the two control points vertically in line with the keyframe.
Whichever keyframe is higher between the keyframes to the left and right, controls the direction of the
curve. Should the keyframes to the left and right be equal, both control points are placed vertically below.

With the right keyframe above the left, With the right keyframe below the left,
the curve goes down through the the curve goes up through the middle
middle keyframe. keyframe.
* Plateau

The Plateau tangent type uses the Flat and Smooth tangent types depending on its keyframes location
relative to the keyframes on either side. If the keyframes on either side are both above or both below the
tangent’s keyframe, then the Flat tangent type is used. If the tangent’s keyframe falls between the values
for the keyframes on either side, then the Smooth tangent type is used. When using the Smooth tangent
type, if one of the control points for the tangent would fall outside the range between the keyframes on
either side, then that control point converts to the Flat tangent type instead.

USER GUIDE
179

Here the Plateau tangent type uses the same Once again the Flat tangent type is
algorithm as the Flat tangent type. used.
Here the Plateau tangent type uses the As the lower control point would drop
same algorithm as the Smooth tangent below the keyframe to the right, that
type. control point becomes Flat.

Baking a Segment of the Curve
Baking a segment of the curve converts the interpolated values at each frame of the segment into keyframes.

To bake a segment of the curve:
1. Select the keyframe at the start of the segment.

2. Right-click and select Transform > Bake.

Tip: Multiple segments can be baked at once by selecting multiple keyframes.

USER GUIDE
180

Editing Curves and Curve Segments

Smoothing a Segment of the Curve

Smoothing a segment of the curve makes the curve flatter - reducing its peaks and troughs.

To smooth a segment of the curve:
1. Select the keyframe at the start of the segment you want to smooth.
2. Right-click and select Transform > Smooth... .

The Smooth dialog displays.

3. Change the values within the dialog where appropriate:
« Step Size - how often to create a keyframe.

« Radius - how much to smooth the curve (higher values for smoother, lower values for closer to
original).

« Filter - which algorithm to use, Triangle or Box.

4. Click Apply to smooth the curve.

Note: For the best results, smooth multiple segments at once by selecting a number of keyframes
together.

USER GUIDE

Smoothing with the default settings:

Step Size 4, Radius 2, and Triangle Smoothing with Step Size 2 and
Filter (the original curve is ghosted Radius 4.
out).

Step Size 5 and Radius 2. Step Size 4 and Radius 4.

Flipping the Curve Horizontally or Vertically

You can flip a curve either horizontally or vertically.

To flip a curve horizontally or vertically:

1. Select a curve or a curve's keyframe.

2. Right-click and select Transform > Flip... .
The Flip dialog displays.

3. Select whether you want to flip the curve horizontally or vertically or both:
« Horizontal (press Alt+H) - flips the curve horizontally.

« Vertical (press Alt+V) - flips the curve vertically.

« Center (press Alt+C) - the point at which to flip the curve (if a keyframe is selected it defaults to that
keyframe position).

4. Click Apply to flip the curve.

USER GUIDE

Scaling and Offsetting a Curve

Katana gives you the ability to scale or offset a curve.

To scale or offset a curve:

1. Select the curve or a curve's keyframe.

2. Right-click and select Transform > Scale & Offset...
The Scale & Offset dialog displays.

3. Change the values within the dialog to get the desired effect:

* Scale (press Alt+S) - scales in either the x direction (changing timing) or y direction (changing the
parameter value). Negative values reflect the curve about the values entered in the Pivot fields.

* Pivot (press Alt+P) - the point about which to scale (if a keyframe is selected it defaults to that
keyframe position).

« Offset (press Alt+0) - moves the curve in the direction of the offset.

4. Click Apply to effect the curve.

Dope Sheet Overview

In the Dope Sheet, you can manipulate keyframes by either retiming (sliding them left or right) or copy and
pasting. The Dope Sheet's simple interface makes it easy for you to see keyframe timings across multiple
parameters, whereas the Curve Editor can become cluttered when dealing with more than one curve.

USER GUIDE

summary

The numbered list that follows corresponds to those numbers in the image above:
1. The Dope Sheet has a hierarchical view down the left-hand side.

2. The main area has time (in frames) across the top and blocks (to signify keyframes) at the intersection of
their parameter on the left-hand side and their frame number above.

Note: Within the Dope Sheet breakdowns are treated as normal keyframes - this means they do
not move automatically when the keyframes either side are moved.

Changing the Displayed Frame Range

There are multiple ways for you to change the frame range displayed within the Dope Sheet. You can:
« Scroll the mouse-wheel; to zoom in scroll up and to zoom out scroll down.

* Alt+middle-click and drag.

* Press the + (Plus) key to zoom in or the - (Minus) key to zoom out.

« Right-click and select Frame All (or press A) to have the frame range zoom to fit all the keyframes.

« Right-click and select Frame Selected (or press F) to have the frame range zoom to fit only the selected
keyframes.

« Right-click and select Frame Global In/Out (or press Home) to have the frame range go from the project
settings’ inTime to the project settings’ outTime.

* Right-click and select Frame Working In/Out (or press W) to have the frame range go from In to Out
from the Timeline.

USER GUIDE

To pan the displayed frame range within the Dope Sheet, middle-click and drag.

Using Keyframes

The Dope Sheet has standard controls for selecting single or multiple keyframes.

To select a keyframe, click on it or drag a marquee around it. To select multiple keyframes, drag a marquee
around all the keyframes you want to select, or right-click and choose Select All from the menu (or press
Ctrl+A) to select all visible keyframes.

You can add to a selection at any time by clicking, or dragging a marquee over the keyframe(s), while
holding the Shift key. If you want to remove from a selection, click it, or drag a marquee over the keyframe(s)
while holding the Ctrl key.

To move keyframe(s):
1. Select the keyframe(s) to move.

2. Click on one of the selected keyframe(s) and drag left or right.

At times you may want to convert an interpolated value into a keyframe; you can achieve this by right-
clicking at the intersection of the frame and parameter (this is where the keyframe block displays) and
selecting Set Key. A new keyframe is created with the same value as previously interpolated at that frame.

The Dope Sheet provides the simplest method for copying and pasting keyframes.
1. Select the keyframe(s) to copy.

2. Right-click and select Copy Selected Key(s) (or press Ctrl+C).

3. Right-click and select Paste Key.

If you right-click on an empty part of the Dope Sheet, the keyframe(s) are inserted in the same
parameter from which it was copied at the point shown by a ghosted vertical line. If you right-click
horizontally in line with a parameter, the keyframe(s) are added there. The precise positions are
highlighted when you first right-click.

Alternatively, if you are using the Timeline, move the current frame to where you want to insert the new
keyframe(s) and press Ctrl+V.

USER GUIDE
185

To delete keyframe(s):
1. Select the keyframe(s) to delete.
2. Right-click and select Delete Selected Key(s) (or press Del).

Tip: When creating, copying, or deleting keyframes within the Dope Sheet, it is a good idea to
keep checking the new curve within the Curve Editor to make sure the curve segments are
interpolated using the right segment function.

Toggling Tooltip Display

To toggle tooltip display, right-click and select Show Tool Tips (or press H). The value, parameter name, and
frame number for the keyframe display.

[

0.997834444444 (x at 20)

USER GUIDE

Using the Timeline

Katana's timeline allows you to move from one frame to another and view keyframes over the frame range.

Changing the Current Frame

To change frames in Katana, you can:

* Press the Right Arrow key to increment the current frame by Inc, or Left Arrow key to decrement.

- Click P to increment the current frame by Inc, or 4 5 decrement.
« Click on the timeline at the relevant frame.
* Type the frame number in the field marked Cur.

« Press Ctrl+Right Arrow to jump to the next keyframe, or Ctrl+Left Arrow to jump back to the previous.

B
* Click 's to jump to the next keyframe, or 1 to jump back to the previous.

Panning the Frame Range

To pan the current frame range, you can:
» Drag the timeline with the middle mouse button, or

« Drag the scroll bar directly under the time range.

Zooming the Frame Range

To zoom into/out of an area of the frame range, you can:

« Ctrl+drag to select an area of the frame range, then upon release of the mouse button the timeline zooms
to that range.

« Scroll up with the mouse wheel over a frame to zoom in at that point, or scroll down to zoom out.

* Press the + key to zoom in, or the - key to zoom out.
« Click B

* Press the Home key to set the range from inTime to outTime in the Project Settings tab.

to set the range from inTime to outTime in the Project Settings tab.

* Press the F key to set the range to fit all keyframes on the timeline.

USER GUIDE
187

Changing the Frame Range In and Out Points

To change the frame range in and out points, you can:
« Press the [key to set the in point to the current frame, or press the] key to set the out point.

« Type the in frame number into the In field on the timeline, or type the out frame number in the Out field.

(@) KATANA USER GUIDE 188

Using the Scene Graph

The scene graph is a hierarchical structure that represents the scene generated by stepping through the
recipe up to the node in the Node Graph with the blue square. The node with the blue square is sometimes

referred to as the view node, this is because the scene graph is just a view of the 3D scene generated up to
that node.

The information within the Scene Graph tab contains (but is not limited to) geometry, materials, lights,
cameras, and render settings. Each node within the Node Graph tab describes a step within the recipe,
which adds, deletes, or modifies scene graph locations or scene graph data. Scene graph data is stored as
attributes on locations.

Ve

ora
~ materials
Material MEIERE]

The selected location has a path of /root/materials.

« Parent - the location /root is the parent of /root/materials.

« Child - the location /root/materials/Material is a child of /root/materials.

« Sibling - the location /root/world is a sibling of /root/materials.

« Leaf - the location /root/world/geo/primitive is a leaf location. A leaf is a location with no children.

» Branch - the locations /root/world and /root/materials are two branches from /root.

Locations within Katana have a special attribute called type. This attribute tells Katana what type of
information to expect at that location. In the example above, there are five group locations and one
geometry material location.

USER GUIDE
189

Using the Scene Graph |

You can view the scene graph generated at any node within the Node Graph. This shows the 3D scene
generated by the recipe up to that point. To view the scene graph at a particular node:

1. Select the node in the Node Graph.
2. Inthe Node Graph, select Edit > View Selected Node.

OR
1. Hover the mouse over the node.
2. PresstheV key.

OR

Click within the faint square to the left of the node.

Note: A blue square highlights the current node in the Node Graph tab, from which the scene
graph is generated. This node is known as the view node. If the node moves off the screen, or is
hidden within another node, its location is indicated by a small blue triangle.

Katana keeps a history of the view node that can be traversed. To go back and forward through the history,
use the icons in the upper-left area of the Scene Graph tab.

To view the attributes stored at a location within the scene graph, select the location within the Scene Graph
tab and the attributes display in the Attributes tab. The Attributes tab is read-only.

USER GUIDE
190

Using the Scene Graph | The Process of Generating Scene Graph Data

Katana defers some procedures, such as a material copy, until they are needed by the renderer. This
deferring has a number of positive results:

« It speeds up the initial scene graph generation.

* You can keep everything at a higher level making it easier to edit and override. For instance, you can
change what material is at a given location rather than having to edit or override all the individual shader
values.

Some examples of procedures that are deferred are:
* The copying of all the material details to a location.

* The copying of all the texture details to a location.

These deferred procedures are also known as implicit resolvers. To turn on implicit resolvers click i .

The Process of Generating Scene
Graph Data

As mentioned earlier, the real core of Katana is that what we want to render is described by a tree of filters,
and that these filters are designed to be evaluated on demand. We're now going to look in a bit more detail
at how Katana generates scene graph data.

The main interface that users have is the Node Graph tab. They create a network of nodes to specify things
like Alembic files to bring in; create materials and cameras; set edits and overrides; and they can create
multiple render outputs in a single project. The parameters for nodes can be animated, set using
expressions, and manipulated in the Curve Editor and Dope Sheet views. The Node Graph can have
multiple outputs and even separate disconnected parts, and it has potentially different parameter settings at
any time on the timeline.

When we want to evaluate scene data, such as when doing a render or inspecting values in the Ul, the nodes
are used to create a description of all the filters that are needed. This filter tree has a single root, and
represents the recipe of filters needed to create the scene graph data for the current frame at the particular
node we are using for output.

USER GUIDE

O

Using the Scene Graph | Manipulating the Scene Graph

It is this filter tree description that is handed to output processes such as 3Delight or Renderman. For the
geekily inclined: this is actually done by handing a serialized description of the filter tree as a parameter to
the output process, for example, a string parameter to a render procedural.

The actual generation of scene graph data is done by using this description of the filters to create scene
graph iterators. These are then used to walk the scene graph and access attribute values at any desired
locations in the Scene Graph tab. This approach of using iterators is the key to Katana's scalability and how
all scene graph data can be generated on demand.

Using the filter tree, the first base iterator at /root is created. This can be interrogated to get:
« A list of the named attributes at that location.

« The value of any particular named attribute or group of attributes. For animated values there may be
multiple time samples, with any sample relevant to the shutter interval being returned.

« New iterators for child and sibling locations to walk the hierarchy.

This process is also used inside the Ul to inspect scene graph data when using the Scene Graph, Attributes
and Viewer tabs. In the Ul, the same filters and libraries that are used while rendering are called as the user
expands the scene graph and inspects the results. This allows the user to inspect the scene graph data that is
generated at any node for the current frame. TD's can use the Ul as an IDE for setting up filters in a visual
programming approach, and then running those filters to see how they affect the generated scene graph
data.

The APIs are covered in more detail later, but the main API to create and modify the node graph is the
Python NodegraphAPI, and the main one to create new filters is the C++ Scene Graph Generator API.

Manipulating the Scene Graph

Katana's Scene Graph tab is designed to work with scenes of almost unlimited complexity by only displaying
the elements of the scene graph that are needed. By default the scene graph starts with its locations
collapsed, so only /root is visible.

Selecting and Deselecting Locations

To select multiple scene graph locations:
1. Select the first location.
2. Shift+click a second location.

Katana selects both locations and all in-between locations that are visible within the scene graph.

USER GUIDE

Using the Scene Graph | Manipulating the Scene Graph

OR
1. Select the first location.
2. Ctrl+click the locations to add.

To select the parent of the selected location(s):
1. Right-click on the selected location(s).

2. Select Select > Select Parents.

To select the children of the selected location(s):
1. Right-click on the selected location(s).
2. Select Select > Select Children.

To select the leaves of the selected location(s):
1. Right-click on the selected location(s).

2. Select Select > Select Visible Leaves.

To invert the selection with its siblings:
1. Right-click on the selected location(s).

2. Select Select > Invert Selection.

To select the material location assigned to the currently selected location:
1. Select a location with a materialAssign attribute.

2. Right-click on the selected location.

3. Select Select > Select Assigned Material Location.

Katana selects the location of the material that is assigned at this location. That material location is
stored in the materialAssign attribute.

To deselect a location, Ctrl+click on the location.

USER GUIDE

Using the Scene Graph | Manipulating the Scene Graph

Selecting Locations with the Search Facility

Katana scene graphs can get extremely complicated. To make it easy to find the location you need, Katana
has a search facility.

To use the search facility:

1. Click a to bring up the search dialog.
2. To narrow the search results you can:

« Select the type of locations to search for in the dropdown at the top of the dialog (Selected, Pinned,
Cameras, Lights, and All), or

« Type text in the Filter field to narrow the search to only include locations with matching text.

« Search for nodes by their Name or Type by switching between the two options in the dropdown next
to Filter.

3. To select a location, select its path within the dialog.
OR
To select all the locations displayed in the dialog, click Select All Matching.

Note: Only locations that are exposed within the scene graph are searched.

The Type filter also filters nodes by their nodeType. When dealing with renderer-specific nodes, such as
Shading Nodes, the node’s Type may not be the same as its NodeType. For example, the Type for a
DIPrincipled Node is DIShadingNode, while its nodeType is dIPrincipled. The Type parameter defines the
node as being a 3Delight node, while the nodeType defines what the node’s function is within a shading
network. Seeing a node’s nodeType allows you to quickly see which Shading Nodes are present in your
shading network and how they may be contributing. This applies to any shading nodes belonging to third
party render vendors such as Arnold, USD or RenderMan.

Expanding the Scene Graph

To expand the Scene Graph completely below a location:
1. Right-click on the location to expand.
2. Select Expand All.

USER GUIDE

Using the Scene Graph | Manipulating the Scene Graph

Warning: Use with caution on big scenes as it can be time consuming to expand the entire scene
graph.

Assemblies, components, and lod-group (level of detail group) locations are special locations designed to
help organize complicated scene graphs. They are explained in greater depth at Making Use of Different
Location Types and Proxies.

To expand the Scene Graph to a limited level:

1.
2.

Right-click on the location to expand.
Select the level of the scene graph to expose:
« Expand To > assembly, component or lod-group

Expands the scene graph from the selected location until it reaches either an assembly, component, or
lod-group location. If none are found down a scene graph branch, it expands to the leaf location. This
is the same as double-clicking a scene graph location.

» Expand To > component

Expands the scene graph until it reaches a component location. If none are found down a scene graph
branch, it expands to the leaf location.

« Expand To > assembly

Expands the scene graph until it reaches an assembly location. If none are found down a scene graph
branch, it expands to the leaf location.

« Expand To > lod-group

Expands the scene graph until it reaches an lod-group location. If none are found down a scene graph
branch, it expands to the leaf location.

« Expand To > Viewer Visibility

Expands the scene graph until it reaches a Viewer Visibility working set location with a non-empty
state.

* Expand To > Render

Expands the scene graph until it reaches a Render working working set location with a non-empty
state.

« Expand To > Live Render Updates

Expands the scene graph until it reaches a Live Render Updates working set location with a non-empty
state.

USER GUIDE
195

Using the Scene Graph | Manipulating the Scene Graph

Note: You can also right-click on a location and select Expand To and Select Proxy Children to
reveal scene graph locations that provide proxy data.

To expand the Scene Graph location to only one level:
« Click [!j_ next to the location name.

OR
1. Right-click on the location to expand.

2. Select Expansion > Open.

Collapsing the Scene Graph

To collapse a location and all its children:
1. Right-click on the location to collapse.
2. Select Close All.

To collapse a Scene Graph location:
* Click {?- next to the location name.

OR
1. Right-click on the location to collapse.

2. Select Expansion > Close.

To collapse the Scene Graph completely:

* Right-click on /root and select Close All.

OR
* Click # > Clear Scene Graph State.

This option doesn't just clear the scene graph, it also clears your selection and pins from the scene graph.

USER GUIDE
196

Using the Scene Graph | Structured Scene Graph Data

Structured Scene Graph Data

While Katana can handle quite arbitrarily structured scene graph data, there are a number of things worth
considering both from the point of view of presenting good data to the renderer, as well as to enable users
to work with the scene graph data in the user interface.

Bounding Boxes and Good Data for
Renderers

When working with renderers that allow recursive deferred loading, the standard way that Katana works is to
expand the scene graph until it reaches locations that have bounding boxes defined, then declare a new
procedural call-back to be evaluated if the renderer asks for the data inside that box.

To make use of deferred loading these bounding boxes should be declared with assets, and nested
bounding boxes should be structured so that only what is needed has to be evaluated. For instance, if you
have a cityscape where only the top of most buildings is seen by the renderer, it is inefficient to have just a
single bounding box for the whole of each building. This is because a lot more geometry than needed is
declared to the renderer whenever the top of a building is seen.

There is an optional attribute called forceExpand that can be placed at any location to force expansion of
the hierarchy under that location rather than stopping when a bounding box is reached. This can be useful
when you know that the whole of the contents of a bounding box are going to be needed if any part of it is
requested. There are also times when it is more efficient to simply declare the whole scene graph to a
renderer than use deferred evaluation, such as if you are calculating the global illumination for a scene that
you know can fit into memory. In particular, some renderers can better optimize their spatial acceleration
structures if they have all of the geometry data in advance rather than using deferred loading.

Proxies and Good Data for Users

Since users are working with scene graph data in Katana it's also good to consider things that may help them
navigate and make sense of the scene.

USER GUIDE

Using the Scene Graph | Structured Scene Graph Data

The bounding boxes used by the renderer can also help provide a simplified representation in the Viewer of
the contents of a branch of the hierarchy when the user opens the scene graph to a given location.

To give an even better visualization you can register proxies at any location, which are displayed in the
Viewer but not sent to a renderer.

Ops can be used to define viewer proxies on scene graph locations. Two main attribute conventions are
currently supported:

« ViewerProxyLoader (legacy mode) - An Alembic cache can be loaded through the default
ViewerProxyLoader, setting the proxies.viewer string attribute on the target location to the path to the
relevant .abc file. You can also customize Katana to read proxies from custom data formats by creating a
Scene Graph Generator to read the relevant file format and using a plug-in for the Viewer that simply
declares which Scene Graph Generator to use for a given file extension.

» Op-based - Ops can be chained to create the geometry to be used as a proxy by adding group child
attributes to the proxies.viewer group attribute on the target location. Each child group attribute
represents an Op and its content must contain:

« a string attribute named opType defining the type of the Op to be used.

* a group attribute named opArgs containing attributes defining the Op arguments.
This proxy Op chain is always evaluated in isolation, starting at the /root location of an empty scene graph.

Here's an example of the attributes hierarchy using two Ops to generate the proxy geometry:

Location
/root/world/geo/group

Attributes:

proxies
viewer
proxyOp 1
opType 'AlembicIn' (StringAttribute)
OpPArgs
fileName '/tmp/myProxy.abc' (StringAttribute)
proxyOp 2
opType 'Messer' (StringAttribute)
OpPArgs
displacement 0.23 (DoubleAttribute)

Proxy caches are considered animated by default. If the proxy file has animation, that is used by default, but
you can also explicitly control what frame from a proxy is read using these additional attributes:
proxies.currentFrame, proxies.firstFrame, and proxies.lastFrame. Static proxy caches can be defined by
setting the proxies.static IntAttribute to 1.

USER GUIDE
198

Using the Scene Graph | Structured Scene Graph Data

To help users navigate the scene graph, group locations can be indicated as being assemblies or
components. These terms originate from Sony Pictures Imageworks where they are used to indicate
whether an asset is a building block component or an assembly of other assets. In Katana's user interface
they are simply used as indicators for locations that are good for the user to open the scene graph up to. In
the Scene Graph tab there are options to open to the next assembly, component, or level-of-detail level,
and double-clicking on a location automatically opens the scene graph to the next of these levels.

You can also right-click on a location and select Expand To and Select Proxy Children to reveal scene
graph locations that provide proxy data.

For the user it's useful if proxies or bounding boxes are at groups indicated as being assemblies or
components, so the user can open the scene graph to those levels and see a sensible representation of the
assets in the Viewer.

To turn a group location into an assembly or component the type attribute at that location simply needs to
be set to assembly or component.

In general it also helps users if the hierarchy isn't too 'flat’, with groups containing a very large number of
children. Structure can help users navigate the scene graph.

Level-of-Detail Groups

Levels of Detail (LODs) is used to allow an asset to have multiple representations. Katana can then be used to
select which representation is used in a given render output.

Conventionally LODs are used to hold a number of asset versions each with a different amount of geometric
complexity, such as a high level of detail to use if the asset is close to the camera and middle and low levels
of detail if the asset is further away. By selecting an appropriate version of each asset to send to the renderer
the overall complexity of a shot can be controlled and render times managed.

In Katana, LODs can also be used to declare completely different versions of an asset for different target
outputs, such as a bounding volume representation for a volumetric renderer in addition to standard
geometrical representations, such as polygon meshes, to be used by conventional scanline renderers or ray-
tracers.

Multiple levels of detail for an asset are declared by having a level-of-detail group location that has a
number of level-of-detail child locations. Each of these child locations has metadata to determine when
that level of detail is to be used. Under each of these locations you have a separate branch of the hierarchy
that declares the actual geometry used for that LOD representation of the asset.

USER GUIDE
199

Using the Scene Graph | Working Sets

The most common metadata used to determine which level of detail to use are tags or weights. Tags allow
each level of detail to be given a 'tag’ name with a string. Selection of which level of detail to use can be
done using this tag name, such as select the level of detail called 'high' or 'boundingVolume'.

Weights allow a floating point value to be assigned to each level of detail. Selection can then be done by
choosing the closest level of detail to a given weight value. This allows sparse population of levels of detail,
for example not every asset might have a 'medium’ level of detail, but if you select them by weight then the
most appropriate LOD from whatever representations exist can be selected.

The LodSelect node can be used to select which one of the LODs to use using either tags or weight values.
This uses a CEL expression to specify the LOD groups you want to base the selection on.

Some renderers, such a Pixar's RenderMan, have features to handle multiple LODs themselves. Selection of
which LOD to use, and potential blending between the LODs as they transition, is done at render-time. This is
specified by having range data associated with each LOD that describes the range of distances from camera
to use that LOD for, and the transition range for any blending. LOD range data can be set up using the
LodGroupCreate or LodValuesAssign nodes

Alembic and Other Input Data
Formats

It is possible to bring in 3D scene data from any source. However, due to the way that filters can get called
recursively on-demand, it is best to work with formats that can be efficiently accessed in this manner. This is
one of the reasons that we recommend Alembic as being ideally suited for delivering assets to Katana.

If you want to write a custom plug-in to read in data from a new source, such as using an in-house geometry
caching format, you can write an Op Type plug-in. This is a C++ API that allows you to create new locations
in the scene graph hierarchy and set attribute values at those locations.

Working Sets

Working Sets provide a flexible way to work with particular locations and branches of a scene graph.

USER GUIDE
200

Using the Scene Graph | Working Sets

The main purpose of Working Sets is to decouple the expansion and selection states of scene graph
locations in the Scene Graph tab from what's being drawn in the Viewer tab and from what's being
rendered when rendering. Traditionally in Katana, the Viewer tab was closely linked to the Scene Graph tab.
through the ScenegraphManager Python module, which maintained a global expansion and selection
state for the whole application. The Viewer displayed geometry of locations that were expanded in the Scene
Graph tab, and you could choose a sub-set of objects to be rendered using the Render Selected Objects
Only option. The expansion and selection states were therefore critical to an artist's workflow. The main
purpose of Working Sets is to decouple the expansion and selection states of scene graph locations in the
Scene Graph tab from what's being drawn in the Viewer tab and from what's being rendered when
rendering. Working Sets also provide a reusable API for similar cases that need a definable set of target
locations in the UL.

Working Sets are intended to allow artists to inspect a scene in the Scene Graph tab by expanding and
collapsing branches at will, without incurring draw operations in the Viewer tab or render updates when Live
Rendering. Artists are to be able to add and remove scene graph locations to and from specific Working
Sets, and to use specific Working Sets in relevant Ul operations.

Technically speaking, a Working Set is a set of scene graph locations for which membership is defined by a
set of location states. There are four explicit states: Included, Included with Children, Excluded, and
Excluded with Children. A scene graph location is a member of a Working Set if it is explicitly included or if
it inherits inclusion from an ancestor that is Included with Children and is not explicitly excluded and does
not inherit exclusion from an ancestor that is Excluded with Children. Working Sets are independent of the
existence of scene graph locations, and their expansion states.

Working Sets provide the ability to work with particular locations and branches of a scene graph with much
more flexibility than is afforded by scene graph expansion, pinning, and selection. For example, a Working
Set can be used to control which objects to render in Preview Renders and Live Renders. You can specify
which scene graph locations are part of that Working Set in the Render column of the Scene Graph tab.

Note: You can disable the Working Sets Ul elements, including the Viewer Visibility and Render
columns in the Scene Graph tab and the corresponding buttons in the Viewer and Monitor tabs,
by setting the KATANA_DISABLE_WORKING_SETS_UI environment variable to 1.

The Scene Graph tab contains columns for defining which locations to include or exclude in specific pre-
defined Working Sets that are built into Katana:

USER GUIDE
201

Using the Scene Graph | Working Sets

Column Description

@& Viewer Visibility Controls which objects to show in the Viewer tab.

® Render Controls which objects to render in Preview Renders and Live Renders.
@ Live Render Updates Controls which objects trigger updates during a Live Render.

Scene Graph

Prune3

Name ype L|-;|I'|r.-:.

]

ponent

(= I8 <0< I N <. Y -

3 l

[
(/]
(/]
/]
(/]
/]
/]
/]
(/]

» l

(= I < < I < < I = < I < I < I =

t light
9 lightl light

Screenshot of the Scene Graph tab showing various location states set for various locations in
the pre-defined Working Set columns.

The states of scene graph locations in each Working Set are represented by icons in the corresponding
Working Set column. The following table lists the icons that are used and the location states they represent:
Icon Description

O - Empty The location is neither explicitly included nor excluded in the Working Set,
meaning it is not part of the Working Set.

USER GUIDE
202

Icon

[- Included

ﬂ- Included with Children

B - Excluded

!}— Excluded with Children

& - Included by inheritance

@ - Excluded by inheritance

Using the Scene Graph | Working Sets

Description

The location is explicitly included in the Working Set.

The location and all of its children are included in the Working Set, except
those that are explicitly excluded.

The location is explicitly excluded from the Working Set.

The location and all of its children are excluded from the Working Set,
except those that are explicitly included.

The location is included in the Working Set because one of its ancestors is
Included with Children.

The location is excluded from the Working Set because one of its
ancestors is Excluded with Children.

In addition to the above icons, the following icon decorations are used to indicate location states of children
and/or restrictions on the states that a location is permitted to have:

Icon Decoration

@ - Children included

@ - Children excluded

& - States restricted

Description

Children of the location are explicitly included in the Working Set.
Children of the location are explicitly excluded from the Working Set.

Only certain states are allowed to be set for the location.

Three pre-defined Working Sets can be manipulated through their columns in the Scene Graph tab: the
Viewer Visibility Working Set, the Render Working Set, and the Live Render Updates Working Set.

Viewer Visibility Working Set

The Viewer Visibility ® column allows you to interact with the Viewer Visibility Working Set that controls
the visibility of objects in the Viewer tab. When the Viewer Visibility column is turned off, the Viewer
displays locations depending on the scene graph expansion and pinned locations. When it is turned on, it
displays locations included in the Working Set. You can turn on the Viewer Visibility Working Set by clicking

USER GUIDE

Using the Scene Graph | Working Sets

on the Viewer Visibility @ icon, either in the Scene Graph or Viewer tab. You can create arbitrary
hierarchies of included and excluded scene graph branches. For example, you can include one location with
all but one of its children.

You can also directly select an object in the Viewer tab and set a Working Set location state for it. Simply
select one or more objects, then right-click and select a state from the menu.

The Viewer tab works in two modes:
* Scene graph expansion - visibility depends on scene graph expansion state and pinned locations.

« Visibility Working Set - locations included in the Visibility Working Set.

Note: While the Viewer is following the Viewer Visibility Working Set (Viewer Visibility column is
turned on), proxies and bounds are displayed only on leaf locations as defined by the Working Set,
regardless of the existence of any child locations. Such leaf locations are directly set as Included,
have no explicitly included children, and do not inherit inclusion. This allows proxy visibility to be
determined without the need to cook child locations.

Render Working Set

The Render B column allows you to interact with the Render Working Set that controls which locations are
rendered in Interactive Renders. You can turn on the Render Working Set by clicking on the Render & icon,
either in the Scene Graph or Monitor tab.

Note: If the Render Only Selected Objects toggle is turned on and the Render Working Set is
enabled, only locations that are both selected and contained in the Render Working Set are
rendered. For more information, refer to Rendering only Selected Locations.

Live Render Updates Working Set

The Live Render Updates @ column allows you to interact with the Live Render Updates Working Set that
controls for which locations updates are sent to the renderer when Live Rendering.

The /root location is always included, as Live Rendering requires updates to its attributes, notably

liveRenderSettings, to be communicated to the renderer plug-in. The small blue lock (& in the icon indicates
that only some of the available location states can be set for the corresponding location.

USER GUIDE
204

Using the Scene Graph | Working Sets

Note: For more information on how to use the Live Render Updates @ column, refer to Using the
Scene Graph.

Revealing Locations with Working Set States

You can expand the Scene Graph, through the right-click context menu, to a working set location with a non-
empty state:
1. In the Scene Graph, right-click on the location to expand.
2. Select one of the following working sets to expose:
« Expand To > Viewer Visibility
This expands the scene graph until it reaches a Viewer Visibility working set location with a non-empty
state.
« Expand To > Render
This expands the scene graph until it reaches a Render working set location with a non-empty state.
« Expand To > Live Render Updates

This expands the scene graph until it reaches a Live Render Updates working set location with a non-
empty state.

Including Proxy Children in Working Sets

In the Scene Graph, you can include locations with proxies attributes into the respective Working Set. To do
so, in the Viewer Visibility, Render, or Live Render Updates column, right-click on one or more selected
locations and select Include Proxy Children...

Bookmarks can be used to save and restore Working Sets, and the currently expanded and -selected parts of
the scene graph, within a single session of Katana, and between sessions when Katana is quit and re-started.
This allows you to return quickly to a Working Set configuration or scene graph state at any time. For
example, if you want Katana to show a particular set of objects in the Viewer, or are interested in inspecting
the attributes of a specific deeply-nested location.

Note: To store the state of the Working Sets in your Katana project in a scene graph bookmark,
refer to Bookmarking a Scene Graph State and Working Sets.

USER GUIDE
205

Using the Scene Graph | Changing What is Shown in the Viewer

Changing What is Shown in the
Viewer

The Viewer tab is a 3D representation of the scene currently open in the scene graph. Part of Katana's ability
to deal with extremely complex scenes comes from it only loading scene graph data when it is needed. The
Viewer tab only shows locations that are expanded in the Scene Graph tab, as well as any pinned locations
that have been set.

Pinning can make navigating and organizing the Viewer easier by quickly showing/hiding specific locations.
Pinned items are still visible in the Viewer, even when their locations are collapsed in the Scene Graph tab.

Note: If your Viewer is empty, it probably means that no locations with geometry have been
expanded in the Scene Graph tab, and no pins have been set.

There are a couple options for pinning locations in the scene graph - you can pin selected locations or all
visible leaf locations. When a location is pinned, it appears with a blue, active pin # icon next to it in the
Scene Graph tab. If a location is pinned further down in the hierarchy, but the location is hidden in the scene
graph because one of its ancestors is collapsed, then its nearest visible ancestor is shown with a gray, tilted
pinicon # . This denotes that there is a child pin somewhere in the hierarchy below that location. If you
follow the "trail" of # icons through the scene graph, it leads you to the exact pinned location, shown with #

To pin a location or locations:
1. Select the location(s) you want to pin in the Scene Graph tab.
2. Right-click and select Pin > Set Local Pin.

The ¥ pinicon appears next to the selected location(s).

To pin all the visible leaves, first ensure the locations you wish to pin are expanded in the Scene Graph tab,
then:

1. Select the top-level location(s) for the leaves you want to pin.
2. Right-click and select Pin > Pin Visible Leaves.
Katana pins all the visible leaf locations below the selected location(s). The leaf locations are marked with

¥ pinicons.

To clear selected pins:

USER GUIDE
206

Using the Scene Graph | Bookmarking a Scene Graph State and Working Sets

1. Select the location(s) where you want to remove the pin.
2. Right-click and select Pin > Remove Local Pin.

The ¥ pinicon is removed from the selected location(s).

To clear pins below a selection:
1. Select the top-level location(s) from where you want to remove lower-level pins.

The top-level locations show the # pin icon if they have pins on a lower-level location.
2. Right-click and select Pin > Clear Pins Below.

Katana removes any pins found on child locations beneath the selected location(s).

Bookmarking a Scene Graph State
and Working Sets

Bookmarks can be used to save and restore Working Sets, and the currently expanded and selected parts of
the scene graph, within a single session of Katana, and between sessions when Katana is closed and re-
opened. This allows you to return quickly to a Working Sets location state or a scene graph state at any time,
for example, if you want Katana to show a particular set of objects in the Viewer, or are interested in
inspecting the attributes of a specific deeply-nested location.

Tip: Saving a Katana project also saves its bookmarks.

Bookmarks are especially useful when rendering only selected items in the Scene Graph tab (accessible from

the Render Only Selected Objects menu bar button L2 or pressing F7). Saving the Working Sets,
expanded state and current selections of the Scene Graph tab ensures that if you want to select a different
location or click elsewhere in the scene graph, your current locations can be easily reloaded and aren't lost.

Options for creating, managing, importing, and exporting bookmarks are all contained in the Scene Graph
Bookmarks ¢ dropdown menu in the Scene Graph tab. Alternatively, you can also clear the scene graph
state and Working Sets at any time by clicking # > Clear Scene Graph State or Clear All Working Sets in
the dropdown menu.

Creating a Scene Graph Bookmark

1. Click # > Create Bookmark....

USER GUIDE

Using the Scene Graph | Bookmarking a Scene Graph State and Working Sets

The Create Scene Graph Bookmark dialog displays.
Type a bookmark name in the Bookmark name field or select Last File Save from the dropdown menu.

The Last File Save option overwrites the Last File Save bookmark of the previously saved file with the
expansion state, but not the selection state.

To create the bookmark within a folder, type the folder name in the Create in folder field.
Select the Working Sets to include within the bookmark:

« liveRenderUpdates - stores which locations are active when Live Rendering.

« render - stores which locations are rendered in Preview Rendering.

- scenegraphExpansion - stores which locations are open or closed.

« scenegraphPinning- stores which locations are pinned. For more on pins, see Changing What is
Shown in the Viewer.

- scenegraphSelection - stores which locations are selected.
- viewerVisibility - stores which objects are shown in the Viewer tab.

Click Save to create the bookmark.

Note: For more on Working Sets, see Working Sets in Scene Graph Tab.

Deleting Unused Bookmarks

1.

Click # > Organize Bookmarks....

The Organize Scene Graph Bookmarks dialog displays.

Right-click on the bookmark and select Delete to delete it.

To close the dialog again, click the x in the upper-right corner of the dialog.

The bookmark is successfully deleted and the dialog is closed.

Exporting the Project’s Bookmarks

1.

Click # > Export Bookmarks....

The Export Scene Graph Bookmarks dialog displays.
Choose a location and filename.

Click Accept.

A file containing all the exported bookmarks is saved.

USER GUIDE
208

Using the Scene Graph | Controlling Live Rendering in the Scene Graph

Importing Previously Exported Bookmarks

1. Click 4 > Import Bookmarks....

The Import Scene Graph Bookmarks dialog displays.
2. Navigate to where the bookmarks file is saved to import.
3. Click Accept.

The bookmarks from the file are loaded into the project and can now be found in the bookmark 4
dropdown.

Controlling Live Rendering in the
Scene Graph

The Scene Graph tab allows you to select which lights or materials you wish to Live Render with the Live
Render Updates @ column and you can also choose how to trigger a Live Render with the 3D Update
Mode.

MEICHE]

USER GUIDE
209

Using the Scene Graph | Making Use of Different Location Types and Proxies

In the Scene Graph tab, simply tick the relevant boxes in the Live Render Updates @ column depending on
which light and/or material changes you want to send to the renderer. For more information on the Live
Render Updates @ column, see Global Options.

Select how to trigger Live Rendering updates with the following options:

3D Update Mode Indicators Actions

Manual mode ﬂl c) Changes to materials, lights, or geometry transformations don't
trigger a Live Render update. To have the changes take effect,

click the Trigger 3D Update button (b

Pen-up mode 11 Changes to materials, lights, or geometry transformations
trigger a Live Render only when the mouse is released or a
parameter change is applied.

Continuous mode il Changes to materials, lights, or geometry transformations,
including some manipulations in the Viewer tab, trigger a Live
Render.

3D node parameter values are finalized with all pending changes prior to performing a render. For more
information on the 3D Update Mode, see Global Options in Rendering Your Scene.

Making Use of Different Location
Types and Proxies

Only loading what is needed, when it is needed, is a key part of the philosophy of Katana. If you want to
position the specular highlight on your main character, for instance, you don’t need to load the entire scene.
One way to avoid unnecessary loading is to define your scene with special hierarchies and proxies.

USER GUIDE

Using the Scene Graph | Making Use of Different Location Types and Proxies

The hierarchical scene structure can be created using special location types. Special types that can be used
are assemblies, components, level-of-detail groups, and level-of-detail locations.

Proxies enable you to get a good idea of a scene without opening up too much of the hierarchy. Placing
proxies on assemblies and components enables you to open a hierarchy to convenient levels of scene
complexity.

Using Assemblies and Components

Assemblies and components help you define convenient points of expansion for the scene graph. They are
usually defined as part of the asset creation process, but you can also define them within Katana. An asset's
hierarchy usually consists of an assembly and then below the assembly are other assemblies or components,
and below the components is the full geometry data.

A scene graph example containing assembly and component locations.

USER GUIDE
211

Using the Scene Graph | Resolvers

AttributeSet

Add Locations

A simple example of using an AttributeSet node to change the location type, which is simply the type
attribute for a location, to assembly.

Resolvers

Resolvers are Ops that must be run before actual rendering, in order to get data into the correct final form.
Typically they are used for things like material assignments, executing overrides, and calculating the effects
of constraints.

The only data the can be passed from one Op to the next is the scene graph, with its attributes. Resolvers are
procedural processes that can be executed with just attribute data, which allows us to separate executing
procedural process into two stages:

1. Set up appropriate attributes in the scene graph that define what process to run and any parameters that
need to be handed to the procedural.

2. Run aresolver that reads those attributes and executes the procedural process.

USER GUIDE

Using the Scene Graph | Resolvers

This separation into two stages gives a lot more flexibility than if all procedural processes had to be executed
immediately. Because they are only dependent on the correct attributes being set at locations in the scene
the configuration to set up the process can be done in a variety of different ways.

For instance, material assignment is based on a single string attribute named materialAssign, which gives
the path to the location of the material to be used. This attribute is then used in a resolver called
MaterialResolve, which takes the material from the path in the materialAssign attribute and creates a local
copy, with all the relevant attributes set to their correct values (taking into account things like material
overrides). Because MaterialResolve only looks for an attribute called materialAssign, material assignment
can be set up in a number of different ways:

+ Using MaterialAssign nodes, which set the materialAssign attribute at locations that match the CEL
expression on the node.

« Using an OpScript to set the value of materialAssign using a Lua script.

« Using a custom Op to set the value of materialAssign.
You can also use a LookFile that resolves the correct value for materialAssign onto given objects.

The LookFile system has special behavior for handling materials that have been assigned to an asset. This
allows other users to make edits and overrides to material values, while also keeping processing efficient for
the majority of cases where there isn't any need for modifications. This behavior is also designed to handle
cases where there may be more than one version of a look file used in a shot and where there are multiple
output passes, and overrides may need to be applied to any selection of passes. Renderer procedurals are
also handled in a similar manner to materials.

LookFileResolve is designed to look for the existence of materials (and renderer procedurals) at specific
locations in the scene graph. If materials are found at these locations then materialAssign attributes are set
at locations in the asset that use those materials. This allows you to make modifications, such as material
overrides, to all objects that use a material from the LookFile. If no material is found at any of the search
locations then the materials from the LookFile are directly applied to locations in the asset without using
materialAssign.

The main reason for this system is efficiency: most materials on most assets probably don’t need any
modifications, such as overrides, and it is more efficient to simply paste the relevant attribute values onto the
asset. However, if you want to apply overrides then it's more convenient to bring the materials directly into
the scene and set them up as assigned materials.

To avoid clashes between materials with the same name that are brought in from different LookFiles, a
namespace path is used as the location under which the materials are brought in. This is constructed using
the following options:

* A custom path (specified by a parameter on LookFileOverrideEnable) or a path provided by the asset
management system based on the LookFile asset using getUniqueScenegraphLocationFromAssetid().

USER GUIDE

Using the Scene Graph | Resolvers

« If the asset management system provides version numbers for look files, the path can either explicitly
include the version number, which means that any overrides only apply to assets that use that explicit
version LookFile, or a version-less path, which means that any overrides apply to assets that use any version
of the LookFile.

Resolvers allow us to keep the data high-level and user meaningful as possible since until the resolver runs
the user can directly manipulate the attributes that describe how the process should run instead of only
being able to manipulate the data that comes out of the process.

For instance, since material assignment is based on the materialAssign attribute we can:
« Change what material an object gets by changing that one attribute’s value.

« Change the material on every object that is assigned a specific material by changing the attributes of the
original material.

In essence resolvers manipulate the parameters of the process, rather than just the data that comes out of
the process, with access to all the tools available in Katana for inspecting, modifying and overriding
attributes.

Examples of Resolvers

As well as MaterialResolve there are a number of other common resolvers:
» ConstraintResolve. This evaluates the effect of a constraint on the transform of a location.

« LookFileResolve. This replays the changes described in a look file back onto an asset. This is probably the
resolver that users are most likely to be directly exposed to if they don't use the LookFileManager as they
are directly using LookFileResolve nodes.

« OpResolve. This resolves any deferred Ops that have been set to run during an op resolve.

« LightLinkResolve. This resolves the attributes, which the LightLinkSetup node sets on
/root/world.lightList.

Implicit Resolvers

Resolvers can be run by putting nodes explicitly into a project, but there are also a standard set of resolvers
that are automatically implicitly run before rendering. In effect these are nodes that are automatically
appended to the root of a node graph before rendering, so that it's not necessary to manually add all the

USER GUIDE

Using the Scene Graph | Resolvers

needed resolvers. This allows execution of procedural processes that are always needed, such as
MaterialResolve.

The list of implicit resolvers is as follows:
* Preprocess Resolvers

» OpResolve(resolvelds=implicit_preprocess, lookfileresolve) - this resolves deferred Ops set to
resolve during katana look file resolve. Ordinarily, such ops are resolved by LookFileResolve nodes;
this resolver is a fail safe for when a LookFileResolve node is not present.

» Standard Resolvers

« LightLink.Resolve - this resolves light linking information that was previously set up by a
LightLinkSetup node.

« ReferentiallnheritanceResolve - this resolves all locations with an inherits attribute referencing
another location. The attributes from the referenced location are overlayed.

» MaterialResolve - this looks for materialAssign attributes and creates local copies of materials taking
into account any material overrides.

« OpResolve(material attr) - this resolves deferred Ops set to resolve during material resolve.

« MaterialUnderlayAttributesResolve - this resolves material underlay information by copying
attributes from a location's material.underlayAttrs group to that location's root level without
clobbering existing attributes.

« RendererProceduralResolve - this is similar to MaterialResolve but for renderer procedurals. It looks
for any locations with rendererProceduralAssign attributes.

 FilenameResolve - this resolves {attr:xxx} tokens in material and rendererProcedural attribute
groups. Refer to Using the {attrxxx} and {globalattr:xxx} Syntax for Shader Parameters section for more
information.

« BoundsAdjust - this resolves any deferred bounds padding task that was previously set up by a
BoundsAdjust node.

- BoundsPropagateToAncestors - this resolves any deferred bounds propagation task that was
previously set up by a BoundsAdjust node.

+ AdjustScreenWindowResolve - this resolves any screen window adjustment previously set up by a
RenderSettings node.

« ConstraintResolve - this looks for any constraints defined at /root/world in globals.constraintList
and calculates the effects of any constraint on the transforms of locations.

« MuteResolve - resolves mute states for lights created by GafferThree nodes.
* Postprocess Resolvers
 OpResolve(resolvelds=all) - this resolves deferred Ops set to resolve during op resolve.

- RenderSettingsLocalize - this resolves render resolution, sample rate, and region of interest.

Normally when you inspect scene data in Katana’'s Ul you see the results before the implicit resolvers are run.
It's only at render time that the implicit resolvers are added. If you want to see the effect of the implicit

USER GUIDE
215

Using the Scene Graph | Resolvers

resolvers on the scene data you can switch them on by clicking on the Toggle Scene Graph Implicit
Resolvers clapper-board icon in the menu bar or at top-right-hand side of the Scene Graph, Attributes or
Viewer tabs. It then glows orange and a warning message is displayed to indicate that the implicit resolvers
are now active in the Ul.

For instance, if you switch the implicit resolvers on and view the attributes at a location that has an assigned
material you'll see that:

« There is now an attribute group called material with a local copy of the assigned material.
« Any material overrides have been applied to the shader parameter values.

* The original materialAssign value is removed.

« Similarly any materialOverride attributes are removed.

* The values of materialAssign and materialOverride are copied into info so they can still be inspected, for
reference, but they are no longer active.

Creating Your Own Resolvers

Custom Resolvers in the Node Graph

You can use OpScripts or custom Ops to create your own resolvers, including having them run implicitly.

There are a number of modes available for OpScript, GenericOp, and Op execution. These are controlled by
the resolvelds values in the attributes. There are two modes available for the execution mode:

- immediate - the script/Op is run at the locations specified in the applyWhere parameter as it is evaluated
at this node's point in the node graph.

« deferred - the script/Op is set up by this node but won't actually be run until a later node in the node
graph, as specified by the applyWhen parameter.

And depending on what you choose, you have the option to set where or when the script/Op is run. When
the execution mode is immediate, the applyWhere parameter can be set:

- at all locations - at all the locations in the node graph.

- at specific location - at only the location specified by the location parameter. If this location doesn't exist,
it is created automatically.

« at locations matching CEL - at only those locations in the node graph that match the CEL statements.

When the execution mode is deferred, the applyWhen parameter can be set:

USER GUIDE

N
[

Using the Scene Graph | Resolvers

+ during op resolve - the script/Op and its arguments are added as attributes to be executed later by an
OpResolve node. If the Op isn't run by an explicit OpResolve node placed in the node graph, it is
automatically run at render time by the implicit resolvers.

« during material resolve - the script/Op and its arguments are added as attributes under the material.ops
group attribute. This is primarily intended for material scene graph locations, allowing the material to
specify a procedural process that is run at every location that the material is assigned to. The script/Op is
run as part of the material resolve process, and is executed just after the initial values for the material
shader are created at the location. Examples of its use include randomizing or procedural control over
shader parameters.

« during katana look file resolve - the script/Op and its arguments are added as attributes under the ops
group attribute and are evaluated by a LookFileResolve node or by the first implicit resolver if no
LookFileResolve node is present.

For more information on OpScripts, see the Working with Attributes section. For more information on
GenericOp and Op AP, refer to The Op APL.

Custom Implicit Resolvers

Custom implicit resolvers can also be made persistent across the Katana session, without the need for
additional nodes in the node graph. The Nodes3DAPI module provides the RegisterimplicitResolver()
function for this purpose, with the following signature:

RegisterImplicitResolver (stage, opType, oOpArgs, addSystemArgs=False)

The stage parameter determines where the new resolver should be inserted in the chain of implicit resolvers.
The stages are described in Implicit Resolvers. Its value should be one of:

e ImplicitResolverStage.BeforePreprocessResolvers
e ImplicitResolverStage.BeforeStandardResolvers
e ImplicitResolverStage.AfterStandardResolvers

e ImplicitResolverStage.AfterPostprocessResolvers

Op types, args, and system args are described in The Op API.

USER GUIDE
217

Building Your Scene

This section walks you through setting up your scene in Katana.

Adding 3D Assets - Usually, a recipe is started by defining the 3D assets.

Collections and CEL - Use Collection Expression Language (CEL) to describe locations in the scene graph that
receive operations or assignments.

Working with Attributes - How to manipulate scene graph attributes.

Katana does not assume a given scene scale. There are no physics solvers, like those in Maya, that need to
know what real world measurement a unit represents. If you're using a shader library that has real world
units for shade parameters, such as emissive lights with power per unit area, that's handled by the shader
implementation rather than Katana.

The unit of measure used is up to you, because Katana equates any value as being equal to one unit in 3D
space. The image shows a simple scene containing an object and a camera. If the large white square in the
Viewer represents one unit of measure, so the smaller squares represent one tenth of that unit. So, if you
measured on set in meters, one small square could be equal to a meter, centimeter, or millimeter.

USER GUIDE

N
(@e]

Building Your Scene | Adding 3D Assets

Adding 3D Assets

The most common way to start a recipe is by defining the steps that bring in your 3D assets. Possible assets
include static geometry, animated geometry in the form of a geometry cache, a particle cache, or an
animated camera from a camera tracking package.

Katana's most common nodes for bringing in scene assets are:

* PrimitiveCreate

The PrimitiveCreate node contains a list of basic geometry shapes used in most 3D packages. These range
from simple shapes such as planes and cylinders to teapots and gnomes.

 CameraCreate

A simple node designed to create a camera. You can also import cameras using the Alembic_In node.

* Alembic_In

The Alembic open standard has been adopted by Katana as its preferred means of asset interchange.
Alembic is covered in more depth in Adopting Alembic.

 Importomatic

The Importomatic is a one-stop-shop for bringing in assets. It has a plug-in structure enabling assets to be
imported from different formats. It ships with plug-ins for Alembic_In and Casting Sheets. To learn more on
its use, see Using the Importomatic.

Note: Your studio may use its own geometry format, complete with a custom node to bring that
format into Katana.

Adopting Alembic

Alembic is an open source scene information interchange framework. Alembic distills complex, animated
scenes into non-procedural, application-independent, baked geometric results. It stores only the baked
information and not how that information was obtained. For instance, a fully rigged and animated character
would have its vertices efficiently stored for each frame of the animation but the control rig itself would not
be stored. You can export to Alembic from most popular 3D applications.

USER GUIDE

Building Your Scene | Adding 3D Assets

For more information on Alembic, see http://code.google.com/p/alembic/.

To add an Alembic asset:
1. Create an Alembic_In node and add it to your recipe (assets are usually added first to any recipe).
2. Select the Alembic_In node and press Alt+E.

The Alembic_In node becomes editable within the Parameters tab.

In the name parameter, enter the scene graph location to place the Alembic data.

4. Enter the asset filename in the abcAsset parameter.

Using the Importomatic

The Importomatic node is used to bring in multiple assets and - if needed - assign them a look file or
attribute file. Packaging this into one node keeps the recipe simpler to understand and debug.

With the Importomatic node you can:

¢ Read in multiple Alembic assets in a single node.

« Assign look files to any of the assets (for more on look files, see Look Development with Look Files).
« Assign attribute files to any of the assets.

« Branch from the Importomatic node, allowing multiple outputs.

Tip: Providing a full description of how to describe a scene using XML is beyond the scope of the
User Guide. For more information, consult the developer’s documentation accessed through the
Help > Documentation menu.

To add assets using the Importomatic:
1. Create the Importomatic node and place it within the project.
2. Selectitand press Alt+E.

The Importomatic node becomes editable within the Parameters tab.

3. Click + within the Parameters tab.

The asset and output menu is displayed.

USER GUIDE
220

http://code.google.com/p/alembic/

Building Your Scene | Adding 3D Assets

4. Select Add Alembic or Add Casting Sheet and select the asset from the file browser or asset
management browser.

The new asset is added to the Importomatic’s hierarchy.

Note: See Importing Assets Using Casting Sheets for more information.

Importing Assets Using Casting Sheets

The Add Casting Sheet option of the Importomatic node opens a .cast file (casting sheet) that contains
assets and names for those assets. This allows you to load multiple alembic files at once.

Below is an example of a casting sheet file:

<castingsheet>
<entry assetid="/tmp/Gnome.abc" name="gnomeA"/>
<entry assetid="/tmp/Pony.xml" name="ponyA"/>
</castingsheet>

The assetid XML attribute is an asset identifier you can use with whichever asset management system you
are working with. If you are working with files then the assetid XML attribute is a file path. For more on Asset
IDs, see Concepts.

Note: Make sure to specify a file extension in your file path for the casting sheet to determine
which asset type to load.

The name XML attribute is the identifier that is used to reference an instance of that asset in your Katana
scene. You can use it to determine the default scene graph location for the asset and to label the node used
to import it.

To edit an asset’'s parameters:
1. Select the asset within the Importomatic’s hierarchy within the Parameters tab.
The asset’s parameters are displayed below the hierarchy.

2. Make any changes to the asset that are needed. The parameters that are available are dependent on the
asset type.

USER GUIDE
221

Building Your Scene | Adding 3D Assets

Parameters

[u Importomatic

To edit the name:
1. Select the asset within the Importomatic’s hierarchy.

The asset’s parameters are displayed below the hierarchy.
2. Toggle use custom asset name on.

The asset name becomes editable.

USER GUIDE
222

Building Your Scene | Adding 3D Assets

1w Ilmportomatic

3. Change the asset name in the field directly below the hierarchy.

Changing the asset’s name within the Importomatic does not influence its location within the Scene
Graph tab.

To disable an asset:
1. In the Importomatic parameters, right-click on the asset name within the hierarchy.
2. Select Ignore Asset (or press D).

The asset is no longer created.

To enable an asset:
1. In the Importomatic parameters, right-click on the asset name within the hierarchy.

2. Select Unignore Asset (or press D).

To delete an asset:
1. In the Importomatic parameters, right-click on the asset name within the hierarchy.

2. Select Remove Item (or press Delete).

USER GUIDE

Building Your Scene | Adding 3D Assets

To assign a look file:

1.
2.

In the Importomatic parameters, right-click on the asset name within the hierarchy.
Select Assign Look File.
The file browser or your studio’s asset picker displays.

Select the look file from the file browser or asset picker.

To assign an attributes file to an asset:

1.
2.

In the Importomatic parameters, right-click on the asset name within the hierarchy.
Select Assign Attribute File.
The file browser or your studio’s asset picker displays.

Select the attribute file from the asset picker or file browser.

Note: Use attribute files to add attributes to existing locations. For a full explanation on using
attribute files, see the accompanying PDF, which is accessed through the Help > Documentation.

To add an additional output:

1.

In the Importomatic parameters, click +

The asset and output menu is displayed.

Select Add New Output.

A new output is added to the node and hierarchy.

Apart from the default output, the outputs from the Importomatic can be changed.

To change the name of an output:

1.

In the Importomatic parameters, select the output in the hierarchy.

2. Type the new output name in the output parameter.

USER GUIDE
224

Building Your Scene | Collections and CEL

Parameters

Importomatic

Collections and CEL

Collection Expression Language, or CEL, is used to describe the scene graph locations on which an operation
or assignment acts. CEL statements can also be used to define collections that may then be referenced in
other CEL statements.

There are two different purposes that CEL statements are used for: matching and collecting.

Matching is the most common operation, and is used as scene graph data is generated. Many nodes in
Katana have CEL statements that allow the user to specify which locations the operation defined by this node
act on. For instance, CEL statements are used in MaterialAssign nodes to specify which locations in the
hierarchy have a particular material assigned to them. As each scene graph location is generated it is tested
against the CEL statement to see if there is a match. If it is, the operation is executed at that location. This
matching process is generally a very fast one to compute.

Collection is a completely different type of operation, a CEL statement used to generate a collection of all
locations in the scene graph that it matches. Depending on the CEL statement this can potentially be
expensive as to evaluate it may have to open every location in the scene graph to check for a match.
Collecting is usually done as part of a baking process or to select things in the Ul (Find and Select), but also
has to be done for light linking if you use an arbitrary CEL expression to specify the lights.

USER GUIDE
225

Building Your Scene | Collections and CEL

CEL in the User Interface

In the Ul, a standard CEL Widget interface is provided for CEL expressions. For your convenience, this allows
you to build CEL expressions out of three different types of components (called statements):

« Paths — these are explicit lists of scene graph paths. If you drag and drop locations from the Scene Graph
tab onto the Add Statements area of the CEL widget you are automatically given a CEL expression that
based on those paths.

« Collections — a pre-defined named collection of scene graph locations. Essentially these are arbitrary sets
of locations that are handed off for use downstream in the pipeline. Collections can be created in a Katana
scene using the CollectionsCreate node, and can also be passed from one Katana project to another using
Look Files.

 Custom — these allow complex rule based expressions, such as using patterns with wildcards in the paths,
or 'value expressions' that specify values that attributes must have for matches.

CEL expressions can also be built out of combinations of these components using union, difference, and
intersection operations.

Guidelines for using CEL

Use CEL to Specify Light Lists in the LightLink Node.

There is only one node that does a collect operation while actually evaluating the Katana recipe: the
LightLink node.

LightLink allows you to use a CEL statement to determine which lights to link to, which allows a lot of
flexibility in selecting which lights are linked, but involves running a collection operation at runtime. How the
CEL statements are used to specify the lights (and where those lights are in the scene graph) should be set
up carefully to maximize efficiency and avoid having to evaluate too many scene graph locations. In general
it is most efficient to use a list of explicit paths for the light list. If you need to use more general CEL
expressions, such as those that use wild cards, it is best to make sure these only need to run to a limited
depth in the scene graph. The worst case is an expression with recursion that potentially needs every scene
graph location to be tested.

USER GUIDE
226

Building Your Scene | Collections and CEL

'Find and Select' Isn't a Good Test for Efficiency.

It's inadvisable to run a Find and Select to test the efficiency of a CEL statement that is only going to be
used for matching. For instance, the CEL statement //myGeoShape that only matches with locations called
myGeoShape is very fast to run as a match when evaluating any location, but takes a very long time to
collect because it has to expand the whole scene graph looking for locations with that name.

Make CEL Statements as Specific as Possible.

The expense is generally in running operations at nodes rather that evaluating if a location matches a CEL
expression, so it's good make sure that nodes only run on the locations really necessary.

For instance: it's most efficient if a CEL statement can be made to only run on the correct locations, based on
looking at the path name of the location. If the attribute values have to be tested, such as tests for the type
of location, these tests are more expensive, as it requires the attributes at that location to be calculated as
well.

Another typical case is using the CEL expression //*, which is a very fast expression to match but usually
means that a node runs at far more locations than it needs to.

Avoid Extensive Use of Deep Collections.

Collections brought in by a Look File are defined at the root location that the Look File is assigned to. If those
collections are only used in the hierarchy under the location they are defined at evaluation is efficient.
However, if you refer to that collection in other parts of the scene graph then there is a cost as the scene
graph has to be evaluated at the location the collection is defined.

A example where this can be a problem is if you've got collections defined at /root that reference a lot of
other collections defined deeper in the scene graph. This means that to just evaluate /root you need to
examine the scene graph to all those other locations as well.

Avoid Complex Rules in Collections at /root

Collections of other collections are useful and are efficient if all the collections are defined using explicit
paths. If these collections are created using more complex rules, in particular recursive rules, you can run into
efficiency problems.

USER GUIDE
227

Building Your Scene | Collections and CEL

Avoid Using "*' as the Final Token in a CEL Statement

There are optimizations in CEL to first compare the name of the current location against the last token in the
CEL statement. For this reason, it's advisable to have a specific last token in a CEL statement, instead of using
*' as a wildcard. For instance, if you've got a rule to only run on geometry locations that end with the string
Shape it's more efficient to have a cell expression such as:

/root/world/geo//*Shape
rather than

/root/world/geo//*.

Paths versus Rules

CEL has a number of optimizations for dealing with explicit lists of paths. This means using paths are the best
way of working in many cases, and matching against paths is generally very efficient as long as the list of
paths isn't too long.

As a general rule it's more efficient to use explicit lists of paths than active rules for up to around 100 paths. If
you have explicit lists with many thousands of paths you can run into efficiency issues where it may be very
worthwhile using rules with wildcards instead.

Select and Collect operations are always more efficient with an explicit path list.

Use Differences Between CEL Statements Cautiously

Taking the difference between two CEL statements can be expensive. In particular if two CEL statements are
made up of paths when you take the difference it's no longer treated as a simple path list so won't use the
special optimizations for pure path lists. Single nodes with complex difference based CEL statements can
often be more efficiently replaced by a number of nodes with simpler CEL statements.

CEL in Parameters

Parameters that contain CEL expressions are set like any other string parameter only the value of the
parameter is evaluated to a CEL expression. For example create a CEL expression on a CollectionCreate node
that sets to the /root/geo location:

USER GUIDE
228

Building Your Scene | Working with Attributes

TIME = 0
root = NodegraphAPI.GetRootNode ()
collection = NodegraphAPI.CreateNode('CollectionCreate',\

root)
c = collection.getParameter('CEL')
c.setValue("((/root/geo))", TIME)

For more on CEL, and collections using CEL, see Collections and CEL.

Working with Attributes

At its core, everything in Katana is about creating and manipulating attributes. These attributes, stored at
locations within the scene graph, represent the information a renderer needs to render a scene, such as
geometry data, transforms, or what material should be applied at a given location.

Although almost all nodes, in essence, manipulate attributes, Katana provides a number of special, general-
purpose nodes that give you free reign to create or manipulate the values of any attribute at one or more
locations. The most common are AttributeSet and OpScript.

» The AttributeSet node is used to create, override, or delete attributes at one or more locations.

* The OpScript node is a Lua-based interface to the Op API. The OpScript node also allows you to modify the
structure of the scene graph hierarchy, such as deleting locations or creating new child locations. For more
information about OpScript and the Op API, please refer to The Op API.

To learn how to manipulate attributes, refer to either:
* AttributeSet Nodes

» OpScript Nodes

» Working with Group Attributes

AttributeSet Nodes

Making Changes with the AttributeSet Node

To add an AttributeSet node to a recipe:

1. Create an AttributeSet node and connect it to the recipe at the point you want to make the change.

USER GUIDE
229

Building Your Scene | Working with Attributes

Select the AttributeSet node and press Alt+E.

The AttributeSet node becomes editable within the Parameters tab.
Select the assignment mode from the mode dropdown:

« paths - the locations influenced by this node are selectable by their path.
» CEL - the locations influenced by this node are selectable using CEL.

Assign the locations to influence with this node to either the paths or celSelection parameter
(depending on your selection in step 3).

Select what type of action this node is performing:

» Create/Override - adds a new attribute or overrides an existing one.
« Delete - if it exists, removes an attribute from the location.

« Force Default - forces the attribute back to its default.

Enter the name of the attribute to influence in attributeName.

You can enter a grouped attribute by separating the parts of the attribute with a . (period), for instance
geometry.point.P.

If the action parameter is Create/Override:

7.
8.

Select the type of the attribute using the attributeType dropdown.

With the grouplnherit parameter, select whether you want the attribute changes to be inherited by any
scene graph children. For instance, a new attribute on /root/world/geo created with this option set to
Yes is inherited by all children of /root/world/geo.

Use the multisample parameter to select whether you want to enable multi-sampling.

. Enter the new attribute value in the <type>Value parameter, for instance, stringValue for a string.

Tip: It is possible to middle-click and drag from an attribute in the Attributes tab to the Drop
Attributes Here hotspot in an AttributeSet node’s Parameters tab to automatically create a field
to set the dragged attribute.

USER GUIDE
230

Building Your Scene | Working with Attributes

AttributeSet

Add Locations ~

yrld/geo/primitive

Using Material Underlays with the AttributeSet Node

In addition to editing attributes with the AttributeSet node, as described above, you can use the node to
create material underlays. Attributes from an underlayAttrs group attribute that is part of a material group
attribute are copied to the top level of a location's attributes during the MaterialResolve step.

This only happens if matching attributes are not already set on the target location (the location that points at
the material using materialAssign). This allows, for example, custom renderer object settings to be specified
for locations, which can be overridden by any locally-set values.

To set a material underlay:
1. Add a PrimitiveCreate node and set its name to /root/world/geo/teapotYellow.
Set type to teapot and Z translate to -2.5, and Y rotation to 180.

2. Add another PrimitiveCreate node (or copy and paste the exisiting one) and set its name to
/root/world/geo/teapotPink.

Set type to teapot, Z translate to 2.5.
In the Node Graph, select both Primitive Create nodes and press M to merge.

4. Expand the Scene Graph to view the primitives. The image below shows the scene in the Hydra Viewer.

USER GUIDE

N
w

Building Your Scene | Working with Attributes

Add a yellow material node:
Add a Material node.
In the Parameters tab, change it's name to Yellow.

Click Add Shader and pick dl > Surface to add a dISurfaceShader. From the dropdown select
di3DelightMaterial.

Change the Base Layer > Diffuse and Subsurface > Color value to 0.5, 0.5, 0.0.
Add a pink material node: Repeat step 5 but change the name to Pink and the color to 0.5, 0.0, 0.5.
Add a MaterialAssign node. Assign the yellow material to the yellow teapot:

Middle-mouse +drag the teapotYellow mesh item from the Scene Graph tab to the CEL field's Add
Statements button on the Parameters tab for the MaterialAssign node.

Middle-mouse+drag the Yellow material from the Scene Graph to the materialAssign field.
With a new MaterialAssign node repeat step 9, but assign the Pink material to the teapotPink mesh.

Your node graph should be connected as follows:

USER GUIDE
232

Building Your Scene | Working with Attributes

PrimitiveCreate PrimitiveCreate1

iMerge

Yeallow

Pink

MaterialAssign

MaterialAssign

10. Add an AttributeSet node and connect it to the bottom of the graph. Middle-mouse+drag the Yellow
material from the Scene Graph on to the CEL path field and set the following parameters:

action: Create/Override

attributeName: material.underlayAttrs.viewer.default.drawOptions.color
attributeType: float

grouplinherit: Yes

multisample: Yes

numberValue: 3 x 1, with 0: 0.5, 1: 0.5 and 2: 0.0.

USER GUIDE

N
w
w

Building Your Scene | Working with Attributes

AttributeSet

Add Locations =

rride -

material.underlayattre.viewer.default.drawOptions.colod

float

11. Copy and paste the AtrributeSet node and connect it to the previous node. On this new node assign the
Pink material to the path and set the number values to 0.5, 0.0 and 0.5 respectively.

Note: If you inspect the materials in the Attributes tab, you will notice an attribute has been
created under a tab called underlayAttrs for both materials.

Inspecting both teapot mesh items will show their viewer.default.drawOptions attributes at the
default values.

12. Add a MaterialResolve node and connect it to the previous node. The underlay attributes are transferred
to the teapots and override their default Hydra view.

USER GUIDE

Building Your Scene | Working with Attributes

To deactivate the node and return to the default, highlight it and press D.

13. Copy and paste the second AttributeSet node, and connect the newly created node in between the
second AttributeSet node (for the pink material) and the MaterialResolve node.

14. In the new AttributeSet node, change the CEL field to point at the teapotPink location rather than the

pink material. In the attributeName field, change the value to viewer.default.drawOptions.color, and the
numberValue to 0.0, 0.5, 0.5.

You will now see the material underlay attribute is only affecting the yellow teapot at resolve time.

Here's the full node graph for reference with nodes renamed for clarity:

USER GUIDE
235

Building Your Scene | Working with Attributes

Prirmitive

Materials

MaterialA

AttributeSet YellowUnderay

AttributeSet_PinkUnderlay

local attribu

1ed

AttributeSet_PinkTeapotVi

MaterialR

USER GUIDE
236

Building Your Scene | Working with Attributes

OpScript Nodes

The OpScript node allows you to use the Lua scripting language to manipulate attributes at a single location,
or at multiple locations. Technically, the OpScript node provides Lua bindings for the C++ Op API, so what
you can do with the Op API, you should also be able to do with the OpScript node. Lua is also multi-
threaded, which makes it very fast.

The OpScript node has many exciting features that make it very powerful:
» Overwrite, create, and delete attributes at any scene graph location.

* Accept multiple inputs.

« Create and delete child scene graph locations.

« Copy scene graph locations.

« Use Lua bindings for Op API C++ functions.

The OpScript node uses CEL (Collection Expression Language) to specify the locations where the script runs.
The OpScript node can be used to read attributes on any scene graph location, edit attributes at the
specified scene graph locations, create child locations, delete child locations, and copy scene graph
locations. When running on multiple locations, a script runs separately at each location, so targeting 100
locations means that your OpScript runs 100 times.

Since there are Lua bindings for the Op API, you may only need the Op API if you really need the speed and
efficiency of C++, meaning many powerful tools can be written with the OpScript node, and potentially
wrapped up inside a macro for other users. If you do need to use the Op API, then the Lua interface allows
for easier prototyping before fully committing to C++, which is especially useful for proof of concept.

Adding an OpScript

To add an OpScript node to a recipe:
1. Create an OpScript node and connect it to the recipe at the point you want to insert the Lua script.
2. Select the OpScript node and press Alt+E.

The OpScript node becomes editable within the Parameters tab.

3. Assign the scene graph locations (or target nodes) this Lua script is to run on to the CEL parameter (see
Assigning Locations to a CEL Parameter).

4. Select when to run the script using the executionMode dropdown:

« immediate - runs the script immediately.

USER GUIDE

Building Your Scene | Working with Attributes

« deferred - runs the script at a later node in the node graph, as specified by the applyWhen parameter.

If you chose immediate, the applyWhere dropdown is available for you to choose where the script is
run:

- at all locations - at all the locations in the node graph.

- at specific locations - at only the location specified by the location parameter. If this location doesn't
exist, it is created automatically.

« at locations matching CEL - at only those locations in the node graph that match the CEL statements.

If you chose deferred, the applyWhen dropdown is available for you to choose when the script is run, if
not immediately:

« during op resolve - the script and its arguments are added as attributes to be executed later by an
OpResolve node.

« during material resolve - the script and its arguments are added as attributes under the
material.scenegraphLocationModifers group attribute.

« during katana look file resolve - the script and its arguments are added as attributes under the
Scene GraphLocationModifers group attribute and are evaluated by a LookFileResolve node or by the
first implicit resolver if no LookFileResolve node is present.

Note: Each of the applyWhen options has additional parameters that are available, depending on
which you choose. See the Reference Guide section for more information.

If you chose immediate, set the inputBehavior dropdown. This controls how input ports on the node
are mapped onto the inputs of the underlying Op, and is only meaningful when the node has one or
more invalid input ports - a port that is not connected to an output port or is connected to an output
port that doesn't provide data.

If you chose deferred, set the modifierNameMode dropdown to either:

» node name - deferred OpScripts are added as group attributes within the "Ops" group, and the name
of the node is used for the sub-group. Since node names must be unique in project, the resulting
attribute name can change.

« specified - use a fixed name for the OpScript sub-group.

In certain instances, such as when executionMode is set to immediate, or when it is set to deferred,
during op resolve, the resolvelds parameter displays. Specify the resolvelds in the form of

"resolveName1”, "resolveName2" and so on. This ensures the OpScript is resolved only by the op
resolvers that contain a matching resolve ID.

If you choose deferred, and set the applyWhen parameter to either during op resolve or during
katana look file resolve, you can set the recursiveEnable parameter. Enabling this parameter results in
the script being run at every location beneath the assigned locations. This is far more efficient than using
the equivalent recursive CEL statement.

USER GUIDE
238

https://learn.foundry.com/katana/Content/reference_guide.html

Building Your Scene | Working with Attributes

9. If you want to set the OpScript node to have multiple inputs, tick the Display as multi-input box. By
default, this box isn't ticked.

10. Finally, enter the Lua script in the script parameter.

Tip: To have an OpScript, running at multiple locations, use the same stable, random numbers at
each location, the math.randomseed() and math.random() functions can be used. OpScript's
math.randomseed() and math.random() implementations use re-entrant pseudo-random
number generation functions, and implement the default flavors available in Lua.

local seed = math.randomseed ()

local randval 01 = math.random(1l, 10)
local randval 02 math.random (11, 20)
local randval 03 math.random (21, 30)

OpScript Tutorials

Please note that the following examples are located in the Help > Example Projects menu in Katana, or
within the katana install directory at $KATANA_HOME/demos/katana_files/opscript_tutorial.katana.

Creating Scene Graph Locations

Using CreateChild()

This example shows you how to create child locations using the OpScript node. By default, if you specify
Interface.CreateChild('childName’) inside your OpScript without specifying the opType parameter, your
child location inherits the opType used by the parent. So, in this case, it recursively uses this opType,
OpScriptLua, and creates an infinite number of child locations.

Note: Please refer to OpScript for more information on any of the following functions, or for
information on exposed functions for the OpScript.

There are a few solutions to this: check if we match the CEL, create a hierarchy based on an if-else statement,

or use a StaticSceneCreate op to create a hierarchy.

USER GUIDE
239

Building Your Scene | Working with Attributes

Check If We Match the CEL

A simple way to get around this is to use the following command:

if Interface.AtRoot () then
Interface.CreateChild("child a")
end

In the OpScript node, set the CEL statement to /root/world by previously creating a /root/world location
using LocationCreate. Also make sure that the applyWhere parameter is set to at locations matching CEL.

Create a Hierarchy Based on if-else Statement

We create a hierarchy by checking which location we are currently at and executing the commands
associated to that if statement. When this script is run for the first time, it creates a child location at /root,
which is /root/world. Then, when the OpScript is executed at the child location, it creates /root/world/geo.
This continues until the last condition is met. In this way, we avoid infinite recursion. We've set the
applyWhere parameter to at all locations too, so that we don’t need to worry about specifying /root.

path = Interface.getOutputLocationPath ()

if path == "/root" then
Interface.CreateChild ("world")

elseif path == "/root/world" then
Interface.CreateChild ("parent")

elseif path == "/root/world/parent" then
Interface.CreateChild("child a")

elseif path == "/root/world/parent/child a" then

Interface.SetAttr ("test", IntAttribute(123))
end

Use a StaticSceneCreate Op to Create a Hierarchy

We can use the StaticSceneCreate op to create a hierarchy without the use of if-else statements using the
OpArgsBuilder.StaticSceneCreate() function. You can input the following directly into an OpScript node, or
refer to the example OpScript Tutorial file. Again, we've set the applyWhere parameter to be run at all
locations.

sscb = OpArgsBuilders.StaticSceneCreate (true)
sscb:createEmptyLocation ("/root/world/parent/child a", "group") --create a

USER GUIDE
240

Building Your Scene | Working with Attributes

scenegraph location with a type

sscb:setAttrAtLocation ("/root/world/parent/child a", "test id", IntAttribute
(123)) —--set the attribute

Interface.ExecOp ("StaticSceneCreate", sscb:build()) --execute the Op

Deleting Scene Graph Locations

There are three methods available to remove scene graph locations: deleteChild(), deleteChildren() and
deleteSelf(). By allowing you to remove your own scene graph locations, you can re-implement your own
Prune node, for instance. This tutorial looks at each of these methods, but please refer to the OpScript
Tutorial Example Projects for context. You can comment or uncomment the relevant commands.

Delete the Child by Name

The OpScript node allows you to delete newly-created children and incoming child locations, like so:
Interface.DeleteChild("child a")

Note that child_a is the immediate child of the matching CEL. For example, if your CEL statement looked like
this:
/root/world/geo/parent

and the children that exist here are
/root/world/geo/parent/child aand /root/world/geo/parent/child a/grandchild a

the DeleteChild() function cannot delete grandchild_a.

Delete All Children

Deleting all children under which the OpScript is being cooked at is straightforward. This also deletes all
newly-created children and incoming ones:
Interface.DeleteChildren ()

Delete Self

You are also able to delete the current output location using Interface.DeleteSelf(), however, all calls to
DeleteSelf() keep the location in its parent’s potential children list. So, it's advisable to use DeleteChild()
instead, if possible.

USER GUIDE
241

Building Your Scene | Working with Attributes

Copying Scene Graph Locations and Attributes

Since the attributes are being copied over along with the scene graph locations, we can use this to our
advantage. As the OpScript node supports multiple inputs, you can effectively recreate a custom Merge or
Switch node, again, increasing the potential of the OpScript node.

Using the same function as above, look at how you can copy from one input to another. Please refer to the
OpScript Tutorials example file for context.

We have two LocationCreate nodes and an AttributeSet node corresponding to each LocationCreate node.
The two node graph branches are then connected to separate input ports of the OpScript node. The
CopyLocationToChild() function that we used in the previous example has two extra arguments that we
haven't explicitly specified; they are: the input index and the order of where you want to place your new
hierarchy.

if Interface.AtRoot () then

Interface.CopyLocationToChild("target child a","/root/world/another
parent/another child a", 1, "child a")

-- Interface.CopyLocationToChild ("target child
a","/root/world/parent/child a", 0, "child a")
end

This script copies over the name attribute from the second input of the OpScript to the target_child_a
location. The name changes depending on which line you comment/uncomment.

Creating Scene Graph Locations

Using CreateChild()

This example shows you how to create child locations using the OpScript node. By default, if you specify
Interface.CreateChild('childName’) inside your OpScript without specifying the opType parameter, your
child location inherits the opType used by the parent. So, in this case, it recursively uses this opType,
OpScriptLua, and creates an infinite number of child locations.

Note: Please refer to OpScript for more information on any of the following functions, or for
information on exposed functions for the OpScript.

There are a few solutions to this: check if we match the CEL, create a hierarchy based on an if-else statement,
or use a StaticSceneCreate op to create a hierarchy.

USER GUIDE
242

Building Your Scene | Working with Attributes

Check If We Match the CEL

A simple way to get around this is to use the following command:

if Interface.AtRoot () then
Interface.CreateChild("child a")
end

In the OpScript node, set the CEL statement to /root/world by previously creating a /root/world location
using LocationCreate. Also make sure that the applyWhere parameter is set to at locations matching CEL.

Create a Hierarchy Based on if-else Statement

We create a hierarchy by checking which location we are currently at and executing the commands
associated to that if statement. When this script is run for the first time, it creates a child location at /root,
which is /root/world. Then, when the OpScript is executed at the child location, it creates /root/world/geo.
This continues until the last condition is met. In this way, we avoid infinite recursion. We've set the
applyWhere parameter to at all locations too, so that we don’t need to worry about specifying /root.

path = Interface.getOutputLocationPath ()

if path == "/root" then
Interface.CreateChild ("world")

elseif path == "/root/world" then
Interface.CreateChild ("parent")

elseif path == "/root/world/parent" then
Interface.CreateChild("child a")

elseif path == "/root/world/parent/child a" then

Interface.SetAttr ("test", IntAttribute(123))
end

Use a StaticSceneCreate Op to Create a Hierarchy

We can use the StaticSceneCreate op to create a hierarchy without the use of if-else statements using the
OpArgsBuilder.StaticSceneCreate() function. You can input the following directly into an OpScript node, or
refer to the example OpScript Tutorial file. Again, we've set the applyWhere parameter to be run at all
locations.

sscb = OpArgsBuilders.StaticSceneCreate (true)
sscb:createEmptyLocation ("/root/world/parent/child a", "group") --create a

USER GUIDE

Building Your Scene | Working with Attributes

scenegraph location with a type

sscb:setAttrAtLocation ("/root/world/parent/child a", "test id", IntAttribute
(123)) —--set the attribute

Interface.ExecOp ("StaticSceneCreate", sscb:build()) --execute the Op

Deleting Scene Graph Locations

There are three methods available to remove scene graph locations: deleteChild(), deleteChildren() and
deleteSelf(). By allowing you to remove your own scene graph locations, you can re-implement your own
Prune node, for instance. This tutorial looks at each of these methods, but please refer to the OpScript
Tutorial Example Projects for context. You can comment or uncomment the relevant commands.

Delete the Child by Name

The OpScript node allows you to delete newly-created children and incoming child locations, like so:
Interface.DeleteChild("child a")

Note that child_a is the immediate child of the matching CEL. For example, if your CEL statement looked like
this:
/root/world/geo/parent

and the children that exist here are
/root/world/geo/parent/child aand /root/world/geo/parent/child a/grandchild a

the DeleteChild() function cannot delete grandchild_a.

Delete All Children

Deleting all children under which the OpScript is being cooked at is straightforward. This also deletes all
newly-created children and incoming ones:
Interface.DeleteChildren ()

Delete Self

You are also able to delete the current output location using Interface.DeleteSelf(), however, all calls to
DeleteSelf() keep the location in its parent’s potential children list. So, it's advisable to use DeleteChild()
instead, if possible.

Copying Scene Graph Locations and Attributes

USER GUIDE
244

Building Your Scene | Working with Attributes

Another useful feature of the OpScript node is the ability to copy scene graph locations. For instance,
allowing you to re-implement the HierarchyCopy node, if you wish. You can achieve this using
Interface.CopyLocationToChild() function. Please refer to the OpScript Tutorial Example Projects and use
the following code in conjunction for understanding the process.

Copying Scene Graph Hierarchies

These tutorials have shown how you can copy hierarchies very easily using the CopyLocationToChild()
function. Using the following piece of Lua code, we can copy the /root/world/geo/parent_a hierarchy to
the locations matching the CEL statement provided, in this case, /root/world/geo. The result is another
hierarchy at /geo with /root/world/geo/parent_b/child_a. The resultant hierarchy has all the attributes
copied over too.

if Interface.AtRoot () then
Interface.CopyLocationToChild ("parent b", "/root/world/geo/parent a")
end

Copying Attributes Across Different Inputs

Since the attributes are being copied over along with the scene graph locations, we can use this to our
advantage. As the OpScript node supports multiple inputs, you can effectively recreate a custom Merge or
Switch node, again, increasing the potential of the OpScript node.

Using the same function as above, look at how you can copy from one input to another. Please refer to the
OpScript Tutorials example file for context.

We have two LocationCreate nodes and an AttributeSet node corresponding to each LocationCreate node.
The two node graph branches are then connected to separate input ports of the OpScript node. The
CopyLocationToChild() function that we used in the previous example has two extra arguments that we
haven't explicitly specified; they are: the input index and the order of where you want to place your new
hierarchy.

if Interface.AtRoot () then
Interface.CopyLocationToChild("target child a","/root/world/another
parent/another child a", 1, "child a")
-— Interface.CopylocationToChild("target child
a","/root/world/parent/child a", 0, "child a")
end

This script copies over the name attribute from the second input of the OpScript to the target_child_a
location. The name changes depending on which line you comment/uncomment.

USER GUIDE
245

Building Your Scene | Working with Attributes

Working with Group Attributes
GroupAttribute instances are generally created indirectly using the GroupBuilder helper class.

To create a new group attribute, first instantiate a GroupBuilder. You may then mutate the builder using
various operations, for example adding (name, attribute) pairs to it using the set() method, or deleting an
existing attribute by passing its name to del(). When done, retrieve the newly constructed GroupAttribute
with the GroupBuilder's build() method.

It's also possible to update a GroupBuilder with the contents of an existing group attribute using the
update() and deepUpdate() methods. The update() method performs a shallow merge, where existing
attributes are overwritten if they share the same name as the new attributes. A common pattern is to call
update() on an empty builder to pre-populate it with the contents of an existing group attribute. The
deepUpdate() method is the recursive version of update(), effectively overlaying the contents of the
incoming groups atop the existing groups of the builder.

As a convenience, GroupBuilder supports creating arbitrarily nested attribute structures by passing a dot-
delimited path to its set() and del() methods. (This implies that the . (period) character is not a valid attribute
name!)

Note: Unlike the types mentioned so far, GroupBuilder is not itself an Attribute.

The code snippets listed below show the creation of a group attribute with the following structure:

"my": |
"nested": {
"attribute": IntAttribute (2)
}
}I
"myTopLevelAttribute": StringAttribute ("taco"),
"myOtherTopLevelAttribute": FloatAttribute (4.0f)

C++

GroupBuilder gb;
gb.set ("my.nested.attribute”", IntAttribute(2));
gb.set ("myTopLevelAttribute", StringAttribute ("taco"));
gb.set ("myOtherTopLevelAttribute", FloatAttribute (4.0f));

USER GUIDE
246

Building Your Scene | Working with Attributes

GroupAttribute groupAttribute = gb.build();
// |groupAttribute| now has the structure listed above; |gb| is empty.

Python

gb = GroupBuilder ()

gb.set ("my.nested.attribute", IntAttribute (2))

gb.set ("myTopLevelAttribute", StringAttribute ("taco"))
gb.set ("myOtherTopLevelAttribute", FloatAttribute (4.0))

groupAttribute = gb.build()
|groupAttribute| now has the structure listed above; |gb| is empty.

Lua (OpScript)

local gb = GroupBuilder ()

gb:set ("my.nested.attribute", IntAttribute (2))

gb:set ("myTopLevelAttribute", StringAttribute ("taco"))
gb:set ("myOtherTopLevelAttribute", FloatAttribute (4.0))

local groupAttribute = gb:build()
-— |groupAttribute| now has the structure listed above; |gb| is empty.

Notes

There is no way to inspect the contents of the builder while you are mutating it. Instead, you must call build
() and inspect the generated GroupAttribute. Note that, by default, calling build() clears the contents of the
builder, and to override this behavior you must pass the constant GroupBuilder::BuildAndRetain (C++),
GroupBuilderBuildAndRetain (Python), or GroupBuilder.BuilderBuildMode.BuildAndRetain (Lua) to
build().

Note on Backwards Compatibility

Previous versions of Katana would retain the contents of the builder when calling build(). Customers with
existing C++ plug-ins they wish to use in Katana 2.0v1, and after, are advised to audit their uses of
GroupBuilder::build() to ensure the new semantics do not cause unintended side effects.

USER GUIDE
247

Building Your Scene | Working with Attributes

Group Inheritance and the grouplnherit Flag

Group attributes have a special flag called grouplnherit. Setting this flag to True signals to Katana that all
attributes contained in the group should be inherited by child locations.

By default, group attributes created by GroupBuilder have their grouplnherit flag set to true. To disable this,
call setGrouplnherit(false) (C++, Lua) or setGrouplnherit(False) (Python) on the builder. This grouplnherit
flag on the builder is "sticky": setGrouplnherit() may only be called once per builder, and subsequent calls
have no effect.

As the name suggests, group inheritance is a property of the group and not the data attributes contained
within it. The use of NullAttribute in combination with group inheritance allows for fine-grained control
over which attributes are inherited by child locations. Specifically, Katana interprets a null attribute in a group
as a signal to ignore inherited values for the attribute with the given name, forcing the default value if
available. (If no default value is available the attribute is simply deleted.)

Inheritance Rules for Attributes

By default, attributes are inherited from parent locations. However, attributes can be overwritten at specified
locations where the values differ from ones defined higher up in the hierarchy, as used for Light Linking.

Some attributes are not inherited, for instance the globalStatements of a renderer defined at /root or the
globals defined at /root/world. Another example is the xform attribute, where it would not make sense to
inherit a transform defined for a group to all its children and thus perform the operation multiple times.

Setting Group Inheritance using the API

To prevent an attribute from being inherited, use the API function setGrouplnherit() to disable group
inheritance. For example:

FnKat: :GroupBuilder gb;
gb.setGroupInherit (false);
gb.build() ;

USER GUIDE
248

Viewing Your Scene

The Viewer tab provides one or more 3D windows into the scene described by the scene graph. Only
locations that are exposed within the Scene Graph tab are represented in the Viewer - the exception being

pinned locations.

OSG Viewer Hydra Viewer
Our original, Open Scene Graph powered viewer with Our latest viewer, with massive performance
an extensive feature set. increases and new features.

You can interactively modify parameters, on some nodes contributing to a scene graph location, using
Manipulators within the Viewer. The manipulators available vary depending on the scene graph location
selected, and the nodes that created it.

Katana does not assume a given scene scale. There are no physics solvers, like those in Maya, that need to
know what real world measurement a unit represents. If you're using a shader library that has real world
units for shade parameters, such as emissive lights with power per unit area, that's handled by the shader
implementation rather than Katana.

The unit of measure used is up to you, because Katana equates any value as being equal to one unit in 3D
space. The image shows a simple scene containing an object and a camera. If the large white square in the
Viewer represents one unit of measure, so the smaller squares represent one tenth of that unit. So, if you
measured on set in meters, one small square could be equal to a meter, centimeter, or millimeter.

USER GUIDE

49

Viewing Your Scene | Changing the Layout

Changing the Layout

The viewers' tabs can be split into multiple tabs allowing multiple views of the same scene. Each tab has its
own settings for shading, and lighting modes. To split the viewer tab:

* In the OSG Viewer, select Layout or> [viewer configuration].

« In the Hydra Viewer, select View or> [viewer configuration].

Viewer Configuration Example

* Single Pane - a single tab takes up the whole Viewer. This is the
default.

USER GUIDE
250

Viewing Your Scene | Changing the Layout

Viewer Configuration Example

» Two Panes Side-by-Side - this displays two tabs split vertically,
sitting side-by-side.

» Two Panes Stacked - this displays two tabs split horizontally, one
above the other.

* Three Panes Split Top - this displays three tabs: one large on the
bottom, and two more split vertically above.

USER GUIDE
251

Viewing Your Scene | Changing the Layout

Viewer Configuration Example

« Three Panes Split Left - this displays three tabs: one large on the
right, and two more split horizontally on the left.

* Three Panes Split Bottom - this displays three tabs: one large on
the top, and two more split vertically below.

« Three Panes Split Right - this displays three tabs: one large on
the left, and two more split horizontally on the right.

USER GUIDE
252

Viewer Configuration

« Four Panes - this displays four tabs.

Viewing Your Scene | Selecting Within the Viewer

Example

You can change each tab to have a different view of the scene graph data. The current view is either an
object within the scene - such as a camera or light - or a Viewer camera. A Viewer camera is not a part of
the scene graph and cannot be used outside the Viewer. Four Viewer cameras are created by default

(persp, top, front, and side).

Selecting Within the Viewer

You can use standard selection behavior within viewers.

Action
Click

Drag
Shift+click
Shift+drag
Ctrl+click
Ctrl+drag

USER GUIDE

Behavior

Selects the first object below the mouse.

Selects all objects within or touched by the marquee.
Selects an object if it is not selected, deselects it if it is.

Selects any object within the marquee that is not selected, deselects it
if itis.

Deselects the first object below the mouse.

Deselects everything within the marquee.

Viewing Your Scene | Using Flush Caches

Using Flush Caches

Katana stores scene graph information in a series of caches, including caches for resolved shaders and lights.

Selecting Util > Flush Caches, or clicking on the Flush Caches button & forces Katana to step through the
scene graph, resolving shaders and lights. This in turn clears and update the Viewer cache.

Using the OSG Viewer

The Viewer tab provides one or more 3D windows into the scene described by the scene graph. Only
locations that are exposed within the Scene Graph tab are represented in the Viewer - the exception being
pinned locations. For more on pinning a location see Changing What is Shown in the Viewer.

You can interactively modify parameters, on some nodes contributing to a scene graph location, using
Manipulators within the Viewer. The manipulators available vary depending on the scene graph location
selected, and the nodes that created it. For more on this see Using Manipulators. It is also possible for
additional manipulators to be implemented by your studio using the Viewer Manipulator API. Consult the
developer documentation and example code for further details.

In Shaded (raw) and Shaded (filmlook) modes the Viewer uses OpenGL lights and shaders, which are
distinct from the lights and shaders used for final rendering. The OpenGL lights and shaders are added to
existing light and material nodes. For more on this see Assigning a Viewer Material Shader, and Assigning a
Viewer Light Shader.

Changing the Overall Viewer
Behavior

To change the overall shading model, select Display > [shading model]:

USER GUIDE

Viewing Your Scene | Using the OSG Viewer

Viewer Behavior Example

* Points - this displays the current 3D scene with each vertex (or
control point for a NURBS patch) as a point.

« Wireframe (or press 4) - this displays the current 3D scene with
each edge (or surface curve for a NURBS patch) as a line.

+ Simple Shaded (or press 6) - this displays the current 3D scene
with a very simple shader, ignoring scene lights and shadows.

« Shaded (raw)- this displays the current 3D scene with each object
using its Viewer shader (or the default if none is assigned).

Adding a Viewer shader is covered in Managing Color

« Shaded (filmlook) (or press 5) - this is identical to the Shaded
(raw) shading model but applies an adjustment designed to
approximate the filmlook OpenColorlO LUT. For more
information on OpenColorlO within Katana see Managing Color.

Note: As Shaded (raw) and Shaded (filmlook) use OpenGL shaders, and not the shaders used
for the final render the Viewer can display a drastically different look to your final render
depending on how closely the OpenGL shaders matches the production shaders.

USER GUIDE
255

Viewing Your Scene | Using the OSG Viewer

Assigning a Viewer Material Shader

The Viewer is OpenGL based, so for materials to display in the Viewer, they must have an OpenGL Viewer
shader. It is this Viewer shader, not a renderer's shader that the Viewer shows when in Shaded (raw) or
Shaded (filmlook) modes.

For example, create a primitive, assign a 3Delight shader, and observe the Viewer output in Shaded (raw)
mode.

Create a primitive using a Primitive Create node.

Create a 3Delight material using a Material node.

Change the Diffuse Color in the Base Layer section.

Assign the material to the primitive using a MaterialAssign node.

Add a Spotlight using a GafferThree node, then position it.

o vk W=

Change the Viewer to Options > Shaded (raw) mode.

Without a Viewer shader assigned, the primitive in the Viewer defaults to a gray Lambert.

Add a Viewer shader to your material, and observe the Viewer output in Shaded (raw) mode.
Open the recipe described above.

Edit the parameters of the Material node.

Click Add shader, and select Surface from the dropdown list.

Select KatanaPhong as the Viewer shader type.

Edit the diffuse color of the KatanaPhong shader.

S i A

Change the viewer to Options > Shaded (raw) mode.

The viewer displays the Viewer shader added to the material node.

USER GUIDE
256

Viewing Your Scene | Using the OSG Viewer

Note: To have Viewer shaders mirror production shaders, it's advisable to link by expression
common parameters, such as diffuse and specular color, or texture file path.

Assigning a Viewer Light Shader

As supplied, the Katana Viewer supports a single type of OpenGL spotlight, which corresponds to the Katana
Spotlight final render light. For lights of types other than Katana Spotlight to display in the Viewer, they
must have a Viewer light shader assigned.

It is this Viewer light shader, not a renderer's shader, that the Viewer displays when in Shaded (raw) or
Shaded (filmlook) modes. For example, create a primitive, and assign it a material that also has a Viewer
material shader. Create a light, then observe the Viewer output in Shaded (raw) mode.

1. Open the recipe created in Assigning a Viewer Material Shader.

2. Select the GafferThree node, then the light you created earlier, and go to its Material tab.
3. Click Add Shader and select light from the dropdown menu.
4

Select one of the following lights as the shader type: KatanaBasicPointlight, KatanaBasicSpotlight, or
KatanaSpotlight.

5. Change the Viewer to Options > Shaded (raw) mode.

The Viewer shows the Viewer light, and changes to the Viewer light update in the Viewer.

USER GUIDE
257

Viewing Your Scene | Using the OSG Viewer

Displaying Textures in the Viewer

If the texture maps used in your renderer's shaders are in the form of .tx or .tex files, you can show these in
the Viewer, provided they have the file suffix .tx, rather than .tex. In addition, the Viewer can render RGB and
RGBA image formats, such as .tif, .png, and .jpg. For example, create a primitive, assign it a Viewer shader
material, and map the Texture parameter of the Viewer shader material to an image file.

Open the recipe created in Assigning a Viewer Material Shader.
Edit the parameters of the Material node.
Expand the parameters of the viewerSurfaceShader of type KatanaPhong you added previously.

1

2

3

4. Expand the Texture parameter field.

5. Right-click on filename and select Wide editor.
6

Type in the path to your texture file.
7. Select Util > Flush Caches, or click on the Flush Caches button &

Observe the results in the Viewer.

Note: For you to apply texture color maps, your Viewer Surface shader must be either of the
supplied KatanaPhong, or texture types, or a custom Viewer shader that supports this feature.

Changing Specific Viewer Behavior

To change the lighting used for the Shaded (raw & filmlook) shading models:
« Select Display > Lighting > Off - this removes all lights from the Viewer.

« Select Display > Lighting > Selected Lights (or press 8) - all selected lights contribute to the lighting in
the Viewer.

« Select Display > Lighting > All Lights (or press 7) - all lights within the scene contribute to the lighting in
the Viewer.

To change whether shadows are used for the Shaded (raw & filmlook) shading models:

« Select Display > Shadows > Off - no shadows from lights are used in the Viewer.

USER GUIDE

Viewing Your Scene | Using the OSG Viewer

« Select Display > Shadows > Selected Lights - all selected lights create shadows for the lighting in the
Viewer.

« Select Display > Shadows > All Lights - all lights create shadows for the lighting in the Viewer.

Multi-sampling, also known as multi-sample anti-aliasing (MSAA), is one method for achieving full-screen
anti-aliasing (FSAA). With multi-sampling, each pixel at the edge of a polygon is sampled multiple times. For
each sample-pass, a slight offset is applied to all screen coordinates. This offset is smaller than the actual size
of the pixels. By averaging all these samples, the result is a smoother transition of the colors at the edges.
Unlike super-sampling (SSAA), which can result in the same pixel being shaded multiple times per pixel,
multi-sampling runs the fragment program just once per pixel rasterized. However with MSAA multiple
depth/stencil comparisons are performed per pixel, one for each of the sub-samples, which gives you sub-
pixel spatial precision on your geometry and nice, smoothed edges on your polygons.

The OpenGL driver for the graphics card returns a value for GL_MAX_SAMPLES. This value indicates the
maximum supported number of samples for multi-sampling you can have.

To change the multi-sample anti-aliasing:

* Select Display > Anti-Aliasing > Off - multi-sample anti-aliasing is not applied.

« Select Display > Anti-Aliasing > Quarter - a quarter of the maximum supported number of samples are
applied.

* Select Display > Anti-Aliasing > Half - half the value of the maximum supported number of samples are
applied.

« Select Display > Anti-Aliasing > Full - the full value of the maximum supported number of samples are
applied.

Note: Full-quality MSAA may have a negative impact on real-time performance on lower-end
machines.

Tip: Visit http://opengl.gpuinfo.org/ to search the value for your graphics card.

To change the anti-aliasing for lines and points:
« Select Display > Smoothing > Off - anti-aliasing is not applied to either points or lines.

» Select Display > Smoothing > Points - toggles point anti-aliasing in the Viewer.

USER GUIDE
259

http://opengl.gpuinfo.org/

Viewing Your Scene | Using the OSG Viewer

« Select Display > Smoothing > Lines - toggles line anti-aliasing in the Viewer.

To change how proxies are displayed:
* Select Display > Proxies > Bounding Box (or press Ctrl+B) - only proxy bounding boxes are displayed.
« Select Display > Proxies > Geometry (or press Ctrl+G) - only proxy geometry is displayed.

« Select Display > Proxies > Both (or press Ctrl+Shift+G) - both proxy geometry and proxy bounding
boxes are displayed.

Note: If no proxies have been associated with the geometry, bounding boxes are not
automatically calculated.

By default the Viewer tab highlights (with a white wireframe) the location(s) that are currently selected.

To change the way Katana displays selected locations, select Display > ... while selected > ...

Note: Any display changes made only affect locations while they are selected.

For some scenes with complicated geometry or lighting it may make sense to lower the display quality while
dragging geometry or lights around the scene.

To change the way Katana displays the scene while dragging, select Display > ... while dragging > ...

Note: Any settings within this menu override the default display behavior while something within
the viewer is being dragged.

USER GUIDE
260

Viewing Your Scene | Using the OSG Viewer

The background color for the tab can be changed to make the scene easier to read, to reduce eye fatigue, or
to better match the background color when rendered.

To change the background color, select Display > Background Color > ...:
* Black (or press T)

* Gray (or press Alt+T)

« White (or press Shift+T)

Setting Different Display Properties
for Some Locations

You can override the currently selected display method for a number of locations within the Viewer tab
using the ViewerObjectSettings node. To change how one or more locations are displayed:

1. Add a ViewerObjectSettings node to the recipe at some point before the current view node.
2. Select the ViewerObjectSettings node and press Alt+E.
The ViewerObjectSettings node becomes editable within the Parameters tab.

3. Assign the scene graph geometry locations of the objects to influence to the CEL parameter. See
Assigning Locations to a CEL Parameter for more on using CEL parameter fields.

4. Setany changes to how the locations should be displayed using the node’s parameters. The following
display options can be set:

(in the drawOptions parameter grouping)
« hide - when set to Yes, the selected locations are hidden (as are their children).

« fill - changes how the location is displayed, as points, as a wireframe, as a solid, or to use the
Viewer's default render type (inherit).

« light - changes the lighting model to either the simple shaded model (default) or the current viewer
shader (shaded). When set to shaded, the default viewer shader is used if none is currently assigned.
Changing an object or lights viewer shader is done in the same way as assigning any other shader. See
Material Basics for more information.

« smoothing - changes whether locations have aliasing. You can have aliasing on points, lines, or both
(or it can be turned off).

USER GUIDE

Viewing Your Scene | Using the OSG Viewer

« windingOrder - sets whether the location should be drawn with a clockwise or counterclockwise
winding order. The correct value depends on how the imported geometry was exported from its
original package.

« pointSize - when displaying the location using the points display type, this option sets the size of the
points.

For example, the following image shows two objects, both of which have the same PRMan and Viewer
Shader material applied. The Viewer is in Shaded (raw) mode, so each object is lit, and textured.

The next image shows the same scene, with the addition of a ViewerObjectSettings node. The CEL in the
node points to the pony, and the drawOptions parameters fill setting is set to Wireframe. The Viewer's
draw mode for the pony object is overridden.

(in the annotation parameter grouping)
« text - displays this text with the location.
« color - the background color of the annotation text.

« pickable - when set to No, you can no longer select the object in the Viewer.

USER GUIDE
262

Viewing Your Scene | Using the OSG Viewer

For example, the following image shows two objects, both of which have the same PRMan and Viewer
Shader material applied. There is a ViewerObjectSettings node overriding the Viewer mode for the pony, and
showing a label with the contents of the text field in the annotation parameters. The background color of
the label is taken from the color field in the annotation parameters.

Overriding the Display Within a Specific Tab

You can change the shading settings in a specific tab to reduce or improve the quality. This is useful when
positioning a light in one tab while viewing the effect in another.

To change a Viewer tab’s display, use the Options menu in the bottom-left of the tab. Each menu option
corresponds to a similar one under the Display menu and acts as an override. To remove any override use
No Change.

Stepping Through the Selection
History

Katana tracks what is selected in the scene graph. You can step backward and forward through this selection
history.

To step backward through the selection history, select Selection > History Backward (or press Backspace).

To step forward through the selection history, select Selection > History Forward (or press
Shift+Backspace).

USER GUIDE
263

Viewing Your Scene | Using the OSG Viewer

Changing the View Position

You can change which object you are viewing through and that object’s position and orientation. This makes
light and camera positioning easy. To change the view's current position and orientation:

Shortcut Action

Alt+left-click and drag Tumbles the view around its center of interest.
Alt+middle-click and drag Tracks the view.

Alt+right-click and drag Dollies the view forward (drag right) and back (drag left).

Note: Looking through a location with no xform attribute does not allow you to move the object
within the Viewport. To enable transformation of a scene graph location, add a Transform3D node
and assign the location to the node’s path parameter.

Note: In many Linux windows managers, the Alt key is used by default as a mouse modifier key.
This can cause problems in 3D applications where Alt is used for camera navigation in 3D
environments.

You can use key mapping to assign the mouse modifier to another key, such as the # (Super or
Meta) key, but the method changes depending on which flavor of Linux you're using. Please refer
to the documentation on key mapping for your particular Linux distribution for more information.

Choosing a Light or Camera to Look
Through

The view from a viewport comes from either a light or a camera. You can change the view to a different light
or camera to make placement easier or to help with composition. To set this:

1. Click the text at the bottom of the Viewer (such as perspShape).

This brings up a list of available lights and cameras.

USER GUIDE

Viewing Your Scene | Using the OSG Viewer

2. Filter the list to find the camera or light you want. To filter the list you can:
« Uncheck the Cameras checkbox to remove cameras from the list.
* Uncheck the Lights checkbox to remove lights from the list.
« Type text into the Filter field to only display items that contain the text.

3. Select the required light or camera from the list.

Alternatively, you can also:
1. Click the text at the bottom of the Viewport (such as perspShape).
This brings up a list of lights and cameras.
2. Click New persp view to look through a new perspective camera.
The camera and lights displayed in the filter list are populated in four ways:
« Cameras from the globals.cameralist at the /root/world location.
« Lights from the lightList attribute at the /root/world location.

« The default four cameras (persp, top, front and side) along with any new cameras created with the
New- persp view button in the filter list.

* The current render camera (such as set with the RenderSettings node).

Note: Cameras with a scene graph location can be identified by the @ icon by their name in the
filter list.

Selecting the View from the Camera List

1. Click @ to bring up the camera list.

2. Type text into the Filter field to only display cameras that contain the text.
3. Select the camera to look through from the list.

Alternatively, you can also:

1. Click @ to bring up the camera list.

2. Click New persp view to look through a new perspective camera.

Selecting the View from the Light List

1. Click [ij to bring up the light list.
2. Type text into the Filter field to only display lights that contain the text.

USER GUIDE
265

Viewing Your Scene | Using the OSG Viewer

3. Select the light to look through from the list.

1. Select the scene graph location to look through.

2. Click ®

Tip: Text entered into the Filter field of the view selection dialogs may contain some basic regular
expression patterns, such as ranges [a-Zz].

Tip: If you want to look through a particular object, you can select it in the Viewer and click ® o
press V when the object is selected.

Looking Around the Viewport by
Offsetting and Overscanning

Looking around the Viewport without actually moving the camera is especially useful when a camera has
been brought in from another package - representing a camera track for instance - and you don't want to
change its position or orientation.

To look around inside the Viewport:

1. Click $ to bring up the pan/zoom toolbar.
2. To make changes to the current view:
* Type in the hOff field to pan left (negative value) or right (positive value).
« Type in the vOff field to pan up (positive value) or down (negative value).
« Type in the overscan field to zoom in (value between zero and one) or out (value above one).

3. Click Reset to restore defaults.

Tip: All three text fields can be scrubbed by dragging on their names.

USER GUIDE

Viewing Your Scene | Using the OSG Viewer

While you have the toolbar up the Pan-zoom active warning text is displayed in the top-left corner of the
Viewport. When hOff, vOff, or overscan values change from their defaults, Katana displays a warning icon

on the left of the toolbar.

Changing What is Displayed Within
the Viewport

Customizing the Viewer or individual viewports to only display the information you need can help speed up
your workflow.

Objects within the Viewer can be hidden from view. To do this:
1. Select the object(s) within the Viewer (or select the locations within the Scene Graph tab).

2. Select Selection > Hide (or press H).

Elements are hidden is displayed in all viewports when one or more objects are hidden. If you want to make
all hidden objects visible again, select Selection > Unhide All (or press U).

Subdivision surfaces (Subds) are a form of polymesh that allows greater detail to be defined in certain areas
of a mesh while keeping the rest of the mesh at a rough lower level.

To change the displayed level of a subdivision surface:
1. Select the object(s) you want to change.

2. Select Selection > Subd Level ... (or press 0, 1, 2, or 3).

Note: Use higher levels of subdivision with caution as they can be expensive to calculate.

USER GUIDE

Viewing Your Scene | Using the OSG Viewer

Katana displays a grid to help you get a sense of scale, the origin’s location, and the orientation of the XZ
plane.

To toggle displaying the grid, select Display > Grid (or press G).

Using Manipulators

Manipulators provide a visual way for you to edit parameters of applicable nodes in the node graph that
contribute to the selected scene graph location. Each manipulator is only available for locations created by
nodes that have a parameters corresponding to that manipulator. For example, if you select a location in the
scene graph, you can only move it with a translation manipulator in the Viewer if the nodes that create it
have parameters that map to an interactive transform, such as a light created by a GafferThree or LightCreate
node, a primitive created by a PrimitiveCreate node, or a mesh with a Transform3D node targeted to its
scene graph location.

Toggling Manipulator Display

Manipulator Description Example

No Select Manipulators > No Manipulator to remove enabled manipulators
Manipulator of any kind.

No Transform Selected Manipulators > No Transform Manipulator, or press Q, to
Manipulator remove any enabled transform manipulators.

USER GUIDE

268

Manipulator
Translate

Translate
(world)

Rotate

Rotate (world)

Scale

No Tool
Manipulator

Viewing Your Scene | Using the OSG Viewer

Description Example

Select Manipulators > Translate (or press W) to toggle the local space
translate manipulator on or off.

Select Manipulators > Translate (world) (or press S) to toggle the world
space translate manipulator on or off.

Select Manipulators > Rotate, or press E, to toggle the local space
rotation manipulator on or off.

Select Manipulators > Rotate (world), or press D, to toggle the world
space rotation manipulator on or off.

Select Manipulators > Scale, or press R, to toggle the scale manipulator
on or off.

Select Manipulators > Measurement Tool to remove the measurement
tool manipulator from the viewer.

USER GUIDE

269

Viewing Your Scene | Using the OSG Viewer

Manipulator Description Example

Measurement Select Manipulators > Measurement Tool, or press Tab, to display a
Tool measurement manipulator in the viewer.

This tool isn't linked to your selected object, but can be used to measure
the placement of the object when transforming.

To remove the measurement tool, you can select No Tool Manipulator or
No Manipulator from the dropdown menu, however, selecting No
Manipulator also clears all other manipulators displayed in the viewer.

Pin Select Manipulators > Pin [manipulator type], or press P, to pin the

Manipulator manipulator in the viewer so that its geometry and handles can still be
drawn and made available when choosing a different manipulator from
the same group. For example, this allows you to keep the geometry of a
Cone Angle manipulator for a spot light visible, while modifying the light's
properties with the Decay Regions manipulator.

The Pin [manipulator type] label changes depending on what
manipulator is selected. If no manipulator is selected, the labels displays as
Pin Manipulator in the dropdown menu.

Increase Size Select Manipulators > Increase Size, or press = (equal sign), to increase
the size of the manipulator in relation to the selected object.

USER GUIDE

270

Viewing Your Scene | Using the OSG Viewer

Manipulator Description Example

Decrease Size Select Manipulators > Decrease Size, or press - (minus sign), to decrease
the size of the manipulator in relation to the selected object.

Selected Object: Light
The following manipulator options are only available if the selected object in the viewer is a light.

There are also light-specific options in the manipulators dropdown menu, however these are largely
renderer-specific and are not defined by Katana.

Please consult your renderer's documentation for information regarding these options.

Center of Select Manipulators > Center of Interest, or press W, to toggle the
Interest center of interest manipulator.

This allows you to adjust where the center of interest lies before
transforming a light based on the center of interest, or COI.

Translate Select Manipulators > Translate Around COI, or press S or Tab, to
Around COI toggle the translate around center of interest manipulator on or off.
USER GUIDE

271

Viewing Your Scene | Using the OSG Viewer

Manipulator Description Example

Rotate Around Select Manipulators > Rotate Around COI, or press E or Tab, to toggle
col the local rotate around center of interest manipulator on or off.

Rotate Around Select Manipulators > Rotate Around COI (world), or press E or Tab, to
COl (world) toggle the world rotate around center of interest manipulator on or off.

Note: Selecting Rotate Around COI sets the rotate Manipulator
to the position of the center of interest of the selected object,
oriented to the local space of the selected object.

Toggling Annotation Display
Some manipulators have Annotations to display parameter values. You can turn these Annotations off.
To toggle displaying Annotations for manipulators, select Display > Annotations (or press Shift+~).

For example, selecting a light of type KatanaSpotlight, then selecting Manipulators > Barn Door shows
the interactive Manipulators for the lights barn door parameters, along with Annotations showing the barn
door parameter names, and their values.

If you select Display > Annotations (or press Shift+~), the Annotations are removed, but the Manipulator
remains.

USER GUIDE
272

Viewing Your Scene | Using the OSG Viewer

Toggling the Heads Up Display
(HUD)

Within Katana each Viewer tab has its own axis orientation guide in the bottom-left corner. The default
perspective camera (and any other perspective cameras made with the New persp view button) has a
manipulator in the top-right corner to change the cameras position to a view axis, or three quarter view,
centered on the current selection. You can hide these features.

To toggle the display of the Heads Up Display (HUD), select Display > HUD.

Displaying Normal Information
Within the Viewer

Katana gives you the ability to display object normals. To toggle normal display within the Viewer select
Display > Normals (or press N).

To change the normals display length:
« select Draw Normals > Scale ..., or

« enter the required normal size in viewerSettings.normalsDisplayScale in the Project Settings tab.

USER GUIDE

Viewing Your Scene | Using the OSG Viewer

Transforming an Object in the
Viewer

Using translation Manipulators you can move, rotate, and scale objects within the Viewer. With the Quick
Editor you can change the translation Manipulator’s coordinate systems, plane axis, and whether the
Manipulator snaps. You can also manually type values for any parameters represented by the Manipulator.
To display the Quick Editor, make sure you have nothing selected, select the menu option Layout > Show
Quick Editor (or press the A key). Then select an object, and a Manipulator to modify that Manipulator’s
settings.

For example, activate Snap on the Translate Manipulator, and snap one primitive onto another.
Create a Primitive using a Primitive Create node.

Add another Primitive, using a Primitive Create node.

Create a Merge node, and connect each Primitive to it.

Move one Primitive away from the other.

Select Layout > Show Quick Editor (or press the A key).

Select the Primitive you want to snap onto the other.

Select Manipulators > Translate (or press W).

Expand the Translate Options group, and change the Snap option to Centroid.

© o N o v oA W=

Drag one Primitive over the other, and it Snaps to the Centroid of the second Primitive.

USER GUIDE
274

Viewing Your Scene | Using the OSG Viewer

Note: Depending on your screen resolution, you may need to expand the size of the Quick Editor
to see all of the available options. To expand the Quick Editor window, left-click and drag on its
border.

To translate an object in its local coordinate system:
1. Select the object to translate.

2. Select Manipulators > Translate (or press W).

To translate an object in the world coordinate system:
1. Select the object to translate.

2. Select Manipulators > Translate (world) (or press S).

To rotate an object in its local coordinate system:
1. Select the object to rotate.

2. Select Manipulators > Rotate (or press E).

To rotate an object in the world coordinate system:
1. Select the object to rotate.

2. Select Manipulators > Rotate (world) (or press D).

Note: Pressing D a second time makes the rotate (world) manipulators appear around the Center
of Interest (COI).

To scale an object:
1. Select the object to scale.

2. Select Manipulators > Scale (or press R).

To remove all transform manipulators, select Manipulators > No Transform Manipulator (or press Q).

Manipulating a Light Source

In addition to the translation and rotation Manipulators covered in Using Manipulators. Katana offers
Manipulators to interactively adjust light parameters. Some parameters easily changed with a Manipulator
are: barn doors, the cone angle, decay regions, and its Gobo. The light itself must have the required
parameters in order to use the manipulator, for instance you cannot use the barn door manipulator on a
light, which does not support barn doors (the menu option would not be displayed).

USER GUIDE
275

Viewing Your Scene | Using the OSG Viewer

Note: Custom lights need to both support the function represented for a Manipulator to show,
and have matching parameter names.

Manipulating the Barn Doors for a Light

1. Select the light to manipulate.
2. Select Manipulators > Barn Door.

3. Move one or more of the nine square manipulators to the desired position.
Right Top | 1.00

Top Right | 0.00

Bottom Right = 1.00

Right Bottom @ 1.00

Left Top = 0.00

Top Left | 0.00

I'\I_
Bottom Left L

Left Bottom | 0.00

Note: Each parameter is defined by a value between 0 and 1.

Changing a Light's Center of Interest

1. Select the light to manipulate.
2. Select Manipulators > Center of Interest.

3. Move the circular manipulator to where you wish the light to point.

Changing a Light's Cone Angle

1. Select the light to manipulate.

USER GUIDE
276

Viewing Your Scene | Using the OSG Viewer

2. Select Manipulators > Cone Angle.

3. Move the two manipulators to change the inner and outer cone angles.

Outer Angle | 70.00

Inner Angle | 60.00

{f
L

T

Changing a Light's Decay Regions

1. Select the light to manipulate.
2. Select Manipulators > Decay Regions.

3. Move the four manipulators to change the distance of the decay regions from the light source.

Far Start

Far End | 40.00

O

Near End @ 20.00

o,

¢)

Near Start | 10.00

USER GUIDE
277

Viewing Your Scene | Using the OSG Viewer

Scaling and Positioning a Lights Gobo

1. Select the light to manipulate.

2. Select Manipulators > Slide Map.

3. Move the Gobo with the translate manipulators.
4

Scale the Gobo with the scale manipulators.

Scale T 1.00

L ScaleS 1.00
J

Offset T | 0.00 | —

Rotate | 0.00

Offset S | 0.00

Rotating the Light Around Its Center of Interest

1. Select the light to manipulate.
2. Select Manipulators > Rotate Around COIl.

3. Use the rotate manipulator to move the light around the center of interest.

Moving the Light While Keeping it Pointed at Its Center of Interest

1. Select the light to manipulate.
2. Select Manipulators > Translate Around COIl.
3. Move the light with the translate manipulator.

The light remains pointed towards its center of interest.

USER GUIDE
278

Viewing Your Scene | Using the OSG Viewer

Positioning a Light so Its Specular Highlight is at a Specific Point

Use Manipulators > Place Specular to position a selected light at the Center of Interest (COIl) distance from
a selected point on a surface, with the light's Z axis aligned with the surface Normal at that point. For
example, create a primitive sphere, and a spotlight, then use Place Specular to position and orient the light.

1. Create a Primitive using a PrimitiveCreate node, and leave the type as the default Sphere.
2. Create a GafferThree node and add a light of type KatanaSpotlight.

See Creating a Light Using the GafferThree Node for information on how to add lights to your scene
using a GafferThree node.

3. Edit the centerOfinterest parameter of your light, to a distance of your choice.

4. Create a Merge node and connect the Primitive and GafferThree nodes to it.
5. Expand the scene graph at the Merge node and view your Katana Spotlight, and Primitive in the Viewer.

See Viewing the Scene Graph for information on viewing the scene graph.

USER GUIDE
279

Viewing Your Scene | Using the OSG Viewer

Select your light in the Scene Graph tab, or by clicking on its icon in the Viewer tab.
In the Viewer tab, select Manipulators > Place Specular.
Click on the surface of the sphere, where you want the specular highlight to display.

Katana moves the selected light to a point coincident with the chosen point on the surface, aligned with
its Z axis parallel to the surface Normal, and translated the COI distance along Z.

If you set the Viewer to look through your camera, you'll see that - with Place Specular active - you can
click on the sphere in the Viewer where you want the specular highlight to appear, then render, and the
light position and orientation adjust accordingly.

See Choosing a Light or Camera to Look Through for information on how to set the Viewer's look through
object.

USER GUIDE

280

Viewing Your Scene | Using the OSG Viewer

Tip: To move forward through the light manipulator list, press the Tab key. To move backward
through the list, press Shift+Tab. To have no light manipulator, press Shift+Q.

Using Stereo Cameras in the OSG
Viewer

When designing scenes for stereo displays, you may need to preview each side of the view (left eye/right
eye) to make appropriate adjustments. To support this, the OSG Viewer has stereo mode controls. These
allow you to assign a left and right camera in addition to the main camera. You can then switch the viewpoint
between your main, left, and right cameras.

Note: To use stereo mode you must have a rig with the left and right cameras in place. For
example, you can add and name cameras using CameraCreate nodes, or you can import a pre-
configured rig.

The OSG viewer also provides a stereo option to view your scene stereoscopically as an anaglyph. The scene
is represented as two separate images (red and cyan), which are seen as a single 3D image when viewed with
3D glasses.

Using the Stereo Controls

1. Click the - stereo controls toggle to reveal the controls.

WZameraleftShape 3 .../sterenCameraRightShape

frontShape

2. The selector on the left (labeled 'Selector' in the diagram above) lets you choose the view camera. The
selector has three options: Main, Left, Right, and Stereo.

USER GUIDE

Viewing Your Scene | Using the Hydra Viewer

Left and Right correspond to the two cameras that are selected in the left and right camera dropdowns
(to the right of the camera selector). Click on these dropdowns to change the left and/or right camera
selection.
The Main camera corresponds to the one shown in the camera selector (labeled ‘Main camera' in the
diagram) at the bottom of the viewer.

3. You can see an anaglyph of the scene by selecting Stereo. This draws a stereoscopic 3D version of the
scene using red and cyan images for viewing through compatible glasses.

fstereoCameraRightShape

Using the Hydra Viewer

Katana's Hydra Viewer presents a fast and flexible way of previewing locations in the scene graph. There are
several features unique to the Hydra Viewer, including:

e Performance Improvements - The Hydra Viewer is several order of magnitudes faster than the
OSG Viewer when drawing geometry.

» Center of Interest - A fully controllable point of origin for light and camera transforms.

» Group transforms -Select groups of objects and apply transforms using a single manipulator.

* Geometry subdivision - Draw geometry to three levels of subdivision.

USER GUIDE
282

Viewing Your Scene | Using the Hydra Viewer

The Viewer (Hydra) tab provides one or more 3D windows into the scene described by the scene graph.
Only locations that are exposed within the Scene Graph tab are represented in the Viewer - the exception
being pinned locations.

You can interactively modify parameters, on some nodes contributing to a scene graph location, using
Manipulators within the Hydra Viewer. The manipulators available vary depending on the scene graph
location selected, and the nodes that created it.

To access the Hydra Viewer, navigate to Tabs > Viewer (Hydra).

The Viewer (Hydra) incorporates Lighting Tools, an enhanced lighting environment for artists. For full
information about Lighting Tools workflows, see Lighting Tools.

Changing the View Position

You can change which camera or light you are viewing through and their position and orientation. This
makes light and camera positioning easy. To change the view's current position and orientation:

Shortcut Action

Alt+left-click and drag Tumbles the view around its center of interest.
Alt+middle-click and drag Pans the view.

Alt+right-click and drag Dollies the view forward (drag right) and back (drag left).

Note: Looking through a location with no xform attribute does not allow you to move the object
within the Viewport. To enable transformation of a scene graph location, add a Transform3D node
and assign the location to the node’s path parameter.

Note: In many Linux windows managers, the Alt key is used by default as a mouse modifier key.
This can cause problems in 3D applications where Alt is used for camera navigation in 3D
environments.

You can use key mapping to assign the mouse modifier to another key, such as the # (Super or

Meta) key, but the method changes depending on which flavor of Linux you're using. Please refer
to the documentation on key mapping for your particular Linux distribution for more information.

USER GUIDE

)
09)
o

Viewing Your Scene | Using the Hydra Viewer

Changing What You Look Through

The view from a viewport comes from either a light or a camera. You can change the view to a different light
or camera to make placement easier or to help with composition. To set this:

1. Click the text at the bottom of the Viewer (Hydra) tab (such as persp).

This brings up a list of available lights and cameras.

Note: The default cameras are persp, side, front, and top.

2. Filter the list to find the camera or light you want. To filter the list you can:
« Uncheck the Cameras checkbox to remove cameras from the list.
Cameras with a scene graph location can be identified by the @ icon in the filter list.
« Uncheck the Lights checkbox to remove lights from the list.
Lights with a scene graph location can be identified by the ? icon in the filter list.

« Type text into the Filter field to only display items that contain the text.
Text entered into the Filter field of the view selection dialogs may contain some basic regular
expression patterns, such as ranges [a-z].

USER GUIDE
284

Viewing Your Scene | Using the Hydra Viewer

Viewer (Hydra)

View Manipulators Ei‘ #

Change the viewto a
differentlight or
camera.

3. Select the required light or camera from the list.

Note: The camera and lights displayed in the filter list are populated in four ways:
« Cameras from the globals.cameralList at the /root/world location.

« Lights from the lightList attribute at the /root/world location.

« The default four cameras (persp, side, front and top).

« The current render camera (such as set with the RenderSettings node).

Pan and Zoom

The Horizontal/Vertical Offset (pan) and Zoom controls allow you to adjust the Viewport position without
actually moving the camera. This is useful when a camera has been loaded from another package (such as
when representing a camera track) and you don't want to change its position or orientation.

USER GUIDE
285

Viewing Your Scene | Using the Hydra Viewer

Note: The render window bounding box (the view from the render camera) is shown in the
viewport using a green dotted box.

To pan and zoom the selected camera in the Hydra Viewer:

1. Click & to bring up the pan/zoom controls.

2. To make changes to the current view:

« enter a parameter value to jump to that position, or

« click-and-hold on the parameter label and slide (scrub) the mouse left or right.

Parameters include:
« Horizontal Offset - pan left (negative value) or right (positive value).
« Vertical Offset - pan up (positive value) or down (negative value).

« Zoom - Zoom in (1 and above) or out (0 to 1).

Tip: All three text fields can be scrubbed by dragging on their names.

USER GUIDE
286

Viewing Your Scene | Using the Hydra Viewer

3. Click Reset to restore defaults.

If offset and zoom values are non-zero, Katana displays a warning icon on the left of the toolbar to

indicate that a transform is active.

Selecting Objects and Faces

Video: Watch this short video to learn how to select faces and objects in the Hydra Viewer.

Selecting Faces

To select faces on your geometry:

1.

In the Viewport, click an object.

Click the Select Faces '%?button to enable the Face Selection mode ‘%

Your object displays in a blue color showing that the Face Selection mode is enabled.
Select faces on your object using the marquee tool.

Your object displays the selected faces in an orange color.

Hold Ctrl + Shift to select additional faces.

USER GUIDE

https://www.youtube.com/watch?v=vNze1s67HXs

Viewing Your Scene | Using the Hydra Viewer

5. Hold Shift and then click and drag on selected faces to invert the selection.

Deselecting Faces

To deselect faces you can either:

« Deselect some faces by holding Ctrl and dragging your cursor over the selected faces.

OR

« Click in the Viewport to undo your face selection all together.

Selecting Objects

To select an object:

Click the Select Objects = button to enable the Object Selection mode and click an object in the
Viewport.

To select multiple objects:

1. Click the Select Objects = button to enable the Object Selection mode
2. Inthe Viewport, hold Shift and select objects in the Viewport.

USER GUIDE
288

Viewing Your Scene | Using the Hydra Viewer

Note: Click in the Viewport to deselect object(s).

Using Manipulators in the Hydra
Viewer

Katana's Hydra Viewer lets you change the size and position of objects and viewpoints, as defined in the
scene graph.

A manipulator is only available for locations (created by nodes) that have compatible parameters. For
example, if you select a location in the scene graph, you can only move it with a translation manipulator if
the nodes that create it have parameters that map to an interactive transform, including:

« a light created by a GafferThree or LightCreate node,
* a primitive created by a PrimitiveCreate node, and

« a mesh with a Transform3D node targeted to its scene graph location.

Activating Manipulators

You can activate a manipulator using the Manipulators menu, keyboard shortcuts, or the button panel on
the left of the Viewer (Hydra) tab.

No manipulator

Translate

Rotate

Scale

Click and drag the manipulator to use it.

USER GUIDE
289

Viewing Your Scene | Using the Hydra Viewer

Translate, Rotate, Scale

ranslate - click the translate button or select Manipulators > Translate or
ress W

otate - click the rotate button or select Manipulators > Rotate or press E

cale - click the scale button or select Manipulators > Scale or press R

To deactivate a manipulator, select Manipulators > No Manipulator or press Q.

Transforming Multiple Objects

The Hydra Viewer allows you to move multiple objects simultaneously. Simply select multiple objects and
transform one of the objects. The other selected objects will follow the movement.

USER GUIDE
290

Viewing Your Scene | Using the Hydra Viewer

The Center of Interest (COI)

The Center of Interest provides an origin around which to transform a light or camera. This makes it easy to
direct a camera or light towards a particular object or region by moving the COI.

Video: Watch this video to learn more about using the Center of Interest.

Activate the Center of Interest by pressing the Center of Interest button, using Manipulators > Center of
Interest, or pressing T.

1. Select an object in the Viewer or its location in the scene graph.
2. Click on the COI button or press T.

USER GUIDE
291

https://www.youtube.com/watch?v=QKBBM4BrBlg

Viewing Your Scene | Using the Hydra Viewer

S

3. Translate or rotate the COI by interacting with the manipulators. The selected object will move relative to
the position of the COI.

You can select multiple objects to move using a single COl. When you move the COI each object's own
COlI will be moved relative to the movements of the COI that you are controlling. When selecting multiple
objects, the last objected selected will show its COI manipulator.

1. In the Scene Graph, Ctrl and click the objects that you wish to transform. The last object clicked is the
one that shows its COl manipulator.

2. Manipulate the COIl as needed. The objects will follow.

Object and World Space

You can translate or rotate an object in either object space or world space. Object space is described in
relation to the local coordinate system of the object. World space is fixed, common to all objects, and
described by the co-ordinate system around the origin of the world in which the objects are located.

Video: Watch this video to learn more about using Object and World space in Katana's Hydra
viewer.

In the Hydra Viewer you can toggle between the spaces using the buttons at the top of the viewer or using
the S key.

USER GUIDE
292

https://www.youtube.com/watch?v=AIZubHtgRCo

Viewing Your Scene | Using the Hydra Viewer

iew Manipulators ET it Select Wiew Manipulators

Object Space World Space

Translation and rotation occurs relative to the local Translation and rotation occurs relative to the world
coordinate system. coordinate system.

Manipulator Preferences

In Katana's main menu, open Edit > Preferences and select hydraViewer. There are two parameters for
adjusting manipulator settings:

- manipulationFreezePeriod - The Hydra Viewer delays the processing of interactive upd ates for a short
period of time. This allows updates to be processed in batches, and increases responsiveness. This setting
determines the length of this delay in milliseconds.

« scale - Adjust the size of the manipulators.

Geometry Display Options

To change the overall shading model, select View > [shading model]:

USER GUIDE

Viewing Your Scene | Using the Hydra Viewer

Viewer Behavior Example

* Points - this displays the current 3D scene with each vertex (or
control point for a NURBS patch) as a point.

* Wireframe - this displays the current 3D scene with each edge (or
surface curve for a NURBS patch) as a line.

USER GUIDE
294

Viewing Your Scene | Using the Hydra Viewer

Viewer Behavior Example

* Solid - this displays the current 3D scene with a very simple
shader, ignoring scene lights and shadows.

« Flat Shaded - this displays the faceted mesh. Each poly is shaded
the same for its normal, whereas Solid averages out the values
between neighboring polygons to draw a smooth transition.

The Monitor Layer in the Hydra
Viewer

The Monitor Layer is a new feature of Katana 3.5 which allows you to toggle a render view directly in the
Hydra Viewer, overlaying the geometry. This feature is especially useful when working with live renders, as
your render overlay will be constantly updated as you make changes to the scene or as you zoom, pan and

USER GUIDE
295

Viewing Your Scene | Using the Hydra Viewer

rotate within the viewer. This allows for more precision while you are working, as you don't need to switch
back and forth between the Monitor tab and the Hydra Viewer tab.

Monitor Layer Turned On

Monitor Layer Turned Off

While the Monitor Layer is turned on, you can still make selections within the viewer and the selection
feedback is integrated with the rendered image.

USER GUIDE
296

Viewing Your Scene | Using the Hydra Viewer

The Monitor Layer creates a smoother workflow for artists, as you can maximize the Hydra Viewer tab and
have a more focused Ul, giving full editing control.

Using the Monitor Layer in the Hydra Viewer

To turn on the Monitor Layer in the Hydra Viewer tab, click the Monitor Layer button . or press ~ on the
keyboard.

Note: You must have started a render for the overlay to appear. For more information about
rendering, see Performing a Render.

Once turned on, the following additional controls are shown in the Hydra Viewer tab:

Image-Based Color Space Selection

Selection Monitor Layer

Region of Interest AOV Selection

View Transform

» Monitor Layer button - Use this button to toggle the Monitor Layer on and off. When on the button

will appear yeIIowi, and when off the button will appear gray .
e AOV selection button - Use this dropdown to select which AOV to display in the Monitor Layer.

Note: You can cycle through the AOVs in the Monitor Layer using Shift+Page Down to
move through the list from first to last, and Shift+Page Up to move from last to first. You
can also use Shift+Home to toggle between the default AOV and a previously selected
AOV.

» Color Space selection button - Use this dropdown to select which color space you would like to view
your render in.

» View Transform toggle button - Use this button to toggle on and off the view transform to the
selected Color Space.

USER GUIDE
297

Viewing Your Scene | Using the Hydra Viewer

» Image-Based Selection button - Use this button to toggle Image-Based Selection mode. For more
information, see Image-Based Selection in the Monitor Layer.

» Region of Interest - Use this to set a region of interest to render. For more information, see
Rendering a Region of Interest (ROI).

Image-Based Selection in the
Monitor Layer

Scenes rendered in Katana include scene graph location information for each pixel in the rendered image.
Image-Based Selection allows you to access this information when viewing a render from the Monitor Layer
within the Hydra Viewer.

Note: Information for Image-Based Selection is generated by default when rendering in Katana.
You can turn this off by going to:
Edit > Preferences > monitor and disabling renderIDPass.

This can be very useful especially when working with existing renders stored in the Catalog tab. While
working in the Node Graph, you may want to access an object's scene graph location to construct CEL
statements, without having to load any heavy geometry.

How to Use Image-Based Selection

Image-Based Selection is activated from the Hydra Viewer tab and is only available when the Monitor Layer
is enabled and a render is loaded.

1. Click the Monitor Layer button . or press (backtick) on the keyboard to activate the Monitor
Layer.

USER GUIDE
298

Viewing Your Scene | Using the Hydra Viewer

The following additional controls are shown in the Hydra Viewer tab:

Image-Ba cad Color Space Selection

Selection Maonitor Layer

Region of Interest AOV Selection

View Transform

Note: For more information about the Monitor Layer, see The Monitor Layer in the Hydra
Viewer.

2. Click the Image-Based Selection button or press | on the keyboard to activate Image-Based
Selection. You can also press and hold the I key to temporarily activate Image-Based Selection.

USER GUIDE
299

Viewing Your Scene | Using the Hydra Viewer

You can now interact with the image and you can no longer select geometry. The geometry does not
need to be loaded in the scene for you to make a selection using Image-Based Selection mode.

The hover selection is drawn with a yellow outline.

Note: The color used for highlighting the target selection can be customized by going to:
Edit > Preferences > viewerHydra > monitorLayer > highlightColor

. Left-click to make a selection. For more selection controls, see the Selection Methods section of this
topic.

USER GUIDE
300

Viewing Your Scene | Using the Hydra Viewer

The selection is drawn with a yellow outline and diagonal hatching.

Note: The color used for highlighting the target selection can be customized by going to:
Edit > Preferences > viewerHydra > monitorLayer > selectionColor

The scene graph location is selected in the Scene Graph if the selected geometry is loaded in the
scene.

Note: If the selected geometry is not loaded in the scene, you can press Ctrl + E over the
Hydra Viewer to expand the locations in the Scene Graph.

USER GUIDE

Viewing Your Scene | Using the Hydra Viewer

rFa
-

Mame

[+ J < I < o< I« O < I < |

o
L3 camera

This scene graph selection can be used in CEL widgets through Add Statements > Append Scene
Graph Selection / Replace with Scene Graph Selection.

Note: The geometry does not have to be loaded in the scene to use the Append Scene
Graph Selection and Replace with Scene Graph Selection options.

Add Statements =

USER GUIDE

w
-
N

Viewing Your Scene | Using the Hydra Viewer

Add Statements =

Single scene graph location from selection

Note: For more information, refer to the CEL Reference document found on the
documentation HTML page (accessed through Help > Documentation) or the Scene Graph
Location Widget Type section of the Common Parameter Widgets topic.

Selection Methods

When Image-Based Selection is active, selections can be made in a variety of ways:

» Left-Click - Single selection.
 Left-Click + drag - Marquee selection.

USER GUIDE

Viewing Your Scene | Using the Hydra Viewer

« Shift + Left-Click / Shift + Left-Click + drag - Toggle selections.
This inverts your selection.
o Ctrl+ Left-Click / Ctrl+ Left-Click + drag - Remove selections.

o Ctrl+Shift + Left-Click / Ctrl+Shift + Left-Click + drag - Append selections.

This adds to your selection.

USER GUIDE

Viewing Your Scene | Using the Hydra Viewer

e Click on an empty area to deselect everything.

Multiple scene graph location selections can be used in CEL widgets in the same way, through Add
Statements > Append Scene Graph Selection / Replace with Scene Graph Selection.

USER GUIDE
305

Viewing Your Scene | Using the Hydra Viewer

MName

Add Statements =

Multiple scene graph locations in CEL widget

USER GUIDE

Viewing Your Scene | Using the Hydra Viewer

Snapping

Snapping in the Hydra Viewer is a new feature of Katana 3.6, allowing you to snap an object's Translate or
Center of Interest manipulator to a target location's individual Vertices, Edges, Faces, Center or Object.
Snapping can be turned on and off using the Snapping tool button, or by pressing the V key. Snapping can

also be turned on temporarily by holding the V key.

When Snapping is turned on the button appears yellow E and when turned off the button appears gray

Note: The symbol on the button changes depending on the chosen Snapping mode.

When Snapping is activated, this is also indicated on the manipulator handle.

USER GUIDE
307

Viewing Your Scene | Using the Hydra Viewer

Default handle Handle with Snapping on

While the object's manipulator snaps to the given position, the onscreen mouse position is indicated by a
cross and square brackets, known as the hit area.

Mouse position

Note: Specify the size of the hit area by going to:
Edit > Preferences > viewerHydra > snapping

The type of snapping can be selected from the dropdown menu. You can use Shift + V to cycle through the
available Snapping mode options.

USER GUIDE
308

Snapping Modes

Symbol Mode

m Vertex

USER GUIDE

Viewing Your Scene | Using the Hydra Viewer

Face - Center - Oriented to Mormal

Object Surface

! Object Surface - Oriented to Normal

Object - Center
Object - Ongin

Lights, Cameras, and Locators

Description
Snap to individual vertices.

The target vertex is outlined and highlighted, in addition to the
target mesh's snapping wireframe.

Note: Only vertices of front-facing faces are considered.

Viewing Your Scene | Using the Hydra Viewer

Symbol Mode Description

Edge - Center Snap to the center of an edge.

The target edge is highlighted in addition to the target mesh's
snapping wireframe.

Edge - Slide Along Snap to, and slide along an edge.
M The target edge is highlighted in addition to the target mesh's

snapping wireframe.

USER GUIDE
310

Viewing Your Scene | Using the Hydra Viewer

Symbol Mode Description

m Face - Center Snap to the center of target face.
e

The target face is highlighted in addition to the target mesh's
snapping wireframe.

Face - Center - Oriented Snap to the center of a given face and orient the transformed
- to Normal mesh's rotation to point along the normal of the target face.
The normal is indicated by a white arrow with a dashed line.

The target face is highlighted in addition to the target mesh's
snapping wireframe.

USER GUIDE
31

Viewing Your Scene | Using the Hydra Viewer

Symbol Mode Description

Note: In Oriented to Normal modes, the OrientAxis and
UpAXxis can be specified at:
Edit > Preferences > viewerHydra > snapping

@ Object Surface Snap to the closest point on an object's surface.
The target mesh is drawn with an outline, in addition to the target

mesh's snapping wireframe being drawn.

USER GUIDE
312

Viewing Your Scene | Using the Hydra Viewer

Symbol Mode Description
Object Surface - Snap to the closest point on an object's surface and orient the
Oriented to Normal transformed mesh's rotation to point along the normal of the

closest face.
The normal is indicated by a white arrow with a dashed line.

The target mesh is drawn with an outline, in addition to the target
mesh's snapping wireframe being drawn.

Note: In Oriented to Normal modes, the OrientAxis and
UpAXxis can be specified at:
Edit > Preferences > viewerHydra > snapping

Object - Center Snap to the center of an object, defined by a bounding box
automatically generated by the extents of the geometry.

The center is highlighted with a crosshair icon.

The target mesh's wireframe is highlighted.

USER GUIDE
313

Viewing Your Scene | Using the Hydra Viewer

Symbol Mode Description

Object Origin Snap to the origin of an object.

The origin is highlighted with a cross-hair icon.

The target mesh's wireframe is highlighted.

Locators Geometry in the scene is be ignored by this mode.

E Lights, Cameras, and Snap to the center of any light, camera, or locator in your scene.

The center is highlighted with a cross-hair icon.

USER GUIDE
314

Viewing Your Scene | Using the Hydra Viewer

Symbol Mode Description

Note: The color used for drawing the target mesh's snapping wireframe can be customized by
going to:
Edit > Preferences > viewerHydra > snapping > wireframeColor

Using Stereo Cameras in the Hydra
Viewer

When designing scenes for stereo displays, you may need to preview each side of the view (left eye/right
eye) to make appropriate adjustments. To support this, the Hydra Viewer has stereo mode controls. These

allow you to assign a left and right camera in addition to the main camera. You can then switch the viewpoint
between your main, left, and right cameras.

Note: To use stereo mode you must have a rig with the left and right cameras in place. For

example, you can add and name cameras using CameraCreate nodes, or you can import a pre-
configured rig.

USER GUIDE

w
Ul

Viewing Your Scene | Using the Hydra Viewer

Using the Stereo Controls

1. Click the ™™ stereo controls toggle to reveal the controls.

ereoCameraleftShape

2. The selector on the left (labeled 'Selector' in the diagram above) chooses the view camera. The selector
has three options: Main, Left, and Right.

Left and Right correspond to the two cameras that are selected in the left and right camera dropdowns
to the right of the camera selector. Click on these dropdowns to change the left and/or right camera
selection.

The Main camera corresponds to the one shown in the camera selector (labeled 'Main camera' in the
diagram) at the bottom-left of the viewer.

Subdivision and Anti-Aliasing in the
Hydra Viewer

Subdivision

The Hydra Viewer provides three levels of subdivsion (0, 1, 2) for the geometry on display.

1. Select the geometry using the scene graph or viewer.

USER GUIDE

Viewing Your Scene | Using the Hydra Viewer

In the Viewer (Hydra) tab, Open Edit > Set Subdivision Level
Select the subdivision level.

Alternatively use the shortcut keys 0, 1, and 2 to set the subdivision level.

AR R R A

You can also check the active subdivision level by selecting an object and opening the menu.

Cubes at various levels of subdivision.

Anti-Aliasing in the Hydra Viewer

The Hydra Viewer offers four levels of Multi-Sample Antialsing. For more information see Specific Viewer
Behavior.

The OpenGL driver for the graphics card returns a value for GL_MAX_SAMPLES. This value indicates the
maximum supported number of samples for multi-sampling you can have.

To adjust the MSAA, select Edit > Preferences and click hydraViewer, adjust the antiAliasing setting:
¢ Full - the full value of the maximum number of supported samples.

* Medium - half the value of the maximum number of supported number of samples.

* Low - quarter of the value of maximum number of samples

« Off - MSAA is disabled.

Note: When you open a new Viewer (Hydra) tab, the number of samples in use for MSAA is
reported on the Katana console.

USER GUIDE
317

Viewing Your Scene | Using the Hydra Viewer

Live Rendering with the Hydra
Viewer

The Hydra Viewer features a Monitor Layer, enabling you to view a render over the top of your scene
displayed in the Hydra Viewer.

For a full overview of this feature, please refer to theThe Monitor Layer topic.

Note: For background information, see the following pages:
Using the Monitor Layer and Monitor Tab

Controlling Live Rendering

Controlling Live Rendering in the Scene Graph

Live Render from Viewer Camera

Once a Live Render has been started, you can use the Live Render from Viewer Camera button - to
change the active Hydra Viewer camera to the camera that is being used in the live render. This means that
the camera defined in the RenderSettings node when can be overridden to the active Hydra Viewer camera.

Note: The Live Render from Viewer Camera button - changes the render camera but does
not start a live render, there must already be an active live render for this button to have an effect.

When starting a Live Render, only the camera is added to the Live Render Working Set which means that
only changes made to the camera trigger updates to the Live Render. If you want the Live Render to update
after adjustments to other locations, these locations must be added to the Live Render Updates Working Set

Ay .
by checking the appropriate box in the Live Render Updates working set of the scene graph.
For more information, see Controlling Live Rendering in the Scene Graph.

USER GUIDE

Viewing Your Scene | Using the Hydra Viewer

Render Delegates in the Hydra
Viewer

Render Delegates are a way to preview lighting, materials, and assets within the Hydra Viewer in the context
of your renderer. Delegates allow you to get a richer preview of your work, without the need to set a render,
and are fully customizable meaning you have control over the look and optimization of your delegate.

GL Render Delegate (default) AVP Render Delegate

Katana currently ships with the Advanced Viewport (AVP) as an out-of-the-box GL delegate and can be
accessed under the Render Delegate section of the Viewer tab.

USER GUIDE
319

Viewing Your Scene | Using the Hydra Viewer

View Display Manipulators

Basic Matenal

Default Lighting

Mo Shadows

Shadows from All Lights

Shadows from Selected Lights

Third-party render vendors that support Hydra Delegates can also be used within Katana, but their plugins
will need to be loaded into Katana before they can be used.

Note: For more information about loading plugins into Katana, and creating a launcher script,
refer to these Support articles:

Linux: Creating a Katana Launcher Script for Linux
Windows: Creating a Katana Launcher Script for Windows

When using delegates belonging to third-party render vendors, if their shader is present in your project, the
delegate automatically defaults to the corresponding shader. For example, a Renderman delegate
automatically defaults to using a PxrSurface if it is present in your scene, regardless of any other vendor

shaders that may be present. However, render delegates do still support basic materials and default lighting,
so renderer-specific shaders are not a necessity.

USER GUIDE

https://support.foundry.com/hc/en-us/articles/115000107050-Q100272-Creating-a-Katana-launcher-script-for-Linux
https://support.foundry.com/hc/en-us/articles/207354710-Q100242-Creating-a-Katana-launcher-script-for-Windows

Viewing Your Scene | Using the Hydra Viewer

Viewing USD Purposes

Within delegates, USD files with purposes set up can have their purposes enabled or disabled within the
viewer. This allows you to pick and choose what you can and can’t see in the viewer and is useful for
optimization.

Purposes can be enabled and disabled by navigating to Display > Purposes and toggling the tick box next
to the name of each purpose.

View Display Manipulators

Basic Matenial
Default Lighting

Mo Shadows
Shadows from All Lights

Shadows from Selected Lights

Purposes Geom
Guide
Hidden
Proxy

bar Render

Render Delega al4

Render Delegate Setting:

Enabling or disabling purposes are useful for scene optimization. Certain purposes like Render tend to
contain higher resolution assets and are heavier on processing as a result. Because of this, disabling Render
purposes and enabling something like Proxy or Guide allows you to work on a scene without having to
sacrifice performance.

USER GUIDE

Viewing Your Scene | Using the Hydra Viewer

All purpose Only Render purpose Only Proxy purpose Only Geometry purpose

Note: For more information on USD Purposes, see USD Terms and Concepts: Purpose.

Customizing Your Delegate

Delegates can be customized by accessing the Render Delegate Settings window, available in the Display
tab. The settings available in the Render Delegate Settings window will be dependant on the delegate set
to that renderer. For example, when set to GL, the settings will ve specific to the GL delegate, while settings

specific to AVP will be available when AVP is set.

USER GUIDE
322

https://graphics.pixar.com/usd/release/glossary.html#usdglossary-purpose

Viewing Your Scene | Using the Hydra Viewer

AVP [Beta)

Restore Defaults

Delegate Settings for AVP and GL

Within the settings window, you can adjust the quality of the render in the viewer, as well as enable or
disable reflections, shadows, and ambient occlusion.

Delegates can also be paused or stopped at any time. The stop/pause setting can be enabled or disabled by
toggling Display > Render Delegates Toolbar.

Render delegates will only support stop or pause, but not both. Depending on the delegate, Katana will
dynamically call the option that is supported and make it available to you, while the unsupported option is
disabled. However, as stop/pause is not supported by GL rendering, these options will not be available when
using the AVP or GL delegates.

USER GUIDE

W
NO
w

Viewing Your Scene | Using the Hydra Viewer

Being able to pause and stop your delegate is useful, as it allows you to continue to work on heavy scenes
without having to sacrifice performance. Once edits are made, you can unpause the delegate and any
changes will be reflected in the viewer.

You are also able to modify how selected elements are highlighted within the Viewer when using GL
renderer delegates, making selections easier to see. The selection color is also customizable, and can be
changed by navigating to Edit > Preferences> Viewer and adjusting the parameter available under
selectionColor.

At this time, standard selection modes and their customizable features are not supported when working with
non-GL render delegates.

USER GUIDE
324

Viewing Your Scene | Using the Hydra Viewer

vigwer

Proxies and Bounding Boxes

Proxy geometry acts as a simplified stand-in for more complex geometry, allowing you to work with the
scene graph in the viewer without the overhead of complete geometry. Bounding boxes simplify the
representation even further by drawing a box around the region occupied by the geometry.

The same geometry represented using
proxy geometry and bounding boxes.

Detailed geometry.

The Viewer (Hydra) tab allows you to see any proxies or bounding boxes that have been defined on the
geometry.

Video: Watch this video for a quick overview on viewing Proxy geometry and bounding boxes in
the Hydra Viewer.

In order to view proxies and bounding boxes, the scene graph must be set to the right level of detail:

USER GUIDE
325

https://www.youtube.com/watch?v=I2OKKjldvDY

Viewing Your Scene | Using the Hydra Viewer

1. Collapse the scene graph by right-clicking on the required branch and select Collapse Branch or if
you're at root, select Collapse All.

2. Right-click on the branch (or root) select Expand to and Select Proxy Children.

To active bounding boxes or proxies in the Viewer (Hydra) tab, select View > Bounding Boxes or/and
View > Proxy Geometry.

Displaying Textures in the Hydra
Viewer

Displaying textures in the Hydra Viewer is useful for producing a preview of how the textures will look once
rendered. The basic principle is to create a Material node assigned with a Hydra Surface Shader and the
texture you want to apply, and a GafferThree node containing a Hydra Light Shader to light the texture in
the viewer.

Note: The Hydra Viewer can display RGB and RGBA image formats, such as .bmp, .png, and .jpg.
Texture maps in the form of .tx and .tex files are not currently supported. If textures are not
displaying as expected you can try a different file format.

Displaying Textures With Existing Materials

To display textures in the Hydra Viewer when you already have materials in the scene, you can make use of
the advanced merge options. They allow you to combine your new materials with the existing one.

Video: This video shows you how to display textures in the Hydra Viewer when you already have
materials in the scene.

Tip: For more information on advanced merge options, see Merge.

USER GUIDE

W
N
(@)

https://www.youtube.com/watch?v=xyucNB940zQ

iAW =

11.

12.

13.

Viewing Your Scene | Using the Hydra Viewer

Open a scene containing geometry with a material already assigned.

Create a new Material node next to your existing material and give it the same name.

Select both your existing and new Material nodes and hit M on the keyboard to create a merge node.
In the Parameters tab of your new material, select Add Shader > hydra > surface.

From the drop down menu next to the hydraSurfaceShader parameter, select the katana_surface
option.

Expand the hydraSurfaceShader parameters and click the drop down menu next to diffuseTexture,
select Browse and choose your texture file.

Create a GafferThree node underneath your Merge node.

Left-click anywhere in the box within the Parameters of the GafferThree node and hit L on the
keyboard to create a new light.

Select the material tab and click Add Shader > hydra > light.

From the drop down menu next to hydraLightShader select the katana_spot option to create a spot
light.

Select the merge node you created earlier and choose Yes from the showAdvancedOptions drop
down menu to view the advanced merge options.

Expand the advanced options and select Add > New Entry from the mergeGroupAttributes
parameter.

Type "material" into the mergeGroupAttributes text field to specify the name of the group attribute
that you want to be merged between the two inputs.

Note: Be sure to replace the connection from the output of your existing material with your new
GafferThree node output so that it is linked to the rest of your scene.

Displaying Textures Without Existing Materials

If your geometry does not have existing materials assigned, follow this video to achieve the same result
without the need for advanced merging.

Note: This tutorial video shows the node graph, including the Material, MaterialAssign and
GafferThree nodes, already set up but with default parameters.

USER GUIDE
327

https://www.youtube.com/watch?v=2IQwwBOalGY

Viewing Your Scene | Using the Hydra Viewer

1. Select the Material node.
2. In the Parameters tab of your new material, select Add Shader > hydra > surface.
3. From the dropdown menu next to the hydraSurfaceShader parameter, select the katana_surface
option.
4. Expand the hydraSurfaceShader parameters and click the dropdown menu next to diffuseTexture,
select Browse, and choose your texture file.
5. Select the MaterialAssign node and view its parameters.
6. From the Scene Graph, use the middle-mouse button to drag the material over to the materialAssign
text field.
7. Select Add Statements > Paths to create a text field for your geometry path.
8. From the Scene Graph, use the middle mouse button to drag your geometry over to the Paths text
field.
9. Select the GafferThree node and view its parameters.
10. Right-click anywhere in the box within the Parameters of the GafferThree node and select Add >
Light to create a new light.
11. Select the material tab and click Add Shader > hydra > light.
12. From the drop down menu next to hydraLightShader select the katana_distant option to create a
distant light.
13. Increase the Intensity to 10 to brighten the scene and view your material.

UsdPreviewSurface in the
Hydra Viewer

The Hydra Viewer in Katana allows you to view geometry loaded in your scene. By default, the geometry is
drawn using a Hydra shader which doesn't interact with lights in your scene, or provide a preview of your
materials.

UsdPreviewSurface is one of many USD shading nodes that allow you to view materials, lights and shadows
in the Hydra Viewer. This is very useful as it provides artists with a preview of what their scene looks like
without needing to perform a render. It allows you to experiment with material properties, such as
roughness or specularity, and immediately see the changes you make in the Hydra Viewer.

USER GUIDE

w
co

Viewing Your Scene | Using the Hydra Viewer

Loading USD Plug-ins

Find out how to load the USD plug-ins into Katana.

Setting up USD Materials

Discover how to assign UsdPreviewSurface materials to your objects and view them in the Hydra Viewer.
Using USD Lights

Learn how to set up USD lights in your scene and view them in the Hydra Viewer.

Loading USD Plug-ins into Katana

In Katana 4.5v1, and later, USD plug-ins are enabled by default. You don't need to define any environment
variables, you can use USD plug-ins straight away.

USER GUIDE
329

Viewing Your Scene | Using the Hydra Viewer

To use the USD nodes inside versions of Katana earlier than 4.5v1, you must first enable the USD plug-ins so
that they are loaded when you open Katana.

To do this, you must edit your KATANA_RESOURCES, LD_LIBRARY_PATH (PATH on Windows), and
PYTHONPATH in your Katana launcher script and add the USD plugin folder.

Note: For more information about creating a launcher script for Katana, refer to these Support
articles:

Linux: Creating a Katana Launcher Script for Linux

Windows: Creating a Katana Launcher Script for Windows

1. Add the following lines to your launcher script:

Note: <KATANA_ROOT> represents the path to your Katana install folder, for example:
C:\Program Files\Katana4.0v1

Windows

set PATH=%PATHS%;<KATANA ROOT>\plugins\Resources\Usd\lib
set KATANA RESOURCES=%KATANA RESOURCES%;<KATANA ROOT>\plugins\Resources\Usd\plugin
set PYTHONPATH=%PYTHONPATHS; <KATANA ROOT>\plugins\Resources\Usd\lib\python

Linux

export LD LIBRARY PATH=$LD LIBRARY PATH:<KATANA ROOT>/plugins/Resources/Usd/1ib
export KATANA RESOURCES=$KATANA RESOURCES:<KATANA ROOT>/plugins/Resources/Usd/plugin
export PYTHONPATH=$PYTHONPATH:<KATANA ROOT>/plugins/Resources/Usd/lib/python

2. Launch Katana using the launcher script and the additional USD node types are available from the
node creation menu.

USER GUIDE
330

https://support.foundry.com/hc/en-us/articles/115000107050-Q100272-Creating-a-Katana-launcher-script-for-Linux
https://support.foundry.com/hc/en-us/articles/207354710-Q100242-Creating-a-Katana-launcher-script-for-Windows

Viewing Your Scene | Using the Hydra Viewer

Additional USD nodes Additional USD shading nodes

A usd menu is also loaded on the Terminal sidebar inside NetworkMaterialCreate nodes.

USER GUIDE
331

Viewing Your Scene | Using the Hydra Viewer

OUTPUT

usd

Note: For more information on USD plug-ins for Katana, refer to the Katana USD Plug-ins section
in the Developer Guide.

Setting up USD Materials

You can use UsdPreviewSurface shading nodes to build USD materials. You can then assign these materials
to your object and view the result in the Hydra Viewer.

UsdPreviewSurface shading node types are accessible from the USD shading node creation menu inside
NetworkMaterialCreate nodes.

To use UsdPreviewSurface to display materials in the Hydra Viewer:

1. Load the USD plug-ins into Katana by following the steps in the Loading USD Plug-ins into Katana
topic.

2. Create a NetworkMaterialCreate node and jump inside it, or jump inside an existing
NetworkMaterialCreate node.

USER GUIDE

https://learn.foundry.com/katana/dev-guide/Plugins/KatanaUSDPlugins/index.html

Viewing Your Scene | Using the Hydra Viewer

Note: If you are using an existing NetworkMaterialCreate node, you may need to refresh the
Sidebar Terminal to see the usd outputs. To do this, open the Parameters for the

NetworkMaterialCreate node and choose Shelf Actions 'n' > Refresh Sidebar Terminal.

3. Press Shift + Tab to open the renderer selection menu and choose USD.

4. Press Tab to open the USD shading node creation menu.
5. Select UsdPreviewSurface and place the node.

UsdPreviewSurface

USER GUIDE
333

Viewing Your Scene | Using the Hydra Viewer

6. Connect the surface output from the UsdPreviewSurface node to the usdSurface input under the
usd drop-down in the Terminal sidebar.

7. Open the Parameters for the UsdPreviewSurface and make the required adjustments.
8. Use a MaterialAssign node to assign the material to your geometry.

Note: For more information about assigning materials, see the Assigning Materials and
Textures section of the Material Basics topic.

9. Inthe Viewer (Hydra) tab, click View and disable Basic Material to preview your USD material.

¥ Vertical Toolbar

Ba=zic Material

USER GUIDE

w
W
N

Viewing Your Scene | Using the Hydra Viewer

In the Viewer (Hydra) tab, click View and choose Shadows from All Lights to preview your material

with shadows. If you only want selected lights to cast shadows, you can use the Shadows from
Selected Lights option.

+ Default Lighting

Mo Shadows

Basic Material off Basic Material off
No Shadows Shadows from All Lights

You can assign texture maps to UsdPreviewSurface shading nodes using UsdUVTexture node types.

To assign a texture map to the diffuseColor parameter in your UsdPreviewSurface shading node:

10. Create a UsdUVTexture node, open the Parameters, and enter the file path in the file parameter.
11. Connect the rgb output from the UsdUVTexture node to the diffuseColor input of the
UsdPreviewSurface node.

USER GUIDE
335

Viewing Your Scene | Using the Hydra Viewer

12. Create a UsdPrimvarReader_float2 node and plug the result output into the st input on the
UsdUVTexture.

USER GUIDE

W
W
N

Viewing Your Scene | Using the Hydra Viewer

UsdPreviewSurface
UsdPrimvarReader float2
= UsdUVTexture Outputs

Outputs

Outputs
surface
Parameters Parameters

rgb

Parameters

13. Within the UsdPrimvarReader_float2, set the varname parameter to st.

¥ UsdPrimvarReader_float2

UsdPrimvarReader_float2

UsdPrimvarReader_float2

Force Refresh

The texture can now be seen on the object in the Hydra Viewer.

USER GUIDE

Viewing Your Scene | Using the Hydra Viewer

Basic Material off, Shadows from All Lights

Setting up USD Lights

As well as setting up USD materials, it is also possible to set up USD lights and view them in the
Hydra Viewer.

USER GUIDE
338

Viewing Your Scene | Using the Hydra Viewer

*%\‘

CRCAN

o R
o s
o
; r

I? y t V
1" r_.' 3
I'--.'.:-‘- : " p!

N

To setup a USD light:

1. Create a GafferThree node and open its Parameters, or open the Parameters for an existing
GafferThree node.

USER GUIDE
339

Viewing Your Scene | Using the Hydra Viewer

2. In the GafferThree Parameters tab, right-click under Name and choose Add > Light.

"] GafferThree2

USER GUIDE

Viewing Your Scene | Using the Hydra Viewer

3. In the Material section of the new light parameters, click Add Shader and choose usd > light.

Add Shader

4. In the usdLightShader drop-down menu, choose a USD light type, for example, UsdLuxRectLight.

The full light material parameters open and you can make adjustments.

5. In the Viewer (Hydra) tab, click View > Lighting using USD Lights to enable the USD lights.

6. Position the light using the Transform, Rotate, Scale, and Center of Interest manipulators in the
Hydra Viewer.

USER GUIDE

Viewing Your Scene | Using the Hydra Viewer

Changing Display Properties for
Some Locations

You can override the currently selected display method for a number of locations within the Viewer (Hydra)
tab using the ViewerObjectSettings node. To change how one or more locations are displayed:

1.
2.

Add a ViewerObjectSettings node to the recipe at some point before the current view node.
Select the ViewerObjectSettings node and press Alt+E.
The ViewerObjectSettings node becomes editable within the Parameters tab.

Assign the scene graph geometry locations of the objects to influence to the CEL parameter.
See Assigning Locations to a CEL Parameter for more on using CEL parameter fields.

Set any changes to how the locations should be displayed using the node’s parameters.
You can set the following display options in the drawOptions parameter grouping:

 hide - when set to Yes, the selected locations are hidden, as are their children.

USER GUIDE

Viewing Your Scene | Using the Hydra Viewer

« fill - changes how the location is displayed, as points, as a wireframe, as a solid, or to use the
Viewer's default render type (inherit).

« windingOrder - sets whether the location should be drawn with a clockwise or counterclockwise
winding order. The correct value depends on how the imported geometry was exported from its
original package.

« pointSize - when displaying the location using the points display type, this option sets the size of the
points.

For example, the following image shows an object, with PRMan and Viewer Shader material applied. The
Viewer (Hydra) is in Solid mode, so the object is lit, and textured.

The next image shows the same scene, with the addition of a ViewerObjectSettings node. The CEL in the
node points to the pony, and the drawOptions parameters fill setting is set to Wireframe. The Viewer's
draw mode for the pony object is overridden.

USER GUIDE

w
~
w

Viewing Your Scene | Using the Hydra Viewer

The following display options can be set in the annotation parameter grouping:
« text - displays this text with the location in the viewport.

« color - the background color of the annotation text.

The following parameters can be set in the ViewerObjectSettings node itself:
« pickable - when set to No, you can no longer select the object in the Viewer.

- resolveMateriallnViewer - controls whether the Viewer should always, never, or use default rules to
resolve materials.

Customizing the Viewport

Changing the Background Color

You can change the background color to make the scene easier to read, to reduce eye fatigue, or to better
match the background color when rendered.

To change the background color:

USER GUIDE
344

Viewing Your Scene | Using the Hydra Viewer

1. Navigate to Edit > Preferences > hydraViewer.

2. Change the backgroundColor parameter to the required color values.
The color changes in the Viewer (Hydra) tab.

3. Click OK to save changes.

Toggling the Grid Display

Katana displays a grid to help you get a sense of scale, the origin’s location, and the orientation of the XZ
plane.

To toggle displaying the grid, in the Viewer (Hydra) tab, select View > Grid (or press G).

Toggling the Head-Up Display (HUD)

Within Katana each Viewer tab has its own axis orientation guide in the bottom-left corner. The default
perspective camera and any other cameras have a manipulator in the top-right corner to change the
cameras position to a view axis, or three quarter view, centered on the current selection. You can hide these
features.

To toggle the display of the Head-Up Display (HUD), select View > HUD (or press H).

Toggle the Grid and
HUD.

USER GUIDE
345

Lighting Your Scene

Lights are light scene graph locations with a light material assigned. The light material contains a shader,
which defines how that light illuminates the scene.

One strength of Katana is its ability to only load parts of the scene graph at render time if they are needed.
Lights can potentially be anywhere within the scene graph hierarchy. Katana needs to keep a list of all lights
so it doesn’t need to traverse what could potentially be a very complicated scene graph, just to find all the
lights. The light list is stored in the lightList attribute under the /root/world location.

Katana does not assume a given scene scale. There are no physics solvers, like those in Maya, that need to
know what real world measurement a unit represents. If you're using a shader library that has real world
units for shade parameters, such as emissive lights with power per unit area, that's handled by the shader
implementation rather than Katana.

The unit of measure used is up to you, because Katana equates any value as being equal to one unit in 3D
space. The image shows a simple scene containing an object and a camera. If the large white square in the
Viewer represents one unit of measure, so the smaller squares represent one tenth of that unit. So, if you
measured on set in meters, one small square could be equal to a meter, centimeter, or millimeter.

USER GUIDE

Lighting Your Scene | Creating a Light

Creating a Light

Note: Lights can now be created using Lighting Tools within the Hydra Viewer. For more
information on this advanced workflow, see Lighting Tools.

Creating a light inside Katana can be done in two ways:

« using separate nodes (LightCreate and Material), or

« using the GafferThree node, which packages up light creation with a number of other useful functions.

To create a light from its core components:

1.
2.

5.

Create a LightCreate node and place it within your recipe.

Create a Material node and connect the output of the LightCreate node to the input of the Material
node.

Select the Material node and press Alt+E.

The Material node becomes editable within the Parameters tab.

Select Add shader > dI> light within the Material node’s Parameters tab.
A new 3Delight light shader is added to the Material node.

Note: The shader you select in the Add Shader dropdown doesn't necessarily need to be dl.
Depending on your studio's setup, you may wish to select a different shader, and this can impact
which light options you choose. For the purpose of these instructions, the dl shader has been
chosen.

Click the arrow to the right of diLightShader to display the shader options.

USER GUIDE

Lighting Your Scene | Creating a Light

Parameters

Material

Add Shader

Select the type areaLight from the dropdown.
The light name is populated in the dropdown button.

¥ W Material

Add Shader

Create a MaterialAssign node and connect it to the output of the Material node.

LightCreate

Material

[_MaterialAssign]

Select the MaterialAssign node and press Alt+E.

The MaterialAssign node becomes editable within the Parameters tab.

USER GUIDE

Lighting Your Scene | Creating a Light

9. Shift+middle-click and drag from the LightCreate node in the Node Graph tab to the Add Statements
dropdown in the Parameters tab.

The Parameter Expression field is populated with the scene graph location.

v MaterialAssign

Fiy

Matenal

10. Shift+middle-click and drag from the Material node in the Node Graph tab to the materialAssign field
in the Parameters tab.

An expression is created for the materialAssign parameter that evaluates to the location created by the
Material node.

FPargmalers

* MaterialAssign

Using the MaterialAssign node, the 3Delight light shader defined in the Material node is now assigned to the
light defined in the LightCreate node.

USER GUIDE
349

Lighting Your Scene | Positioning Lights

Positioning Lights

To position a light it first needs to be visible within the Scene Graph tab (see Changing What is Shown in the
Viewer) then positioned within the Viewer tab.

To move a light, you can:
« Translate and rotate the light with the manipulators, (see Transforming an Object in the Viewer), or

* Look through the light and change its view position (see Choosing a Light or Camera to Look Through).

Light Linking

Light linking is a typical example of how a standard setting is defined high up in the hierarchy and then
overridden at a specified scene graph location where a different setting is needed. Shadow Linking works in
the exact same way.

1. In an empty scene, create a sphere using a PrimitiveCreate Node.
Set the name to /root/world/geo/sphere.
2. Add a plane with a PrimitiveCreate node.
Set the name to /root/world/geo/plane.
Add a Merge node and connect both PrimitiveCreate nodes as inputs.
Add a light with a GafferThree node.
Connect the output of the Merge node to the input of the GafferThree node.
Add a LightLink node.
Connect the output of the GafferThree node to the input of the LightLink node.
Select the LightLink node and press Alt+E to edit it.

©® N o U AW

9. Set the effect field to illumination, and the action field to off.
10. Add the primitive sphere to the objects field.
11. Add the light to the lights field.

Creating the light adds a lightList attribute group under /root/world with the enable attribute set to 1.

USER GUIDE

Lighting Your Scene | Getting to Grips with the GafferThree Node

gt_gaffer_light L

froot/world/lgt/gaffer/light

Note: With the default behavior of the light set to off - by changing the defaultLink dropdown to
off - the enable attribute is set to 0.

The primitive sphere’s lightList enable attribute is set to 0, as it is overridden locally by the LightLink node.
Attributes are inherited from parent scene graph locations. If needed, they can be locally overridden as
shown above where a specific light (/root/world/lgt/gaffer/light1) is disabled for a certain node
(/root/world/geo/sphere).

Note: A G label next to an attribute signifies that its value has been inherited from a parent scene
graph location, whereas the label L means the attribute is stored locally at the selected location.

Getting to Grips with the
GafferThree Node

The method described in Creating a Light, although valid, would be slow for a large number of lights.
Katana's GafferThree node wraps light creation into a single node and adds the ability to:

« Create more than one light.

« Add rigs to group lights together.

« Add light filters and light filter references.
* Mute and solo lights and rigs.

« Link lights to specific objects.

USER GUIDE

Lighting Your Scene | Getting to Grips with the GafferThree Node

» Add aim constraints to lights.

Note: Some of the options listed in Creating a Light Using the GafferThree Node may not be
available due to the extensive customizability of Katana. Some of the GafferThree node’s menu
options are created using profiles, which can result in different light creation menu options.

Note: Using both Gaffer and GafferThree nodes together in a single node graph is not supported
as it can result in unexpected mute and solo behavior.

Gaffer Object Table Overview

Once you've created a GafferThree node, use the Gaffer object table to manage the lights, rigs, light filters,
light filter references, and Template Materials within your scene.

[cafferThree

dl_distantLight

dl_.

_3dl_arealight

Here are some tips on how to use the Gaffer object table:

* You can edit the parameters' values for multiple items at once. Simply select the items you need to edit and
change the values directly in the Gaffer object table.

* The items are displayed in different colors depending on how their values have been set:
« Gray/white: value set as "default"
* Yellow: value set locally
« Blue: value set as forced default

« Pink: value inherited from a referenced Template Material

USER GUIDE

w
U
nNo

Lighting Your Scene | Getting to Grips with the GafferThree Node

« Right-click a cell in the Gaffer object table to display a context menu with commands for manipulating
underlying parameters. For instance, right-clicking in the Shader column allows you to add a renderer-
specific shader. You can also define your own context menu for custom columns through the

createContextMenu ().

Note: To display the Network Material material interface parameters in the GafferThree object
table's columns, see Using and Overriding Look Files with GafferThree Lights

Creating a Light Using the
GafferThree Node

Note: Lights can now be created using Lighting Tools within the Hydra Viewer. For more
information on this advanced workflow, see Lighting Tools.

To create a light with the GafferThree node, you need first to create a light and then add a light shader to
that light.

To add a light:
1. Create a GafferThree node and place it within the project.
2. Select the GafferThree node and press Alt+E.
The GafferThree node becomes editable within the Parameters tab.

3. Inthe GafferThree node’s Parameters tab, right-click in the Gaffer object table and select Add > Light
or press L.

Alight is added in the Gaffer object table.

Note: The light, rig, and Template Material locations are created under /root/world/Igt/gaffer
by default. You can change their scene graph locations by setting a new path in the root location
field in the GafferThree node's Parameters tab.

You can add a light shader to a light, either through the Gaffer object table or the Material tab in the
Parameters tab.

USER GUIDE

Lighting Your Scene | Getting to Grips with the GafferThree Node

To add a light shader through the Gaffer object table, follow the steps below:

1.

Right-click in the Shader column, then select Add Shader and select a renderer-specific shader.
Nothing appears below the Shader heading.
Double-click below the Shader heading in-line with the light and select Spotlight from the list.

The name of the light shader, Spotlight, appears in the Shader column in the Gaffer object table and in
the Material tab as well.

To add a light shader through the Material tab in the Parameters tab, follow the steps below:

1.

2
3.
4

Select the newly added light in the Gaffer object table.

In the Parameters tab, click on the Material sub-tab .

Click on the Add Shader dropdown.

Select a dl Light shader from the list.

The renderer-specific shader appears in the Material tab.

Click on the newly added shader and select Spotlight from the list.

The name of the light shader, Spotlight, appears in the Material sub-tab and in the Shader column of
the Gaffer object table as well.

Note: 3Delight lights, with shaders pre-applied are available to add to the Gaffer table via the Add
menu or the associated keyboard shortcuts.

Tip: Only shaders for the default renderer are displayed when double-clicking the Shader column.
To assign shaders for a different renderer, right-click in the Shader column or use the Material tab
below the Gaffer object table.

If you want to set or amend the default renderer for Katana, refer to Changing the Default
Renderer for details on setting the DEFAULT_RENDERER environment variable. If this environment
variable is not set, dl (3Delight) is assumed to be default.

Making Use of Rigs

Rigs create a scene graph group complete with transform attributes and the ability to easily add constraints.
Lights created below the rig inherit its transformations, which enables you to move the lights around as one.
Rigs can also be exported and imported.

USER GUIDE

Lighting Your Scene | Getting to Grips with the GafferThree Node

Creating a Rig

In the GafferThree node’s Parameters tab, right-click in the Gaffer object table and select Add > Rig or
press R. Arig is created in the Gaffer object table.

Note: You can also nest rigs. Simply right-click on an existing rig and select Add > Rig or press R.

Adding a Light to a Rig

In the Gaffer object table, right-click on a rig and select Add > Light or press L. A light is created under the
rig location.

Note: You can expand or collapse the lights nested under a rig location. Simply right-click on a rig
and select the required option from the dropdown menu.

Importing a Rig

1. In the GafferThree node’s Parameters tab, right-click a location within the Gaffer object table and select
Add > Import Rig....
The Import Rig dialog displays.

2. Select the rig file in the dialog and click Accept.

The rig is imported under the selected location.

Exporting a Rig
1. Right-click on the rig to export and select Export Rig.
The Export Rig dialog displays.
2. Navigate within the dialog to where you wish to save the rig and enter a rig name.
3. Click Accept.

The rig is saved with a .rig file extension.

Adding a Point Constraint to a Rig

To add a point constraint:

USER GUIDE
355

Lighting Your Scene | Getting to Grips with the GafferThree Node

Select the rig and click the Parameters > Object sub-tab.
Check enable point constraint and open the point constraint options parameter grouping.

Enter the scene graph location for the target in the targetPath parameter. For more on using scene
graph location parameters, see Manipulating a Scene Graph Location Parameter.

Click the targetOrigin dropdown and select the part of the target to use as the point constraint:
« Object - the object’s transform position is used.
« Bounding Box - the center of the object’'s bounding box is used.

« Face Center Average - the center of all the faces for the object are averaged to create the point
constraint position.

« Face Bounding Box - the center of the face’s bounding box is used.

Adding an Orient Constraint to a Rig

To add an orient constraint:

1.
2.
3.

Select the rig and click the Parameters > Object sub-tab.
Check enable orient constraint and open the orient constraint options parameter grouping.

Enter the scene graph location for the target in the targetPath parameter. For more on using scene
graph location parameters, see Manipulating a Scene Graph Location Parameter.

Select the axes to constrain (by default, it's all three). To remove the constraint for any of the individual
axes, click the checkbox to disable it.

Defining a Template Light Material

At times it is best to have a Template Material and set local overrides per light. This can be done within the
GafferThree node by creating a Template Material and assigning it to a light. Any changes made within the
light's Material sub-tab act as an override for the Template Material.

Creating a Template Material

In the GafferThree node’s Parameters tab , right-click in the Gaffer object table, and select Add > Template
Material or press Alt+M.

A Template Material location is created inside the GafferThree node.

USER GUIDE
356

Lighting Your Scene | Getting to Grips with the GafferThree Node

Assigning a Template Material to a Light

1. In the Parameters tab, double-click below the Shader heading in-line with the light you want to assign
the Template Material to.

2. Select the Template Material from the list (Template Materials are displayed in pink).
The Template Material is assigned to the light.

Lights created inside the GafferThree node come with the ability to use an aim constraint. Using an aim
constraint makes the light point at an object (the target) within the scene.

To add an aim constraint to a light:

1. In the Parameters tab, select the light within the Gaffer object table.

2. Inthe Object sub-tab of the Gaffer object table, select the enable aim constraint checkbox.
The aim constraint options grouping displays.

3. Inthe aim constraint options grouping, enter the aim target in targetPath (for more details on how to
enter a scene graph location, see Manipulating a Scene Graph Location Parameter).

To change the aim constraint’s center point, select from the targetOrigin dropdown:
« Object - the point defined by the transform of the object.

« Bounding Box - the center of the bounding box.

« Face Center Average - the average from all the face centers.

« Face Bounding Box - the bounding box of all the faces.

Note: Using Face Center Average or Face Bounding Box could be slow for heavy geometry.

Creating a Light Filter Using the
GafferThree Node

Light filters allow you to modify a light's behavior in order to give these light sources additional effects. Light
filters are renderer-specific, but regardless of renderer, you can add them in the GafferThree node in the
same way.

USER GUIDE
357

Lighting Your Scene | Getting to Grips with the GafferThree Node

To create a light filter with the GafferThree node:
1. Create a GafferThree node and place it within the project.
2. Select the GafferThree node and press Alt+E.
The GafferThree node becomes editable within the Parameters tab.

3. Inthe GafferThree node’'s Parameters tab, right-click in the Gaffer object table and select Add > Light
Filter or press F.

A light filter is added in the Gaffer object table.

Note: The light filter location is created under /root/world/Igt/gaffer by default. You can change
the scene graph location by setting a new path in the root location field in the GafferThree node's
Parameters tab.

Creating a Light Filter Reference Using the GafferThree Node

Light filter references are light filters attached to a light or skydome that reference another light filter
package. These packages allow you to apply multiple light filter effects as only one light filter on a pre-
existing light.

To create a light filter reference with the GafferThree node:
1. Create a GafferThree node and place it within the project.
2. Select the GafferThree node and press Alt+E.
The GafferThree node becomes editable within the Parameters tab.

3. Inthe GafferThree node’s Parameters tab, right-click in the Gaffer object table and select Add > Light
or press L.

Alight is added in the Gaffer object table.
4. Right-click the light and select Add > Light Filter Reference or press Alt+F when the light is selected.
A light filter reference is added to the light.

5. Select the light filter reference and click on the Object tab beneath the object table list. Specify the path
to the light filter package in the referencePath field.

Light linking allows you to light a set of objects while others aren’t or turn off the lights on a set of objects
while the others are lit.

USER GUIDE
358

Lighting Your Scene | Getting to Grips with the GafferThree Node

Note: By default the whole scene is lit. In order to light only one specific object, you need first to
turn off all the lights for the entire scene (/root/world/geo location).

To link a light to a specific object in the scene, do the following:

1. Ensure your light is positioned towards the object you want to light.

2. Inthe Gaffer object table's Parameters tab, select a light or light filter and click on the Linking sub-tab.
The parameters of the Linking sub-tab are displayed.

3. Click on the light linking section.
The on and off CEL widgets are displayed.

4. Shift+middle-click and drag from the /root/world/geo location in the Scene Graph tab to the off CEL
widget in the Parameters > Linking sub-tab.

All the lights are turned off in your scene. In the Gaffer object table, the icon "off" appears in the Linking
column to indicate you have set up a light link of type "off".

5. Shift+middle-click and drag from the chosen object location in the Scene Graph tab to the on CEL
widget in the Parameters > Linking sub-tab.

The light or light filter selected in the Gaffer object table lights the chosen object only. In the Gaffer
object table, the icon "on" appears in the Linking column to indicate you have set up a light link of type
Ilonll‘

Warning: If a location is matched by both the on and off CEL expressions, then the on
CEL expression overrides the off CEL expression.

Note: To light several objects, drag as many object locations as needed from the Scene Graph tab
to the on CEL widget in the Parameters > Linking sub-tab.

To disable a light or light filter, follow the steps below:

1. In the Gaffer object table's Parameters tab, select the light or light filter you want to disable and click on
the Linking sub-tab.

The parameters of the Linking sub-tab are displayed.
2. Click on the light linking section.
The on and off CEL widgets are displayed.

USER GUIDE

Lighting Your Scene | Getting to Grips with the GafferThree Node

3. Shift +middle-click and drag from the chosen object location in the Scene Graph tab to the off CEL
widget in the Parameters > Linking sub-tab.

The selected light or light filter for the chosen object location is disabled in your scene. In the Gaffer
object table, the icon "off" appears in the Linking column to indicate you have set up a light link of type
"off".

Warning: If a location is matched by both the on and off CEL expressions, then the on
CEL expression overrides the off CEL expression.

Note: For information on how to use the clearUnmatched parameter, see GafferThree.

Linking Shadows to Specific Objects

Linking shadows is handled in the same manner as linking lights. Each location within the scene graph under
/root/world has a lightList attribute. This is where light linking and shadow linking information is stored.

Adopting Items from an Incoming
Scene

You can adopt lights, rigs, and Template Materials from any upstream GafferThree nodes and then override
any of their set parameters.

To adopt items from the incoming scene, do the following:

1. Select the GafferThree node in which you want to collect the adopted items and press Alt+E.
The GafferThree node's parameters display in the Parameters tab.

2. Inthe GafferThree node's Parameters tab, click on the 'ﬁ' button and select Show Incoming Scene
from the dropdown menu.

All adopted lights, rigs and Template Materials, along with their parameters, are displayed in the Gaffer
object table.

USER GUIDE

Lighting Your Scene | Getting to Grips with the GafferThree Node

The names of the items are displayed in italics showing they are adopted items. The light gray color
indicates they are read-only items.

Note: The disabled lights, rigs, and Template Materials from any upstream nodes don't show
when you adopt items from the incoming scene.

Editing Adopted Items

Any adopted item from the incoming scene is, by default, read-only.

To make the adopted items editable, right-click on the name of the item you want to edit and select Adopt
for Editing from the dropdown menu. The name of the item displays in a white color showing it is editable.
You can now make any changes to its parameters.

Note: You can edit the parameters of the adopted items and also add child lights, rigs and
Template Materials to the adopted rigs.

Deleting Edits Made to Adopted Items

To delete edits made to the adopted items and retrieve their original values, in the Gaffer object table, right-
click on an adopted item and select Delete Edit Package from the dropdown menu. The parameters of the
adopted item are set back to their original values (adopted items' parameters from the incoming scene) and
the adopted item is now read-only.

Soloing and Muting Lights, Light
Filters, and Rigs

You can either solo or mute lights in a scene. Soloing a light means that you are only keeping that one
specific light to light the scene. All the other lights are automatically set as "mute" and therefore turned off.
Muting lights means you can turn specific lights off while others are lit. Soloing or muting light filters and
rigs works the same way.

To solo a light, do the following:

USER GUIDE

w
(@)

Lighting Your Scene | Getting to Grips with the GafferThree Node

1. In the Gaffer object table, select the light you want to solo.

2. Inthe Solo column E check the box in-line with the selected light.

The light is set as "solo" and all the other lights are automatically set as "mute”.

In the Mute column @ the icon @ shows which lights are set as "mute"” and it is also displayed in the
Scene Graph tab to indicate which light locations are in a mute state.

Note: To solo a light filter or a rig, follow the same procedure but select a light filter or rig instead
of a light.

To mute a light, do the following:

1. In the Gaffer object table, select one or as many lights as you want to mute.

2. Inthe Mute column () check the box in-line with the selected light or one of the selected lights for
multiple selection.
The selected lights are set as "mute" while all the other lights still light the scene.

In the Mute column @ the icon ™= shows which lights are set as "mute" and it is also displayed in the
Scene Graph tab to indicate which light locations are in a mute state.

Note: To mute light filters or rigs, follow the same procedure but select the light filters or rigs you
want to mute, instead of a light.

Locking a Light or Rig's Transform

Once a light is in the correct position, you can lock it to prevent accidental movement. Locking a light does
not prevent it from being edited or deleted.

To toggle whether a light is locked, right-click on the light and select Toggle Lock State of Selected Items

or press Ctrl+L. The blue lock B icon is either added or removed in place of the light icon in the Gaffer
object table.

USER GUIDE

w
(@)}
N

Lighting Your Scene | Getting to Grips with the GafferThree Node

Note: Locking a rig works the same way. Simply right-click on the rig and select Toggle Lock
State of Selected Items or press Ctrl+L.

Duplicating an Item Within the
Gaffer Object Table

To duplicate an item within the Gaffer object table, right-click on the item and select Duplicate.

The item is duplicated into the Gaffer object table and a number is appended to the name.

Syncing the GafferThree Selection
with the Scene Graph

When editing lights using both the GafferThree and manipulators in the Viewer, it is often convenient to sync
the selection of those lights between the two locations. The sync selection parameter in the GafferThree
node’s parameters allows you to set sync selection in three ways:

« off - no syncing is performed (the default).

« out - selection of a light in the GafferThree node is mirrored in the Scene Graph tab, but not the other way
around.

« in/out - selecting in either the Scene Graph tab or GafferThree node results in the corresponding entry in
the other also being selected.

To delete an item from the Gaffer object table, right-click on the item you want to delete and select Delete
or press the Delete keyboard shortcut.

USER GUIDE

Lighting Your Scene | Getting to Grips with the GafferThree Node

Using and Overriding Look Files
with GafferThree Lights

To use more complex shading networks to drive your light's materials, you can define the material first, and
then use a look file to apply it to lights created in GafferThree nodes.

To set up the network material, and bake it into a look file:

1. Add a NetworkMaterial node. In it's parameters tab, click add terminal, and choose dl/Light from the
dropdown

2. Add a DIShadingNode and change the nodeType to spotLight

Displaying Network Material Parameter Values

To show values of parameters from the public interface of the Network Material in specific columns of the
GafferThree object table, you need to set parameter meta name attributes in the material group attribute of
the material location that defines the Network Material. To set these attributes, do the following:

1. In the DIShadingNode, click the wrench o icon to the right of the Color controls, select Edit Parameter
Name in Material Interface..., and change the Name value to color.

2 Material Interface Options for color ? =

2. Using the wrench button for both Intensity and Exposure, change Name parameter to intensity and
exposure respectively.

3. Change the Color, Intensity, and Exposure values to non-defaults.

The parameters are displayed in the Material Interface section of the NetworkMaterial node's
parameters tab.

USER GUIDE

Lighting Your Scene | Getting to Grips with the GafferThree Node

MetworkMaterial

Add Terminal

Name

Note: The naming of the parameters, and their related attributes, need to follow a strict syntax to
be read as metadata by the gafferThree table.
Attributes must be set to read the material parameters and feed their values as metadata to the
gaffer object table. These attributes need to adhere to the following syntax:
Names of the attribute: material.meta. [parameterMetaName] . [rendererName]
For example, material.meta.exposure.dl
The values: parameters. [parameterName]
For example, parameters.exposure
You can set these string attributes one at a time using AttributeSet nodes, or you can set multiple

attributes at once using OpScript nodes.

4. Add an OpScript node and use the following script, which will populate the material.meta attributes with
the names and values of the parameters declared in the network material.

local materiallInterfaceGroupAttr = Interface.GetAttr ("material.interface")
local targetName = "dl1"
for i = 0, materialInterfaceGroupAttr:getNumberOfChildren() - 1 do
local parameterName = materiallInterfaceGroupAttr:getChildName (i)
Interface.SetAttr ("material.meta." .. parameterName "
USER GUIDE

Lighting Your Scene | Getting to Grips with the GafferThree Node

targetName,
StringAttribute ("parameters." .. parameterName))
end

5. Bake a material lookfile, by using a LookFileMaterialsOut node. Set the saveTo location and click Write
Look File and save the look file.

6. In aseparate branch of the NodeGraph, add a LookFileMaterialsIn node. In the lookfile section, browse
to your saved lookfile from step 5.

7. Add a gafferThree node.

Your node graph should now look similar to this:

Create Light Material and Import Lookfile for use with

GafferThree

DiShadingMNode LookFileMaterialsin

MetworkMaterial GafferThree

OpScript2

LookFileMaterialsOut

8. Add a 3Delight spotlight by right-clicking in the gaffer table, select Add3Delight > Spotlight, or type Q.
9. Select the spotlight in the gaffer table, open the Material tab below, check useLookFileMaterial.
10. In the asset field, browse to the look file that was baked in step 5.

11. Middle-mouse and drag the network material that appears in the Scene Graph tab under
root/materials/NetworkMaterial) into the materialPath field.

USER GUIDE

Lighting Your Scene | Getting to Grips with the GafferThree Node

otlightNetwork. kif

Jfroot/materials/NetworkMateri:

Add Shader

The exposed parameters from your network material will be listed as editable parameters. These parameters
and their values will also be displayed correctly in the Color, Int and Exp columns of the gaffer table for ease
of reference. Any overrides to the material parameters are reflected here.

The same look file can be applied to many different lights, and locally overridden in the GafferThree node.

[l GafferThree

Sworld/Igt/gaffer

off

Mame
& spotlight_C
spotLight_

USER GUIDE
367

Lighting Your Scene | Lighting Tools

Lighting Tools

Katana's Lighting Tools enhance lighting workflows for artists. When the Lighting Tools button is enabled,
artists can work full-screen in the Hydra Viewer, streamlining the creation and editing of lights in your
scene. This workflow is inspired by the thought processes of live action cinematographers and lighting
artists, allowing you to work quickly and smoothly with more creative freedom.

Additional Lighting Enable Lighting
Mode Controls Tools Light Type

Light Positions

Light Parameter
Widget

Lighting Tools Ul

Katana's Lighting Tools reduce the number of steps required to place lights and increases the accuracy of the
placement. This intuitive way of working embraces the way lighting artists think so you can focus on the
result, not the process.

Creating and Placing Lights
Find out how to create and place lights using Lighting Tools in the Hydra Viewer.

Editing Lights in the Parameter Widget

USER GUIDE
368

Lighting Your Scene | Lighting Tools

Discover how to edit your lights and customize the parameters shown on your light parameters widgets.
Clones and Template Materials

Learn how to further streamline your lighting workflows using cloning and Template Materials.

Creating Lights using Lighting Tools
Katana's Lighting Tools introduce an artist-friendly environment to set up lights in a GafferThree node

within your scene. It allows you to interact directly with your image during a live render session.

Lighting Tools are especially useful when artists want to work in a purely creative way without being slowed
down or distracted by unnecessary panels.

How to Place a Light using Lighting Tools

1. Create a GafferThree node and place it in your Node Graph.

Note: For more information on the GafferThree node, see Getting to Grips with the
GafferThree Node.

2. Click the Lighting Tools button ‘l- in the Viewer (Hydra) tab, or press L on the keyboard to turn
on Lighting Tools.

Additional buttons are displayed in the Hydra Viewer.

Manipulators

If you have more than one GafferThree node in your scene, you can select which GafferThree node
you would like to use to create your light by clicking on the GafferThree dropdown.

USER GUIDE
369

Lighting Your Scene | Lighting Tools

You can no longer select any geometry in the scene.

Tip: Press Spacebar over the Hydra Viewer to enter full-screen mode and work directly on
your image.

3. Click the dropdown arrow next to the Lighting Tools button to choose a Lighting Mode. You can also
hold Shift and press L to cycle Lighting Modes.

Edit Light Materials

Fixed Rotation

Mormal
Specular

Reflection

Note: Forinformation about each Lighting Mode, see the Lighting Modes section in this
topic.

USER GUIDE
370

Lighting Your Scene | Lighting Tools

4. Choose the light you want to create from the Lights dropdown menu.

| Area Light

Clone as Template

JDELIGHT

[Area Light

% Distant Light

Environment Light

Mesh Light
Point Light
Shkoy Light

Spot Light

Your default renderer's lights appear in the list. If you want to choose a light from a different renderer

you have set up in Katana, click the settings icon . from within the Lights dropdown menu, and
select the renderers you want to access from the dropdown menu.

Note: For information about the Clone and Clone as Template options, see Cloning Lights
and Template Materials.

5. Shift + Click to place a light.

A light parameter widget is displayed.

USER GUIDE

w
~

Lighting Your Scene | Lighting Tools

e \\.\\"\:{,

Note: For information on editing lights using the light parameter widget, see the Editing
Lights using Lighting Tools section of this topic.

You can also place lights at the same position as the camera you are currently looking through, and other
lights in you scene.

To place a light at the same position as the camera you are looking through, click the Camera Position

button.

To place a light at the same position as an existing light in your scene, select the light and press the

Note: It is also possible to clone lights using the Clone and Clone as Template options in the
Lights dropdown menu.
For more information, see Cloning Lights and Template Materials.

Duplicate button.

USER GUIDE
372

#editing
#editing

Lighting Your Scene | Lighting Tools

Lighting Modes

The following lighting modes are available from the Lighting Tools dropdown menu:

0 {E) When enabled, new lights cannot be created and existing lights cannot be
/ Edit Light moved. You can only select lights to open their light parameter widget and
Materials make edits to their parameters.

This mode is useful if you have finalized the light positions in your scene and
want to make sure you cannot move them accidentally while adjusting the
parameters.

Make small adjustments to a light's position without changing the angle of
-/ Fixed Rotation ¢ |ight,

This mode is useful when you have finalized the angle of light you want but

want to change the position slightly.

Note: For more information, see the Fixed Rotation section of this
topic.

1 i The direction of the light is oriented to the normal of the geometry.
/ Normal

This mode places the light directly above the point of placement on the
geometry and gives a diffuse appearance.

USER GUIDE

‘t‘/"l‘ Specular

USER GUIDE

Lighting Your Scene | Lighting Tools

Light

L]
Mormal

¥

Point where the user has l;:|il:|{.

The direction of light is exactly halfway between the normal and the
reflection angles.

This mode is useful if you want a soft transition between a diffuse light and a
sharp reflection.

374

Lighting Your Scene | Lighting Tools

Light
-

Point where the user has l;:|il:|{.

1 1 The direction of the light is oriented to the reflection of the object's surface.
/ Reflection This mode is useful for placing a specific light reflection precisely where you
want it to appear on your geometry.

USER GUIDE

(GV]
~l
U

Lighting Your Scene | Lighting Tools

v ¥

Point where the user has clicl