
User Guide
VERSION 6.5v1

Katana™ User Guide. Copyright © 2023 The Foundry Visionmongers Ltd. All Rights Reserved. Use of this document and the Katana software is subject
to an End User License Agreement (the "EULA"), the terms of which are incorporated herein by reference. This document and the Katana software may
be used or copied only in accordance with the terms of the EULA. This document, the Katana software and all intellectual property rights relating
thereto are and shall remain the sole property of The Foundry Visionmongers Ltd. ("The Foundry") and/or The Foundry's licensors.

The EULA can be read in the Katana User Guide.

The Foundry assumes no responsibility or liability for any errors or inaccuracies that may appear in this document and this document is subject to
change without notice. The content of this document is furnished for informational use only.

Except as permitted by the EULA, no part of this document may be reproduced, stored in a retrieval system or transmitted, in any form or by any
means, electronic, mechanical, recording or otherwise, without the prior written permission of The Foundry. To the extent that the EULA authorizes
the making of copies of this User Guide, such copies shall be reproduced with all copyright, trademark and other proprietary rights notices included
herein. The EULA expressly prohibits any action that could adversely affect the property rights of The Foundry and/or The Foundry's licensors,
including, but not limited to, the removal of the following (or any other copyright, trademark or other proprietary rights notice included herein):

Katana™software © 2023 The Foundry Visionmongers Ltd. All Rights Reserved. Katana™ is a trademark of The Foundry Visionmongers Ltd.

Sony Pictures Imageworks is a trademark of Sony Pictures Imageworks.

Mudbox™ is a trademark of Autodesk, Inc.

RenderMan ® is a registered trademark of Pixar.

In addition to those names set forth on this page, the names of other actual companies and products mentioned in this Reference Guide (including,
but not limited to, those set forth below) may be the trademarks or service marks, or registered trademarks or service marks, of their respective
owners in the United States and/or other countries. No association with any company or product is intended or inferred by the mention of its name in
this document.

Linux ® is a registered trademark of Linus Torvalds.

The Foundry

5 Golden Square,

London,

W1F 7HT

Rev: Tuesday, October 31, 2023

Contents
User Guide 17

Installation and Licensing 18

Katana onWindows 19
Installing onWindows 19
Licensing Katana onWindows 21
Uninstalling onWindows 24

Katana on Linux 25
Installing on Linux 26
Licensing on Linux 28
Uninstalling on Linux 31

Renderers 32

Connecting to a Renderer 33

Network Configuration 34

Python Search Path 34

Setting the Temporary File Directory 35

Managing Katana projects in Multi-Platform Environments 35

Launching Katana 38

Launching onWindows 39

Launching on Linux 40

Command-line Interface 41
Katana License Requirements for Launch Modes 42
Interactive Mode 43
Script Mode 44
Shell Mode 45
Batch Mode 45

Katana Resources 53

Environment Variables 56

What is Katana? 59

Key Concepts 61

Glossary of Katana Terms 64

User Interface 75

The Default Workspace 75

The Default Tabs 76

Menu Bar Components 77

Customizing Your Workspace 81

Adjusting Layouts 82

Saving, Loading, and Deleting Layouts 84

Managing Keyboard Shortcuts 85

Getting Help 86

Creating a Project 89

Creating, Saving, and Loading a New Project 89

Importing and Exporting a Project 91

Changing a Project’s Settings 92

Assets and Asset Managers 96

Using the File Browser 96

Autosaves 99

Editing the Node Graph 104

Navigating Inside the Node Graph 104

Adding Nodes 105

Node Basics 106

Selecting Nodes 110

Connecting Nodes 111

Merging Nodes 112

Removing, Replacing, and Deleting Nodes 113

Copying, Pasting, and Cloning Nodes 114

Grouping Nodes 115

Backdrop Nodes 118

Dot Nodes 120

Advanced Display Options 121

Editing a Node’s Parameters 124
Node Parameter Basics 124
Common Parameter Widgets 128
Parameter State Badges 143
Adding User Parameters 143
Widget Types 145
Widget Options 149
Conditional Behavior 150
Creating Help Text for User Parameters 154

Animation 156
Setting Keys 158
Curve Editor Overview 161
Dope Sheet Overview 183
Using the Timeline 187

Using the Scene Graph 189

The Process of Generating Scene Graph Data 191

Manipulating the Scene Graph 192

Structured Scene Graph Data 197
Bounding Boxes and Good Data for Renderers 197
Proxies and Good Data for Users 197
Level-of-Detail Groups 199
Alembic and Other Input Data Formats 200

Working Sets 200

ChangingWhat is Shown in the Viewer 206

Bookmarking a Scene Graph State andWorking Sets 207

Controlling Live Rendering in the Scene Graph 209

Making Use of Different Location Types and Proxies 210
Using Assemblies and Components 211

Resolvers 212
Examples of Resolvers 214
Implicit Resolvers 214
Creating Your Own Resolvers 216

Building Your Scene 218

Adding 3D Assets 219
Adopting Alembic 219

Collections and CEL 225
CEL in the User Interface 226
Guidelines for using CEL 226
CEL in Parameters 228

Working with Attributes 229
AttributeSet Nodes 229
OpScript Nodes 237
Adding an OpScript 237

OpScript Tutorials 239

Viewing Your Scene 249

Changing the Layout 250

SelectingWithin the Viewer 253

Using Flush Caches 254

Using the OSG Viewer 254
Changing the Overall Viewer Behavior 254
Assigning a Viewer Material Shader 256
Assigning a Viewer Light Shader 257
Displaying Textures in the Viewer 258
Changing Specific Viewer Behavior 258
Setting Different Display Properties for Some Locations 261
Stepping Through the Selection History 263
Changing the View Position 264
Choosing a Light or Camera to Look Through 264
Looking Around the Viewport by Offsetting and Overscanning 266

ChangingWhat is DisplayedWithin the Viewport 267
Using Manipulators 268
Toggling the Heads Up Display (HUD) 273
Displaying Normal InformationWithin the Viewer 273
Transforming an Object in the Viewer 274
Manipulating a Light Source 276
Using Stereo Cameras in the OSG Viewer 281

Using the Hydra Viewer 283
Changing the View Position 284
Pan and Zoom 286
Selecting Objects and Faces 287
Using Manipulators in the Hydra Viewer 289
Geometry Display Options 293

The Monitor Layer in the Hydra Viewer 295
Image-Based Selection in the Monitor Layer 298

Snapping 307
Using Stereo Cameras in the Hydra Viewer 315
Subdivision and Anti-Aliasing in the Hydra Viewer 316
Live Rendering with the Hydra Viewer 318
Render Delegates in the Hydra Viewer 319
Proxies and Bounding Boxes 325
Displaying Textures in the Hydra Viewer 326
UsdPreviewSurface in the Hydra Viewer 328
Loading USD Plug-ins into Katana 329
Setting up USD Materials 332
Setting up USD Lights 338

Changing Display Properties for Some Locations 342
Customizing the Viewport 344

Lighting Your Scene 346

Creating a Light 347

Positioning Lights 350

Light Linking 350

Getting to Grips with the GafferThree Node 351
Gaffer Object Table Overview 352
Creating a Light Using the GafferThree Node 353
Making Use of Rigs 354
Defining a Template Light Material 356
Creating a Light Filter Using the GafferThree Node 357
Linking Shadows to Specific Objects 360
Adopting Items from an Incoming Scene 360
Soloing and Muting Lights, Light Filters, and Rigs 361
Locking a Light or Rig's Transform 362
Duplicating an ItemWithin the Gaffer Object Table 363
Syncing the GafferThree Selection with the Scene Graph 363
Using and Overriding Look Files with GafferThree Lights 364

Lighting Tools 368
Creating Lights using Lighting Tools 369
Editing Lights Using the Lighting Tools Parameter Widget 383
Cloning Lights and Using Template Materials With Lighting Tools 394

Look Development 403

Look Development with Look Files 403
Using Look Files to Create a Material Palette 403
Using Look Files in an Asset’s Look Development 405
Creating a Look File Using LookFileBake 405

Assigning a Look File to an Asset 411
Resolving Look Files 412
Overriding Look File Material Attributes 413
Activating Look File Lights and Constraints 414

Using Look Files as Default Settings 414
Bringing a Look File into the Scene Graph 416
Assigning and Unassigning a Global Look File 417
Removing a Look File from the Look Files List 418
Managing Passes in the LookFileManager 418
Overriding Look Files 419

Adding and Assigning Materials 420
Material Basics 421
Material Pipelines 426
Adding Multiple Materials 427
Building Materials Using NetworkMaterialCreate 429
Creating Shading Networks 431
Multiple NetworkMaterials with NetworkMaterialCreate 446
Organizing Shading Networks with ShadingGroup Nodes 456
Node Parameters and Interface Controls 464
Editing Materials With The NetworkMaterialEdit Node 476
Easily Preview Sections of Your LookDev Using Material Solo 483

Network Materials 487
Creating a Network Material 488
Using a Network Shading Node 490
Creating a Network Material’s Public Interface 496
Changing a Network Material’s Connections 499
Editing a Network Material 500

Handling Textures 501
Texture Handling Options 501
Using Pipeline Data to Set Textures 505

Checking UVs 506
Bringing up the UV Viewer Tab 506
Navigating in the UV Viewer Tab 506
Selecting Faces 507
Adding Textures to the UV Viewer 509
Using Multi-Tile Textures 510

Changing the UV Viewer Display 511

Look Files 512
Handing off Looks from Look Development to Lighting 513
Look File Baking 513
Other Uses of Look Files 514
How Look Files Work 515
Setting Material Overrides using Look Files 516
Collections using Look Files 516
Look Files for Palettes of Materials 517
Look File Globals 517

Lights and Constraints in Look Files 517
The Look File Manager 518

Rendering Your Scene 519

Render Types 521
Render Type Availability 524

Performing a Render 527
Starting Multiple Renders 533
Multiple Live Renders with Foresight+ 539
Katana Queue 543

Configuring a Render 550
Render Dependencies 550
Rendering only Selected Locations 551
Setting up Interactive Render Filters 551
Managing Color 553

Viewing Your Renders 554
Using the Monitor Layer and Monitor Tab 554
Changing the Image Size and Position 555
Overlay Masking 556
Changing How to Trigger a Render 558
Rendering a Region of Interest (ROI) 559
Changing the Displayed Channels 563
Changing How the Alpha Channel is Displayed 563
SelectingWhich Output Pass to View 564
Viewing the Pixel Values of the Front and Back Images 564
Comparing Front and Back Images 565
Toggling 2DManipulator Display 569
Underlaying and Overlaying an Image 569

Using the Catalog Tab 570
Using the Histogram 576

Custom Render Resolutions 577

Influencing a Render 577

Controlling Live Rendering 578
Global Options 579

Setting up a Render Pass 582
Defining and Overriding a Color Output 583
Defining Outputs Other than Color 585
Defining an AOVOutput 586
Previewing Interactive Renders for Outputs Other than Primary 590

Instancing 591
Rendering Instances 591

OpenEXR Header Metadata 596
Setting up Render Dependencies 597

Batch Mode 598

AdvancedWorkflow & Extensions 607

See a Nuke Comp of Your Project in Katana Using the Nuke Bridge 608

Asset Management 635
Asset Plug-ins 635
Asset Management System Plug-in API 636

Configuring the Asset Browser 650

Implementing A Custom Asset Control Widget 652

Asset Render Widget 653

Additional Asset Widget Delegate Methods 654

addAssetFromWidgetMenuItems() 655

shouldAddStandardMenuItem() 656

shouldAddFileTabToAssetBrowser() 657

getQuickLinkPathsForContext() 658

The Asset Publishing Process 659
Choosing an Asset Plug-in 659
Example Asset Plug-in 660

Retrieve and Publish 661

LiveGroups and LiveShadingGroups 665
Creating a LiveGroup 666
Editing LiveGroup Parameters 667
Loading and Reloading a LiveGroup 668
Editing the Contents of a LiveGroup 669
Making a LiveGroup Node Editable 669
Modified State of Editable LiveGroup Nodes 670

Publishing a LiveGroup 671
LiveGroup Conversion 672

Graph State Variables 673
Setting Graph State Variables 674
Inspecting Graph State Variables 675
Reading Graph State Variables 676
How Do Graph State Variables Work? 678

Scripting and Programming in Katana 678
Scripting with Python 680
Shelf Item Scripts 681
Using the Python Tab 686
Automating Procedures 689
Message Logging 690

The Op API 695

Groups, Macros, and SuperTools 713
Macros 717
SuperTools 718
Writing a SuperTool 719

Customizing GafferThree 720

Optimizing Performance 722

Geolib3-MT Configuration 723

Geolib3-MT Profiling 728

Op Cook Profiling 734
Starting and Ending a Profiling Session 735
Profiling Renders 736
Profiling Reports 736

Profiling and Optimization Guide 738
Optimize Projects Using the Performance Tab 739
Improving Your Node Graph 745
Improving Your Ops 749
Composing Concurrency-Friendly Scenes 753
Improving OpScript Performance 757

Preferences 763

Keyboard Shortcuts 777

Reference Guide 792

2D Nodes 793

Color Nodes 793
ImageBackgroundColor 793
ImageBrightness 794
ImageChannels 794
ImageClamp 797
ImageContrast 798
ImageExposure 800
ImageFade 801
ImageGain 802
ImageGamma 803
ImageInvert 804
ImageLevels 805
ImageSaturation 807
ImageThreshold 808
OCIOCDLTransform 809
OCIOColorSpace 810
OCIODisplay 811
OCIOFileTransform 812
OCIOLogConvert 814
OCIOLookTransform 814

Composite Nodes 815
ImageIn 816
ImageMerge 819
ImageOut 822
ImagePremultiply 825
ImageUnpremultiply 826
ImageZMerge 827

Filter Nodes 827
ImageBlur 827

I/O Nodes 829
ImageRead 830
ImageWrite 834

Source Nodes 843
ImageCheckerboard 844
ImageColor 845
ImageRamp 846
ImageText 850

Transform Nodes 854
ImageCrop 854
ImageOrient 855
ImagePosition 856
ImageReformat 857
ImageTransform2D 860

3D Nodes 865

Constraint Nodes 865
AimConstraint 865
BillboardConstraint 867
CameraScreenWindowConstraint 869
ClippingConstraint 870
DollyConstraint 872
FOVConstraint 873
OrientConstraint 875
ParentChildConstraint 877
PointConstraint 878
ReflectionConstraint 880
ScaleConstraint 881
ScreenCoordinateConstraint 882

Input Nodes 883
AttributeFile_In 884

Lookfile Nodes 886
LookFileBake 886
LookFileLightAndConstraintActivator 888
LookFileManager 889
LookFileMaterialsIn 890
LookFileMaterialsOut 891
LookFileMultiBake 892
LookFileOverrideEnable 895
LookFileResolve 896
UsdMaterialBake 897

Output Nodes 900
Render 900

Procedural Nodes 903
Alembic_In 903
RendererProceduralArgs 906

Resolve Nodes 915
ConstraintResolve 915
MaterialResolve 916

Source Nodes 916
AttributeFile_In 916
CameraCreate 919
CameraImagePlaneCreate 921
CollectionCreate 924
CoordinateSystemDefine 925
InfoCreate 926
LightCreate 928
LocationCreate 930

Material 931
PrimitiveCreate 934
TeapotCreate 936

SuperTool Nodes 937
Importomatic 937
LookFileLightAndConstraintActivator 938
LookFileManager 939
LookFileMultiBake 939

Other 3D Nodes 942
ArnoldObjectSettings 942
ArnoldGlobalSettings 943
ArnoldLiveRenderSettings 943
ArnoldOutputChannelDefine 944
ArnoldShadingNode 945
AttributeCopy 946
AttributeEditor 948
AttributeSet 949
BoundsAdjust 952
CameraClippingPlaneEdit 954
ConstraintCache 955
ConstraintListEdit 956
FaceSetCreate 956
GenericOp 957
GroupMerge 963
HierarchyCopy 964
Isolate 966
LightLink 967
LightLinkEdit 970
LightLinkResolve 972
LightLinkSetup 973
LightListEdit 976
LocationGenerate 977
LodGroupCreate 978
LodSelect 979
LodValuesAssign 981
MaterialStack 982
Merge 982
NetworkMaterial 985
NetworkMaterialCreate 986
NetworkMaterialEdit 992
NetworkMaterialInterfaceControls 997
NetworkMaterialParameterEdit 1001
NetworkMaterialSplice 1002
OpResolve 1005
OpScript 1006
PrmanGlobalSettings 1011
PrmanObjectSettings 1011

PrmanOutputChannelDefine 1012
PrmanShadingNode 1013
Prune 1014
Rename 1015
RenderOutputDefine 1016
ReverseNormals 1021
ShadingGroup 1022
ShadingNodeArrayConnector 1023
ShadingNodeSubnet 1023
Transform3D 1024
TransformEdit 1025
VelocityApply 1026
ZoomToRect 1027

Miscellaneous Nodes 1029

SuperTool Nodes 1029
GafferThree 1029
ImageCoordinate 1050
PonyStack 1050

Other Nodes (Misc) 1051
Backdrop 1051
DependencyMerge 1051
Dot 1052
Group 1053
GroupStack 1053
InteractiveRenderFilters 1055
LiveGroup 1055
LookFileAssign 1057
LookFileGlobalsAssign 1057
MaterialAssign 1058
NonpersistentSwitch 1059
RenderScript 1060
RendererProceduralAssign 1073
ScenegraphObjectSettings 1074
Switch 1075
Teleport 1076
TimeOffset 1076
UsdActiveSet 1077
UsdAttributeSet 1078
UsdIn 1080
UsdInActivationSet 1083
UsdInheritSet 1083
UsdLayerWrite 1086
UsdMetadataSet 1087
UsdPayloadSet 1089
UsdPrimCreate 1091
UsdPrimvarSet 1093

UsdPythonWrite 1096
UsdReferenceSet 1097
UsdRelationshipSet 1099
UsdSchemaSet 1101
UsdSpecializeSet 1105
UsdSubLayerAdd 1108
UsdTransformSet 1110
UsdVariantSet 1112
VariableDelete 1114
VariableEnabledGroup 1114
VariableSet 1115
VariableSwitch 1115
ViewerObjectSettings 1116
VisibilityAssign 1120

End User License Agreement (EULA) 1122

USER GUIDE

User Guide
This manual walks you through installing, licensing, and using Katana. For information on each individual
node, see the Reference Guide.

17

USER GUIDE

Installation and Licensing
This section guides you to the point where you have a default Katana workspace and are ready to start.

System Requirements
Before you do anything else, ensure that your system meets the following minimum requirements to run
Katana effectively:
• Katana 6.5v1 is tested and qualified on Linux CentOS/RHEL 7.6 to 7.9 (64-bit) and Windows 10,11(64-bit).
• A graphics card that supports OpenGL shader model 4.
• A supported renderer (see Renderers).

Note: Due to Python's handling of imports on case-insensitive platforms (see PEP 235), it is not
possible to run Katana from a file system location on a network-attached storage device (NAS) that
has been set up with mount options for case-insensitive names.

Third-Party Dependencies

Katana version 6.5v1 has dependencies on the following third-party libraries:
• OpenEXR 2.2
• OpenSSL 1.0.0.a

These libraries are provided in the Katana distribution, in separate directories under ${KATANA_HOME}/bin

An ABI-compatible copy of these libraries needs to reside on your LD_LIBRARY_PATH in order for many of
Katana's plug-ins to run. The Katana application itself uses RPATHs to locate the required libraries.

18

USER GUIDE
19

Note: Katana's wrapper script ${KATANA_HOME}/katana appends ${LD_LIBRARY_PATH} to
ensure these libraries are visible to Katana plug-ins.

If you manage your own LD_LIBRARY_PATH or wish to expose these libraries to plug-ins by some
other means, you can call the Katana binary directly using:
${KATANA_ROOT}/bin/katanaBin

Katana on Windows
After installation, all Katana applications are run from either desktop icons, the Start menu, or from the
command-line using launch modes and command-line arguments.

Katana System Requirements

Supported Operating Systems
• Windows 10,11(64-bit)

Note: Other operating systems may work with Katana, but have not been fully tested. If you have
any problems with a particular operating system, please contact our support team.

Installing on Windows
To install Katana on Windows , see either:
• Installing Katana with the User Interface (UI)
• Installing Katana from the Command-Line

Installing Katana with the User Interface (UI)
To install Katana on Windows using the standard, user interface method, follow the instructions below:

Installation and Licensing | Katana onWindows

USER GUIDE
20

1. Download the correct .zip installation file from our website at
https://www.foundry.com/products/katana.

2. Extract the .exe installation file from the .zip file
3. Double-click on the .exe installation file to install Katana.
4. Follow the on-screen instructions. By default, Katana is installed to drive letter:\Program

Files\Katana6.5v1.
5. Proceed to Licensing Katana on Windows .

Installing Katana from the Command-Line
To install Katana on Windows from the command-line, follow the instructions below:
1. Download the correct .exe installation file from our website at

https://www.foundry.com/products/katana.
2. Extract the .exe installation file from the .zip file.
3. To open a command prompt window, select Start > All Programs > Accessories > Command Prompt.
4. Use the cd (change directory) command to move to the directory where you saved the .exe installation

file. For example, if you saved the .exe installation file in C:\Temp, use the following command and press
Return:
cd \Temp

5. To install Katana, do one of the following:
• To install Katana to the current directory and display the installation dialog, type the name of the install

file without the file extension and press Return:
Katana6.5v1-win-x86-release-64

• To install Katana to a specified directory and display the installation dialog, use the /dir install option:
Katana6.5v1-win-x86-release-64 /dir="C:\Katana"

• To install Katana silently so that the installer does not prompt you for anything but displays a progress
bar, enter /silent after the installation command:
Katana6.5v1-win-x86-release-64 /silent

• To install Katana silently so that nothing is displayed, enter /verysilent after the installation command:
Katana6.5v1-win-x86-release-64 /verysilent

• To install Katana, but not 3Delight, use the /components option:
Katana6.5v1-win-x86-release-64 /components="!delight"

Note: This option does not stop Katana loading the 3Delight renderer at start up if it already exists
on the local machine.

• You can also use a combination of install options:

Installation and Licensing | Katana onWindows

https://www.foundry.com/products/katana
https://www.foundry.com/products/katana

USER GUIDE
21

Katana6.5v1-win-x86-release-64 /silent /dir="C:\Katana"
/components="!delight"

Note: By using the /silent or /verysilent install options, you agree to the terms of the Katana End
User Licensing Agreement. To see this agreement, please refer to End User License Agreement
(EULA).

Licensing Katana on Windows
The following licensing methods are available:
• Activation Keys - activation keys allow you to activate and generate your actual product license key, at a

later point after purchase, on the machine for which you require the license. They are provided for both
node locked and floating license, and generate the appropriate license type once installed using the
product's Licensing dialog or online using the Activate a Product page:

https://www.foundry.com/user/login?destination=/licensing/activate-product
• Node Locked Licenses - these can be used to license an application on a single machine. They do not

work on different machines and if you need them to, you’ll have to transfer your license.

Node locked licenses, sometimes called uncounted licenses, do not require additional licensing software to
be installed.

• Floating Licenses - also known as counted licenses, enable application to work on any networked client
machine. The floating license is put on the server and is locked to a unique number on that server.

Floating licenses on a server requires additional software to be installed on the server to manage the
licenses and give them out to the client stations that want them. This software is called the Foundry
Licensing Tool (FLT) and can be downloaded at no extra cost from our website.

The following instructions run through the basic options for the first two licensing methods, but can find a
more detailed description in the Foundry Licensing Tools (FLT) User Guide available on our website:

https://www.foundry.com/licensing

To use Katana, you need either a node locked license or a floating license and a server running the Foundry
Licensing Tool (FLT). Katana uses RLM licensing, and the default local RLM location is:
C:\ProgramData\The Foundry\RLM

Installation and Licensing | Katana onWindows

https://www.foundry.com/user/login?destination=/licensing/activate-product
https://www.foundry.com/licensing

USER GUIDE
22

Obtaining Licenses
To obtain a license, you'll need your machine's System ID (sometimes called Host ID or rlmhostid). Just so
you know what a System ID number looks like, here’s an example: 000ea641d7a1.

Note: Bear in mind that, for floating licenses, you'll need the System ID of the license server, not
the machines on which you intend to run the application.

There are a number of ways you can find out your machine's System ID:
• Launch the application without a license, click Status in the bottom-left of the dialog, and then scroll down

the error report until you see your System ID.
• Download the Foundry License Utility (FLU) from https://www.foundry.com/licensing and run it. Your

System ID is displayed.
• Download the Foundry Licensing Tools (FLT) free of charge from https://www.foundry.com/licensing and

then run C:\Program Files\TheFoundry\LicensingTools7.0\ Foundry License Utility.exe

When you know your System ID, you can request a license for Foundry products:
• from the Foundry's Sales Department at sales@foundry.com.
• by registering your interest in the product by filling out the form on

https://www.foundry.com/user/register?request_uri=/products/4/trial/interactive.

Installing Licenses
When you start the application before installing a license, a Licensing dialog displays an error informing you
that no license was available. The installation process is dependent on what type of license you requested:
• License file - if you requested a license file, typically foundry.lic, this option allows you to browse to the

file location and install it automatically. See To Install a License from Disk for more information.
• Activation Key or license text - if you requested an Activation Key or license by email, this option allows

you to paste the key or license text into the Licensing dialog, which then installs the license in the correct
directory. See To Install an Activation Key or License Text for more information.

• A floating license - if you requested a floating license to supply licenses to multiple client machines, this
option allows you to enter the server address that supplies the client licenses. See To Install a Floating
License for more information.

Installation and Licensing | Katana onWindows

https://www.foundry.com/licensing
https://www.foundry.com/licensing
mailto:sales@foundry.com
https://www.foundry.com/user/register?request_uri=/products/4/trial/interactive

USER GUIDE
23

Note: You must install a floating license and additional software on the license server to use this
option.

To Install a License from Disk
1. Save the license file to a known location on disk.
2. Launch the application.

The Licensing dialog displays.
3. Click Install License to display the available license installation options.
4. Click Install from Disk.
5. Browse to the location of the license file.
6. Click Open to install the license automatically in the correct directory.

Once you click Open, you should see the Licenses Updated message in the Licensing dialog and you
are presented with a Launch option.

7. Click Launch to open Katana.

To Install an Activation Key or License Text
1. Launch the application.

The Licensing dialog displays.
2. Click Install License to display the available license installation options.
3. Click Activation Key / License Text and then either:

• Enter the Activation Key string in place of Insert Activation Key Here. A license key typically looks
something like this:
katana-0101-77d3-99bd-a977-93e9-8035

OR
• Copy the license text and paste it over the Copy/Paste license text here text. License text typically looks

something like this:
LICENSE foundry katana_i 2013.0929 29-sep-2013 uncounted

hostid=000a957bfde5 share=h min_timeout=30 start=29-sep-2012

issued=29-sep-2012 disable=VM _ck=da32d7372f sig="60P0450MJRP97E3DP

B42C99Y5UAPRMEMGNQ39PG22H4WGH3WFK2KPTXFWJTYR0GYASJBXC0PU8"

4. Click Install.
The license is automatically installed on your machine in the correct directory. Once you click Install, you
should see the Licenses Updated message in the Licensing dialog and you are presented with a Launch
option.

Installation and Licensing | Katana onWindows

USER GUIDE
24

5. Click Launch to open Katana.

Note: Activation Keys require an internet connection. If you access the internet through a proxy
server and cannot connect to the activation server, you may get an error dialog prompting you to
either:

• Click Use Proxy to enter the proxy server name, port number, username, and password. This
enables the application to connect to the activation server and obtain a license. The license is then
installed automatically, or

• Click on the web link in the dialog and use the System ID (also known as hostid) provided to
manually activate and install a license.

To Install a Floating License

If you requested a floating license from Foundry, you will receive your license key (foundry.lic) in an email or
internet download. You should also receive the Foundry License Tools (FLT) application. Once you've
installed the FLT, you can access the Foundry Licensing Utility (FLU) to help you install the license key on the
license server machine. The server manages licenses for the client machines on your network.
1. From the Start menu, navigate to All Programs > The Foundry > FLT 7.1v1, then right-click on the

"Foundry License Utility" and select "Run as Administrator".
2. Run the FLU on the client machine and paste the following line into the License Install tab:

HOST <server name> any 4101
replacing <server name> with the hostname of your server, for example:
HOST red any 4101

Further Reading

There is a lot to learn about licenses, much of which is beyond the scope of this manual. For more
information on licensing, displaying the System ID number, setting up a floating license server, adding new
license keys and managing license usage across a network, you should read the Foundry Licensing Tools (FLT)
User Guide, which can be downloaded from our website, https://www.foundry.com/licensing.

Uninstalling on Windows
To uninstall Katana on Windows , there are a few things you need to do:

Installation and Licensing | Katana onWindows

https://www.foundry.com/licensing

USER GUIDE
25

1. Navigate to Start > All Programs > The Foundry > Katana6.5v1 and select Uninstall.
The Katana Uninstall dialog displays.

2. Click Yes to uninstall Katana.
3. Delete, rename, or move your .katana folder, if it exists.

The .katana folder is usually found under the directory pointed to by the HOME environment variable. If
this variable is not set, which is common, the .katana directory is under the folder specified by the
USERPROFILE environment variable, which is generally one of the following:
drive letter:\Documents and Settings\login name\

drive letter:\Users\login name\

To find out if the HOME and USERPROFILE environment variables are set, and where they are pointing
at, enter %HOME% or %USERPROFILE% into the address bar in Windows Explorer. If the environment
variable is set, the folder it's pointing at is opened. If it's not set, you get an error.

4. Delete, rename, or move your cached files, which reside in the following directory by default:
~\AppData\Local\Temp\katana*

Where ~ is equal to %HOME% or %USERPROFILE% as detailed above.

Note: If you specified an alternate directory using the KATANA_TMPDIR environment variable,
purge those files as well as the default location. See Help > Developer Guide for more
information.

Katana on Linux
After installation, all Katana application are run from either desktop icons, the browser, or from the terminal
using launch modes or arguments.

Katana System Requirements

Qualified Operating Systems
• Linux CentOS/RHEL 7.6 to 7.9 (64-bit)

Note: Other operating systems may work with Katana, but have not been fully tested. If you have
any problems with a particular operating system, please contact our support team.

Installation and Licensing | Katana on Linux

USER GUIDE
26

Installing on Linux
To install Katana on Linux, see either:
• Installing Katana from the Terminal, or
• Installing Katana Remotely from the Terminal.

Installing Katana from the Terminal
To install Katana on Linux from the terminal, follow the instructions below:
1. Download the correct .tgz installation file from our website at

https://www.foundry.com/products/katana.
2. Move the .tgz file into a temporary folder.
3. Extract and decompress the .tgz file inside the temporary folder.

tar xvf Katana<version>-linux-x86-release-64.tgz

This gives you an installer file.
4. Start the install script:

./install.sh

The install script supports several command-line options:
• -h or --help - displays the available options.
• --accept-eula - automatically accepts the EULA without displaying it.
• --path or --katana-path - specifies where Katana is installed and accepts the EULA without displaying

it. For example, to use the --path option to install Katana to the /opt/foundry/katana directory,
execute the install script with:
./install.sh --path /opt/foundry/katana

Note: By installing Katana with the --accept-eula or --path options, you agree to the terms of the
End User Licensing Agreement. To see this agreement, please refer to
https://www.foundry.com/eula.

• --3delight-path - specifies where 3Delight is installed.
• --no-3delight - disables the automatic installation of 3Delight.

5. Read and acknowledge the End User License Agreement (EULA) by pressing Y at the end of the text.

Installation and Licensing | Katana on Linux

https://www.foundry.com/products/katana
https://www.foundry.com/eula

USER GUIDE
27

Tip: If you've already read and agreed to the terms of the EULA, you can skip to the end of the text
by pressing Q.

6. Enter the installation directory for Katana or press Enter to accept the default install directory.
7. If you didn't add a license key during the installation, do that now using the instructions in Licensing on

Linux. Otherwise, proceed to Launching on Linux.
Additionally, you can install Katana silently by simply unzipping the installer file. This creates the
properly formed Katana directory tree in the current directory.

Installing Katana Remotely from the Terminal
To install Katana on Linux remotely from the terminal, follow the instructions below:
1. Download the correct .tgz installation file from our website at

https://www.foundry.com/products/katana.
2. Extract the installer from the .tgz archive with the following terminal command:

tar xvzf Katana6.5v1-linux-x86-release-64.tgz

This gives you an installer file.
3. Use the following terminal command to log in to your render machine as root:

ssh root@render_machine

Replace render_machine with the name of your render node.
4. Make a directory to install Katana to:

mkdir /usr/local/Katana6.5v1

5. Copy the installer file from the machine on which you downloaded it to your render machine with a
command like:
scp root@download_machine: /tmp/Katana6.5v1-linux-x86-release-64-installer
root@render_machine: /usr/local/Katana6.5v1/

Replace download_machine with the name of the machine to which you downloaded the installer file,
and render_machine with the name of your render node.

6. Unzip the installer file to unpack its contents into your Katana directory:
cd /usr/local/Katana6.5v1

unzip Katana6.5v1-linux-x86-release-64-installer

7. Repeat steps 3-6 for each render machine.

Installation and Licensing | Katana on Linux

https://www.foundry.com/products/katana

USER GUIDE
28

Licensing on Linux
The following licensing methods are available:
• Activation Keys - activation keys allow you to activate and generate your actual product license key, at a

later point after purchase, on the machine for which you require the license. They are provided for both
node locked and floating license, and generate the appropriate license type once installed using the
product's Licensing dialog or online using the Activate a Product page:

https://www.foundry.com/user/login?destination=/licensing/activate-product
• Node Locked Licenses - these can be used to license an application on a single machine. They do not

work on different machines and if you need them to, you’ll have to transfer your license.

Node locked licenses, sometimes called uncounted licenses, do not require additional licensing software to
be installed.

• Floating Licenses - also known as counted licenses, enable application to work on any networked client
machine. The floating license is put on the server and is locked to a unique number on that server.

Floating licenses on a server requires additional software to be installed on the server to manage the
licenses and give them out to the client stations that want them. This software is called the Foundry
Licensing Tool (FLT) and can be downloaded at no extra cost from our website.

The following instructions run through the basic options for the first two licensing methods, but can find a
more detailed description in the Foundry Licensing Tools (FLT) User Guide available on our website:

https://www.foundry.com/licensing

To use Katana, you need either a node locked license or a floating license and a server running the Foundry
Licensing Tool (FLT). Katana uses RLM licensing, and the default local RLM location is:
/usr/local/foundry/RLM

Obtaining Licenses
To obtain a license, you'll need your machine's System ID (sometimes called Host ID or rlmhostid). Just so
you know what a System ID number looks like, here's an example:

000ea641d7a1.

Installation and Licensing | Katana on Linux

https://www.foundry.com/user/login?destination=/licensing/activate-product
https://www.foundry.com/licensing

USER GUIDE
29

Note: Bear in mind that, for floating licenses, you'll need the System ID of the license server, not
the machines on which you intend to run the application.

There are a number of ways you can find out your machine's System ID:
• Download the Foundry Licensing Tools (FLT) free of charge from https://www.foundry.com/licensing and

then run the following command in a terminal shell:

/usr/local/foundry/LicensingTools7.0/bin/systemid

• Download the Foundry Licensing Utility (FLU) free of charge from https://www.foundry.com/licensing and
then run the following command in a terminal shell:

./FoundryLicenseUtility –i

When you know your System ID, you can request a license for Foundry products:
• from the Foundry's Sales Department at sales@foundry.com
• by registering your interest in the product by filling out the form on

https://www.foundry.com/user/register?request_uri=/products/4/trial/interactive.

Installing Licenses
When you start the application before installing a license, a Licensing dialog displays an error informing you
that no license was available. The installation process is dependent on what type of license you requested:
• License file - if you requested a license file, typically foundry.lic, this option allows you to browse to the

file location and install it automatically. See To Install a License from Disk for more information.
• Activation Key or license text - if you requested an activation key or license by e-mail, this option allows

you to paste the key or license text into the Licensing dialog, which then installs the license in the correct
directory. See To Install an Activation Key or License Text for more information.

• A floating license - if you requested a floating license to supply a license to multiple client machines, this
option allows you to enter the server that supplies the client licenses. See To Install a Floating License for
more information.

Note: You must install a floating license and additional software on the license server to use this
option.

To Install a License from Disk
1. Save the license file to a known location on disk.
2. Launch the application.

Installation and Licensing | Katana on Linux

https://www.foundry.com/licensing
https://www.foundry.com/licensing
mailto:sales@foundry.com
https://www.foundry.com/user/register?request_uri=/products/4/trial/interactive

USER GUIDE
30

The Licensing dialog displays.
3. Click Install License to display the available license installation options.
4. Click Install from Disk.
5. Browse to the location of the license file.
6. Click Open to install the license automatically in the correct directory.

Once you click Open, you should see the Licenses Updated message in the Licensing dialog and you
are presented with a Launch option.

7. Click Launch to open Katana.

To Install an Activation Key or License Text
1. Launch the application.

The Licensing dialog displays.
2. Click Install License to display the available license installation options.
3. Click Activation Key / License Text and then either:

• Enter the Activation Key string in place of Insert Activation Key Here. A license key typically looks
something like this:
katana-0101-77d3-99bd-a977-93e9-8035

OR
• Copy the license text and paste it over the Copy/Paste license text here string. License text typically

looks something like this:
LICENSE foundry katana_i 2013.0929 29-sep-2013 uncounted

hostid=000a957bfde5 share=h min_timeout=30 start=29-sep-2012

issued=29-sep-2012 disable=VM _ck=da32d7372f sig="60P0450MJRP97E3DP

B42C99Y5UAPRMEMGNQ39PG22H4WGH3WFK2KPTXFWJTYR0GYASJBXC0PU8"

4. Click Install.
The license is automatically installed on your machine in the correct directory. Once you click Install, you
should see the Licenses Updated message in the Licensing dialog and you are presented with a Launch
option.

5. Click Launch to open Katana.
Activation keys require an internet connection. If you access the internet through a proxy server and
cannot connect to the activation server, you may get an error dialog prompting you to either:
• Click Use Proxy to enter the proxy server name, port number, username, and password. This enables

the application to connect to the activation server and obtain a license. The license is then installed
automatically, or

• Click on the web link in the dialog and use the System ID (also known as hostid) provided to manually
activate and install a license.

Installation and Licensing | Katana on Linux

USER GUIDE
31

To Install a Floating License
If you requested a floating license from Foundry, you will receive your license key (foundry.lic) in an email or
internet download. You should also receive the Foundry License Tools (FLT) application. Once you've
installed the FLT, you can access the Foundry Licensing Utility (FLU) to help you install the license key on the
license server machine. The server manages licenses for the client machines on your network.
1. Open a terminal and browser to the directory location where the FLU is located.
2. Run the following command as a Root user:

./FoundryLicenseUtility -c 4101@<server_name>

replacing <server_name> with the hostname of your license server, for example:
./FoundryLicenseUtility -c 4101@red

The FLU creates an RLM license, and this installs a client license file on disk enabling the machine to get a
license from the server.

Further Reading
There is a lot to learn about licenses, much of which is beyond the scope of this manual. For more
information on licensing Katana, displaying the System ID number, setting up a floating license server,
adding new license keys, and managing license usage across a network, you should read the Foundry
Licensing Tools (FLT) User Guide, which can be downloaded from our website at
https://www.foundry.com/licensing.

Uninstalling on Linux
To uninstall Katana on Linux, there are a few things you need to do:
1. Navigate to /usr/local/ and delete the Katana 6.5v1 folder.
2. Delete, rename, or move your .katana folder, if it exists.

The .katana folder is found in your home directory, by default:
/home/<login name>/.katana

3. Delete, rename, or move your cached files, which reside in the following directory by default:
/var/tmp/katana

Installation and Licensing | Katana on Linux

https://www.foundry.com/licensing

USER GUIDE
32

Note: If you specified an alternate directory using the KATANA_TMPDIR environment variable,
purge those files as well as the default location. See Environment Variables for more information.

Renderers
3Delight Renderer
Katana comes bundled with 3Delight: a uni-directional path-tracer designed to withstand the high demands
of production rendering.

Article: For more information about downloading and installing the 3Delight renderer and plug-in
for Katana, please refer to the Knowledge Base article: 3Delight for Katana

Note: The Katana Installer provides an option for installing 3Delight with Katana.

Third-Party Renderers
Pixar’s RenderMan, Solid Angle’s Arnold and Chaos Group’s V-Ray are each supported by plug-ins supplied
directly by those companies.

For Pixar’s RenderMan, please contact Pixar to get RenderMan for Katana (also called RfK). You also need to
install the relevant version of the RenderMan renderer (RenderMan Pro Server).

For Arnold, please contact Solid Angle to get Arnold for Katana (also called KtoA). This includes both the
Arnold renderer as well as the Katana plug-in.

For V-Ray, please contact Chaos Group to get V-Ray for Katana. This includes the V-Ray renderer as well as
the Katana plug-in.

All queries regarding third-party plug-ins should be directed to the relevant provider.

Installation and Licensing | Renderers

https://learn.foundry.com/katana/3.0/dev-guide/EnvironmentVariables.html
https://support.foundry.com/hc/en-us/articles/115000006510-Q100246-3Delight-for-Katana

USER GUIDE
33

Connecting to a Renderer
Using 3Delight
The 3Delight renderer and plug-in are bundled with Katana. No additional configuration is necessary after
installation.

Article: For more information about downloading and installing the 3Delight renderer and plug-in
for Katana, please refer to the Knowledge Base article: 3Delight for Katana

Using Other Renderers
Katana is designed to be renderer agnostic. A number of third-party renderer plug-ins are available,
supporting renderers such as RenderMan, Arnold, V-Ray and 3Delight.

Before trying to connect Katana to a renderer, make sure the renderer is installed correctly. Consult the
manual that accompanies the renderer for details.

Note: For more information on writing a renderer plug-in for Katana utilizing the Rendering API,
see the developers' documentation that accompanies the installation. The developers'
documentation can be accessed through the Help > Developer Guide menu option inside Katana.

Katana uses the KATANA_RESOURCES environment variable to find the renderer plug-ins it needs.

Changing the Default Renderer
The default renderer is specified using the DEFAULT_RENDERER environment variable. For example, if
you’re using a bash shell:

export DEFAULT_RENDERER=dl

This default is used by nodes and tabs that require renderer-specific information in instances where the
renderer is not specified by the recipe at the currently viewed node. If this environment variable is not set, dl
is used by default.

Installation and Licensing | Connecting to a Renderer

https://support.foundry.com/hc/en-us/articles/115000006510-Q100246-3Delight-for-Katana

USER GUIDE
34

Note: If the requested renderer plug-in is not available, Katana displays warning messages, and in
certain cases, error messages.

Network Configuration
When performing a Live Render, or Preview Render, Katana uses TCP/IP sockets for communication between
the render process and Monitor tab. Therefore, Katana needs to be able to resolve the workstation host
name by means of a DNS. For this to work ensure one of the following:
• Your corporate network has a valid DNS server running, capable of resolving the host name of your

machine.
• Add an entry to your /etc/hosts, which explicitly maps your host name to IP address.

Python Search Path
Katana’s Python module search path is configured as follows, leaving the PYTHONPATH environment
variable unchanged for child processes:

KATANA_INTERNAL_PYTHONPATH =
KATANA_DEBUG_PRE_PYTHONPATH :

<Katana internal Python paths> :
PYTHONPATH and site customizations :
KATANA_POST_PYTHONPATH

This allows Katana to initialize its environment safely, avoiding inadvertent loading of unsupported modules.
You may add to the search path using Python site customizations or by setting the KATANA_POST_
PYTHONPATH environment variable.

Additionally, the KATANA_DEBUG_PRE_PYTHONPATH environment is provided, for debugging purposes
only, as it may lead to unexpected application behavior due to non-supported modules loading in place of
the application's.

Note: Changes to sys.path included in sitecustomize.py do not affect Katana internal Python
paths.

Installation and Licensing | Network Configuration

USER GUIDE
35

Setting the Temporary File Directory
When launching Katana, a temporary folder is created in the standard directory of temporary files and
folders. This is used to store data, such as caches for instance, for the current session.

The name of the Katana temporary directory uses the following pattern: katana_tmpdir_[process-ID]

By default, the Katana temporary directory is created in the folder as returned by the tempfile.gettempdir()
function from the tempfile module in the Python Standard Library. You can override the directory by setting
the TMPDIR environment variable to a specific file system location.

You can obtain the exact file system location that Katana uses through the KATANA_TMPDIR environment
variable, which, when interrogated from within a running Katana session, may contain value like the
following: /tmp/katana_tmpdir_26458

Note: The Katana temporary directory is removed once the Katana session terminates.

Managing Katana projects in Multi-
Platform Environments
When sharing Katana projects across different machines, it is sometimes necessary to adjust the format of
file paths for different operating systems or to account for different folder structures.

To make a Katana project portable across multiple platforms, file paths should be set up so they are relative
and not dependent on a system-specific folder structure. There are three ways to do this:
• Using parameter expressions
• Using an environment variable
• Relative file paths without using an expression

Installation and Licensing | Setting the Temporary File Directory

USER GUIDE
36

Using Parameter Expressions

Python Expressions
Relative file paths can be set up by using Python parameter expressions. For example, right-click on a
filename parameter, choose 'Expression' as the Value Mode and enter an expression:

project.dir + '/textures/testFile.png'

project.dir will then be resolved to the directory of the Katana project file. This is also valid:

path.join(project.dir, ‘/textures/testFile.png’)

Tip: See the Katana Developer Guide for more information on Python expressions.

Reference Expressions
A reference expression is a form of parameter expression that can be evaluated without the overhead of a
Python interpreter.

As of Katana 3.6, parameter reference expressions support concatenation using the + operator. For example:

=^/user.page + '_regionExtra'

Tip: See the Katana Developer Guide for more information on reference expressions.

Using an Environment Variable
Alternatively, you can set an environment variable to point to the system specific root folder. To evaluate the
variable in your parameter, there are two options:
• Use a parameter expression. For example:

getenv("OS_PATH", tmpDir) + '/example/file/path'

• Some nodes like Alembic_In also support the use of environment variables in a constant value for a file
path parameter. For example:

Installation and Licensing | Managing Katana projects in Multi-Platform Environments

https://learn.foundry.com/katana/current/dev-guide/ParameterExpressions/PythonExpressions.html
https://learn.foundry.com/katana/current/dev-guide/ParameterExpressions/ReferenceExpressions.html

USER GUIDE
37

${OS_PATH}/example/file/path

Note: This is not supported for every node type, in this case please use the first option of
evaluating the environment variable via an expression.

Using a Relative File Path Without Using an Expression
Another option is to make use of relative file paths without using an expression. In this case you should
specify your file paths relative to the project directory.

If you are launching Katana from the command line or use a bash or batch script, you can use the cd
command to change the working directory for the environment you are launching Katana in.

For example, if your project is located here:

C:/Users/username/Documents/Katana/Projects

and you want to write relative path references to files located here:

C:/Users/username/Documents/Katana/Projects/textures

you should set your working directory to the location of your Katana project file using the cd command:

cd C:/Users/username/Documents/Katana/Projects

Now you can write file paths relative to your working directory:

/textures/testFile.png

If your current working directory is specified incorrectly, the texture file paths cannot be resolved.

For example, setting your working directory to:

cd C:/Users/username/Documents/Katana

resolves the texture file relative to:

C:/Users/username/Documents/Katana/textures/testFile.png

Installation and Licensing | Managing Katana projects in Multi-Platform Environments

USER GUIDE
38

Tip: If you are launching Katana from a command line, you can type the first few characters of a
directory or file name, then press Tab to autocomplete the file or directory path. This may help to
ensure your working directory is set correctly.
You can also use the dir (Windows) or ls (Linux) commands to list all files and directories in the
current or specified directory.

If you are using a Python script to launch Katana, set the root using the Python os.chdir command similar
to the following:

import os
from os.path import expanduser

project_directory = 'Projects'

os.chdir(os.path.join(expanduser('~'), 'Documents', 'Katana', project_
directory))

The working directory is now set to:

C:/Users/username/Documents/Katana/Projects

Article: For more information on how to set up a launcher script:
Q100242: Creating a Katana launcher script for Windows
Q100272: Creating a Katana launcher script for Linux

Launching Katana
This chapter walks you through how to get Katana up and running on your platform.

Launching on Windows - Launching Katana on Windows

Launching on Linux- Launching Katana on Linux

Command-line Interface - Katana has a number of command line arguments to tailor its operation.

Katana Resources - Using the KATANA_RESOURCES environment variable.

Environment Variables - Setting and checking environment variables.

Launching Katana | Managing Katana projects in Multi-Platform Environments

https://support.foundry.com/hc/en-us/articles/207354710
https://support.foundry.com/hc/en-us/articles/115000107050

USER GUIDE
39

Launching on Windows
To launch the application on Windows , do one of the following:
• Double-click the Katana icon on the Desktop.
• Navigate to Start > All Programs > The Foundry > Katana6.5v1 and select Katana6.5v1.
• Using a command prompt, navigate to the Katana application directory (by default, \Program

Files\Katana6.5v1) and enter:
• bin\katanaBin.exe

If you already have a valid license, the graphical interface appears, and a command-line window opens. If
you don't have a license or haven't installed one yet, proceed to Licensing Katana on Windows .

You can also specify a Katana scene to load when Katana is launched. To do this:
1. Open the command prompt.
2. Navigate to the directory where you installed Katana.
3. Enter:

bin\katanaBin.exe C:\<yourDirectory>\<yourScene>.katana

Specifying the scene and the directory where it's located tells Katana to open this file when it launches.

There are a number of different modes for launching Katana:
• Interactive mode is the default mode. It requires no additional command-line arguments, and is the only

launch mode that starts Katana with the GUI.
• Batch mode opens a Katana scene for render farm rendering.
• Shell mode exposes Katana’s Python interpreter in the terminal shell.
• Script mode runs a specified Python script in Katana’s Python interpreter.

In addition to the different modes, you can also set startup scripts to run on open in files named init.py,
located in a Startup folder, under the path defined in the KATANA_RESOURCES environment variable.
Alternatively, you can use a startup script in the form of an init.py file placed in the .katana folder in your
HOME directory. These startup scripts can be run regardless of the launch mode you choose.

For information on starting Katana in the other launch modes, see Command-line Interface.

Launching Katana | Launching on Windows

USER GUIDE
40

Launching on Linux
To launch the application on Linux, do one of the following:
• Double-click the Katana icon on the Desktop.
• Open the Katana application directory (by default, /usr/local/Katana6.5v1) and double-click the Katana

icon.
• Using a terminal, navigate to the Katana application directory and enter:

./katana

If you already have a valid license, the graphical interface appears. If you don't have a license or haven't
installed one yet, proceed to Licensing Katana on Linux.

You can also specify a Katana scene to load when Katana is launched. To do this:
1. Open a terminal.
2. Navigate to the directory where you installed Katana.
3. Enter:

./katana /yourDirectory/yourScene.katana

There are a number of different modes for launching Katana:
• Interactive mode is the default mode. It requires no additional command-line arguments, and is the only

launch mode that starts Katana with the GUI.
• Batch mode opens a Katana scene for render farm rendering.
• Shell mode exposes Katana’s Python interpreter in the terminal shell.
• Script mode runs a specified Python script in Katana’s Python interpreter.
• Profiling mode runs Katana with a special version of the Geolib3 Runtime that implements profiling.

In addition to the different modes, you can also set startup scripts to run on open in files named init.py,
located in a Startup folder, under the path defined in the KATANA_RESOURCES environment variable.
Alternatively, you can use a startup script in the form of an init.py file placed in the .katana folder in your
HOME directory. These startup scripts can be run regardless of the launch mode you choose.

For information on starting Katana in the other launch modes, see Command-line Interface.

Launching Katana | Launching on Linux

USER GUIDE
41

Command-line Interface
Katana's launch behavior and mode of operation can be controlled by passing command-line arguments.

Global Arguments
These arguments can be passed regardless of the selected launch mode, see Launch Modes.

Argument Description

-h, --help Displays a list of command-line arguments.

--asset ASSETID Loads the Katana project with the given asset ID or path.

--ocio PATH Uses the OpenColorIO configuration file at the given path.

--profile Runs Katana in profiling mode. See Op Cook Profiling.

--force-profile Runs Katana in profiling mode and start profiling immediately.

--profiling-dir DIR Sets the directory where profiling files, if any, are written.

-V, --verbose The level of verbosity of logging informational messages. Defaults to 1. Set to
0 to suppress most informational messages.

Launch Modes
Katana normally operates in interactive (GUI) mode. Katana can be launched in a specific launch mode by
using one of the following command-line arguments.

Mode Name Argument Description

Interactive No flags Runs Katana with the standard GUI.

Batch --batch Runs Katana without a GUI to render the output of a specific node
in the Node Graph. Batch mode supports further command-line

Launching Katana | Command-line Interface

USER GUIDE
42

arguments, see Batch Mode for more information.

Script --script PATH Runs Katana without a GUI, and executes the specified Python
script at the given path.

Shell --shell Runs Katana without a GUI, and allows Python commands to be
run interactively.

Katana License Requirements for
Launch Modes
There are two types of license for Katana, interactive licenses (katana_i) and render licenses (katana_r). The
type of license required depends on the mode Katana is launched in.

Katana Interactive Mode
Running Katana in Interactive (GUI) Mode requires a Katana interactive license (katana_i). This is the standard
launch mode for Katana and requires no arguments when running Katana using a Command Prompt or a
Terminal.

Katana interactive mode is typically used by artists or technical developers to set up or light projects, and to
render using the Preview, Live or Disk Render commands.

For more information on Katana Interactive Mode, see Interactive Mode.

Note: Using a Katana interactive license does not allow you to access the terminal modes - batch
mode, script mode or shell mode - these require a Katana render license.

Katana Terminal Modes
Katana has three terminal modes - batch mode, script mode and shell mode. All terminal modes require a
Katana render license (katana_r).

Launching Katana | Command-line Interface

USER GUIDE
43

l Batch Mode - used to render a Katana scene from a terminal.
l Script Mode - used to execute Python scripts in Katana's Python environment.
l Shell Mode - used to expose Katana's Python interpreter in the terminal shell.

Note: Licenses are used on a one-per-host machine basis. If you are rendering your Katana scenes
on your Render Farm, using either batch mode or script mode, then each render machine will
require a katana_r license.

Note: For more information on Installation and Licensing, see Installation and Licensing.

Interactive Mode
Interactive mode is the default mode, requiring no additional command-line arguments. It also loads
additional modules, such as the ScenegraphManager. Interactive is the only mode that launches Katana
with the GUI.

To start Katana in Interactive mode:
1. Open a terminal.
2. Navigate to the directory where you installed Katana.
3. Enter:

./katana

If a license is present, the interface displays. Otherwise, you need to license Katana. See Licensing Katana
on Windows or Licensing on Linux for more on this.

You can also specify a Katana scene to load. To start in Interactive mode, and open a specified Katana scene:
1. Open a terminal.
2. Navigate to the directory where you installed Katana.
3. Enter:

./katana /yourDirectory/yourScene.katana

You can also specify an asset ID using the --asset flag, to resolve and open a file from your asset
management system. The --asset flag takes a single argument, which is the asset ID to resolve. For example:
./katana --asset=mock:///show/shot/name/version

Launching Katana | Command-line Interface

USER GUIDE
44

Note: The format of the asset ID itself is dependent on your asset management system, and the
file you attempt to resolve must be a valid Katana scene.

Note: The --asset flag also applies to Katana's Batch mode.

For more on Katana's Asset API see Asset Management System Plug-in API.

Script Mode
Script mode allows you to execute Python scripts in Katana's Python environment. Script mode requires the -
-script flag, followed by a single argument specifying the script you want to run. This launch mode is most
useful for testing. You can import most Katana modules, and perform tasks such as loading Katana scenes,
changing some parameters, and rendering.

For example, to start Katana in Script mode using a script named yourScript.py:
1. Open a terminal.
2. Navigate to the directory where you installed Katana.
3. Enter:

./katana --script /yourDirectory/yourScript.py

To open a scene and start rendering from the scene's Render node, open the following Python script in
Script mode:

import NodegraphAPI
from Katana import KatanaFile
from Katana import RenderManager

def messageHandler(sequenceID, message):
print message

yourKatanaScene = "/yourDirectory/yourFile.katana"
KatanaFile.Load(yourKatanaScene) # Loading scene

/yourDirectory/yourFile.katana
RenderNode = NodegraphAPI.GetNode('Render') # Getting Render node
RenderManager.StartRender(

node=RenderNode, # Starting render
hotRender=True,
frame = 1,

Launching Katana | Command-line Interface

USER GUIDE
45

asynch = False,
interactive = False,
asynch_renderMessageCB = messageHandler

)

Shell Mode
Shell mode exposes Katana's Python interpreter in the terminal shell. Shell mode requires the --shell flag,
and no arguments. All of the modules available in the Python tab in Katana are available in Shell mode.

To start Katana in Shell mode:
1. Open a terminal.
2. Navigate to the directory where you installed Katana.
3. Enter:

./katana --shell

Batch Mode
Batch mode allows you to render sequences of frames from a Katana scene all at once. It is started through a
command line, where you specify the file path, frame range and any other necessary options.

Note: You will only be able to access terminal modes, including Batch Mode, if you have a Katana
render license (katana_r). If you're a student, you can access one for free.

Batch mode is useful if you have a large number of frames to render as it will render out each individual file
in the background. You can continue working on a Katana scene file whilst it is being batch rendered as the
command uses the last saved version.

Before starting a batch render, ensure the render settings and the render flag are all set up correctly in
Katana. To set the render flag, select the node you wish you render from and press V on the keyboard. The
render flag can be determined through the command line, however setting it up beforehand simplifies the
string needed to run Batch mode and minimizes any room for error.

Launching Katana | Command-line Interface

USER GUIDE
46

Note: When you specify the Image Filename for the output render, ensure you use one or more
hashes as they will be replaced by the frame number in your rendered file name. For example:
fileName_<aov>_###.<ext>

Start a Batch Render

Windows
1. Open the Command Prompt.
2. Navigate to the directory where you have Katana installed using the cd command, for example:

cd C:\Program Files\Katana3.2v1\bin

3. Enter the following command to start a batch render:
katanaBin.exe --batch --katana-file=C:\yourDirectory\yourScene.katana
-t 1-1000

Where:

4. Press Enter to start the render.

You can add more arguments to the command. For example, use --render-node to specify the node you
would like to render from if you haven't set your render flag in the Katana scene or if you would like to
change it:

katanaBin.exe --batch --katana-file=C:\yourDirectory\yourScene.katana --
render-node=renderHere -t 1-1000

Linux
1. Open a Terminal.
2. Navigate to the directory where you have Katana installed using the cd command, for example:

cd /opt/foundry/katana

3. Enter the following command to start a batch render:
./katana --batch --katana-file=/yourDirectory/yourScene.katana -t 1-
1000

Launching Katana | Command-line Interface

USER GUIDE
47

Where:

4. Press Enter to start the render.

You can add more arguments to the command. For example, use --render-node to specify the node you
would like to render from if you haven't set your render flag in the Katana scene or if you would like to
change it:

./katana --batch --katana-file=/yourDirectory/yourScene.katana --render-
node=renderHere -t 1-1000

Here is a full list of command line options for Batch Mode:

Option Usage

--katana-file Specifies the Katana recipe to load.

Syntax:
--katana-file=<filename>

Example:
./katana --batch --katana-file=/tmp/test.katana -
-t=1-1000

--render-node=beauty

--asset Specifies the asset ID to resolve.

Syntax:
--asset=<asset ID>

Example:
./katana --asset=mock:///show/shot/name/version

-t or --t Specifies the frame range to render.

Syntax:
-t <frame range>

OR
--t=<frame range>

Launching Katana | Command-line Interface

USER GUIDE
48

Option Usage

Where <frame range> can take the form of a range (such as 1-5) or
a comma separated list (such as 1,2,3,4,5). These can be combined,
for instance: 1-3,5, which would render frames 1, 2, 3, and 5.

Example:
./katana --batch --katana-file=/tmp/test.katana

--t=1-5,8 --render-node=beauty

--var Sets the value of an existing Graph State Variable. This command-
line option can be specified multiple times to override the values of
multiple Graph State Variables.

Syntax:
--var <GSV name>=<GSV value>

Example:
./katana --batch --katana-file=/tmp/test.katana -
-t=1 --var Shot=Sh1 --var timeOfDay=night --var
variant=B --render-node=beauty

--threads2d Specifies the number of additional processors within the
application. An additional processor is also used for Katana's main
thread.

This means that Katana uses 3 processors when --threads2d=2.

Syntax:
--threads2d=<num threads>

Example:
./katana --batch --katana-file=/tmp/test.katana

--t=1-1000 --threads2d=2 --render-node=beauty

--threads3d Specifies the number of simultaneous threads the renderer uses.

Syntax:
--threads3d=<num threads>

Example:
./katana --batch --katana-file=/tmp/test.katana

--t=1-1000 --threads3d=8 --render-node=beauty

Launching Katana | Command-line Interface

USER GUIDE
49

Option Usage

--render-node Specifies the Render node from which to render the recipe.

Syntax:
--render-node=<node name>

Example:
./katana --batch --katana-file=/tmp/test.katana

--t=1-1000 --render-node=beauty

--render-internal-dependencies Allows any render nodes that don't produce asset outputs to be
rendered within a single katana --batch process. Asset outputs are
determined by asking the current asset plug-in if the output
location is an assetId, using isAssetId(). The default file asset plug-
in that ships with Katana classes everything as an asset. So at
present it is not possible to render any dependencies within one
katana --batch command without customizing the asset plug-in.

--crop-rect Specifies which part of an image to crop. The same cropping area is
used for all renders.

Syntax:
--crop-rect="(<left>,<bottom>,<width>,<height>)"

Example:
./katana --batch --katana-file=/tmp/test.katana -
-t=1-1000

--render-node=beauty --crop-rect="(0,0,256,256)"

--setDisplayWindowToCropRect Sets the display image to the same size as the crop rectangle set by
--crop-rect.

--tile-render Used to render one tile of an image divided horizontally and
vertically into tiles. For instance, using
--tile-render=1,1,3,3 splits the image into 9 smaller images (or
tiles) in a 3x3 square and then renders the middle tile as the index
for tile renders starts at the bottom-left corner with 0,0. In the case
of 3x3 tiles, the indices are:

0,2 1,2 2,2

Launching Katana | Command-line Interface

USER GUIDE
50

Option Usage

0,1 1,1 2,1

0,0 1,0 2,0

The results are saved in the same location as specified by the
RenderOutputDefine node but with a tile suffix. For instance: tile_1_
1.beauty.001.exr

Syntax:
--tile-render=<left_tile_index>, <bottom_tile_
index>, <total_tiles_width>, <total_tiles_height>

Example:
./katana --batch --katana-file=/tmp/test.katana -
-t=1-1000

--render-node=beauty --tile-render=0,0,2,2

./katana --batch --katana-file=/tmp/test.katana -
-t=1-1000

--render-node=beauty --tile-render=0,1,2,2

./katana --batch --katana-file=/tmp/test.katana -
-t=1-1000

--render-node=beauty --tile-render=1,0,2,2

./katana --batch --katana-file=/tmp/test.katana -
-t=1-1000

--render-node=beauty --tile-render=1,1,2,2

--tile-stitch Used to assemble tiles rendered with the --tile-render flag into a
complete image.

When stitching, you must still pass the --tile-render argument,
with the number of x and y tiles, so that the stitch knows how many
tiles to expect, and their configuration.

Syntax:
--tile-render=<left_tile_index>, <bottom_tile_
index>, <total_tiles_width>, <total_tiles_height>
--tile-stitch

Example:
./katana --batch --katana-file=/tmp/test.katana -

Launching Katana | Command-line Interface

USER GUIDE
51

Option Usage

-t=1-1000 --render-node=beauty --tile-
render=0,0,2,2 --tile-stitch

--tile-cleanup Used to clean up transient tile images. Can be used in conjunction
with --tile-stitch to assemble a complete image, and remove
transient tiles in a single operation.

When using --tile-cleanup you must still pass the --tile-render
argument with the number of x and y tiles, so that cleanup knows
how many tiles to remove.

Syntax:
--tile-render=0,0,<total_tiles_width>,<total_
tiles_height> --tile-cleanup

Example:
./katana --batch --katana-file=/tmp/test.katana -
-t=1-1000 --render-node=beauty --tile-
render=0,0,2,2 --tile-stitch --tile-cleanup

--prerender-publish In Batch mode, it executes the Pre-Render Publish Asset action on
the outputs but doesn't render images.

The value specifies the filename for dumping render pass
information.

Note: This can be used together with --versionup.

Syntax:
--prerender-publish=<pass info>

Example:
./katana --batch --katana-file=/tmp/test.katana -
-t=1-1000 --render-node=beauty --prerender-
publish=/tmp/pass_info.xml

--make-lookfilebake-scripts Used to write out a number of Python files that can be executed in
Batch mode to write look files.

Syntax:

Launching Katana | Command-line Interface

USER GUIDE
52

Option Usage

--make-lookfilebake-scripts=<script directory>

Example:
./katana --batch --katana-file=/tmp/bake.katana -
-t=1

--make-lookfilebake-scripts=/tmp/bake_scripts

./katana --script /tmp/bake_scripts/preprocess.py

./katana --script /tmp/bake_scripts/lf_bake_
default.py

./katana --script /tmp/bake_
scripts/postprocess.py

--postrender-publish In Batch mode, it executes the Post-Render Publish Asset action
on the outputs but doesn't render images.

The value specifies the filename for dumping render pass
information.

Note: This can be used together with --versionup.

Syntax:
--postrender-publish=<pass info>

Example:
./katana --batch --katana-file=/tmp/test.katana -
-t=1-1000 --render-node=beauty --postrender-
publish=/tmp/pass_info.xml

--versionup Used to specify that you want to version up assets when publishing
to the asset management system.

Syntax:
--versionup

Example:
./katana --batch --katana-file=/tmp/test.katana -
-t=1-1000 --render-node=beauty --versionup

--reuse-render-process Iterates over the sequence of frames to render, and exports Op

Launching Katana | Command-line Interface

USER GUIDE
53

Option Usage

Tree files for all frames, then starts the renderer (/renderboot
process) only once on a sequence of exported Op Tree files.

Syntax:
--reuse-render-process

Example:
./katana --batch --katana-file=/tmp/test.katana -
-t=1-1000 --render-node=beauty --reuse-render-
process

Note: Setting threads3d or threads2d through Batch mode takes precedence over the
interactiveRenderThreads3D, and interactiveRenderThreads2D settings in Katana's Edit >
Preferences > application menu.

Article: How to render an image in multiple tiles in Batch Mode.

Katana Resources
Katana uses the KATANA_RESOURCES environment variable to provide a list of paths under which to look
for plug-ins and other customizations (such as shelves, tabs, and resolutions). This can also be a list of
directories, separated by a colon (if you're on Linux) or a semi-colon (if you're on Windows). The idea is to
allow you to build up a list of resource locations. If you’re a developer writing plug-ins for Katana, you need
to make sure they go in the right place in order for them to be picked up properly.

Examples are provided in the following directory, and are loaded if this path is included in the KATANA_
RESOURCES environment variable:

$KATANA_ROOT/plugins/Resources/Examples

Adding New Paths

Any directories you add to the KATANA_RESOURCES path are searched by Katana for plug-in. For example,
you could specify:

Launching Katana | Katana Resources

https://support.foundry.com/hc/en-us/articles/115001671184

USER GUIDE
54

export KATANA_RESOURCES=/home/tom/dev/katana/Resources:/tools/site/katana/Resources

You should then see the following when Katana starts:

> katana
[INFO LicenseCheck]: Interactive License OK
[INFO python.ResourceFiles]: Additional Katana resource paths from $KATANA_
RESOURCES:
[INFO python.ResourceFiles]: /home/tom/dev/katana/Resources
[INFO python.ResourceFiles]: /tools/site/katana/Resources

These are searched in addition to those listed in the Defaults section, discussed in more detail below.

Note: The $KATANA_RESOURCES variable behaves as a standard Linux environment variable.
Consequently, if you wish to append a directory to this, keeping anything that is already there, you
have to take care of when editing this.

Important Directories

The paths that you place on KATANA_RESOURCES are not actually searched directly. Instead, there is a
meaningful set of sub-directories that are used by different parts of the program. For Python modules, the
‘types’ listed refer to the first value of each tuple set in the module’s PluginRegistry list.
• Args - the .args files for shaders.
• AssetPlugins - Python-based AssetPlugin and FileSequencePlugin plug-ins.

Note: As of 3.0v1, Python-based AssetAPI plug-ins have been deprecated. Support for them has
been removed when Katana transitioned from Python 2.7 to Python 3.7 as part of moving to VFX
Reference Platform CY2020.

• GafferThree* - Python-based plug-ins (Script Items) that extend the GafferThree super tool. Custom
packages for GafferThree can be created using PackageSuperToolAPI.

• GenericAssign - templates for defining new GenericAssign-based nodes (.xml).
• Importomatic* - Python-based ImportomaticModule plug-ins that form plug-ins for the Importomatic

SuperTool.
• Layouts - creating a directory called Layouts in your KATANA_RESOURCES path allows you to load

layouts from files named KatanaLayout2.xml or other files ending in .katanalayout.xml. For example:
• <KATANA_RESOURCES>/Layouts/KatanaLayout2.xml
• <KATANA_RESOURCES>/Layouts/production1.katanalayout.xml

Launching Katana | Katana Resources

USER GUIDE
55

Layouts saved from Katana's Layouts menu are still saved in the KatanaLayout2.xml file in the current
user's .katana resource directory in the OS home directory. For example:

• Windows: C:\Users\<login name>\.katana
• Linux: /home/<login name>/.katana

• Libs - any compiled C++ plug-ins for Katana, for any API; for example, C-based asset plug-ins (.so).
• Macros - nodes saved as macros from the Katana UI (.macro).
• Ops - C++ plug-ins that can arbitrarily create and manipulate scene data. Ops can also be placed in the

Libs sub-folder within KATANA_RESOURCES. The Ops are loaded in Katana regardless of whether they are
placed in the Libs or Ops folders.

• Plugins - sundry Python modules, including types such as GafferProfile, KatanaPlugin,
RenderLocationPlugin, ViewerProxyLoader, UVTileFormats.

• RenderBin - this directory isn’t actually a standard Katana directory, but many render plug-ins use this to
store binaries and plug-ins that are loaded by the renders themselves to talk to Katana.

• Resolutions - additional resolution files (.xml).
• Shaders - any additional shaders for a renderer. The only time this directory is considered by Katana itself

is to locate shaders for the viewer (.glsl).
• Shelves - a directory for each shelf, containing Python scripts for each shelf item.
• Startup - Python scripts that can be used to configure Katana at startup. The only file that is explicitly run

(with execfile) is one called init.py. If you wish to run other scripts or import modules, they would need to
be called from there.

• SuperTools* - Python modules that implement new SuperTools.
• Tabs* - Python modules (KatanaPanel) that implement new tabs that can be docked to panes in the UI.
• UIPlugins - Python modules that implement UI-specific plug-ins, such as AssetWidgetDelegates and

KatanaPlugin.

Note: These plug-ins aren't loaded in --batch, --script, and --shell launch modes.

• ViewerManipulators - additional Python manipulators (KatanaManipulator) for the viewer.

Defaults

Katana always looks in the following (internal) places, regardless of what you set KATANA_RESOURCES to.
$KATANA_ROOT is where the Katana installation lives.
${KATANA_ROOT}/bin/python/UI4/Resources

${KATANA_ROOT}/plugins/Resources/Core

Launching Katana | Katana Resources

USER GUIDE
56

Generally, the search order is by ‘standard path behavior’. Namely, Katana looks at the directories, left to
right. What you may observe, though, differs a little depending on the type of plugin/directory being loaded.

Compiled Plug-ins

Many of the compiled plug-ins work on the basis that the ‘first one loaded’ sticks. This is not based on the
.so name, but instead the name passed to the REGISTER_PLUGIN. Repeat registrations with the same name
are ignored. The plug-ins in each directory are iterated by readdir so are loaded in ‘filesystem order’.

In the case of ViewerModifierPlugins, where the mapping is to a location type (based on an API call), the
effective winner for any location is the first named registration that accepts to a particular location type.

But what is the ‘first’ plug-in? In the case of multiple registrations of the same name, for example, a local
build of a central plug-in, both named ‘OuModifier’, you get the first on the path from left to right. However,
when multiple, independently-named registrations handle the same type, for example, 'LightModifier’ and
‘MyLightModifier’, you end up with the first one iterated from the internal plug-in map, which presently ends
up being ordered alphabetically.

Python

Python modules are generally sourced from directories (using __import__), from left to right. So, the first
module that registers a specific name in its PluginRegistry wins. Within any directory, plug-ins are loaded by
os.listdir, which documents its ordering as arbitrary. However, some code reverses this search order. Any
directories listed with an asterisk (*) above are right-to-left precedence. Additionally, shelves don't work
quite as you might expect, as the shelf mechanism searches left-to-right (non-reversed). This means that the
right-most files contents win out.

Environment Variables
Environment variables are named variables used to store a value, such as a specific file path, and can be used
to influence Katana's behavior. For example, Katana uses the information stored in them to define where to
place certain files.

Setting Environment Variables
The section teaches you how to set environment variables, check if a particular environment variable exists,
and displays a list of set environment variables.

Launching Katana | Environment Variables

USER GUIDE
57

To Set an Environment Variable

On Linux
1. The procedure for setting an environment variable depends on what your default shell is. To get the

name of the shell you are using, launch a shell and enter echo $SHELL.
2. Depending on the output of the previous step, do one of the following:

• If your shell is a csh or tcsh shell, add the following command to the .cshrc or .tcshrc file in your home
directory: setenv VARIABLE value. Replace VARIABLE with the name of the environment variable and
value with the value you want to give it, for example, setenv KATANA_PATH /SharedDisk/Katana.

• If your shell is a bash or ksh shell, add the following command to the .bashrc or .kshrc file in your
home directory: export VARIABLE=value. Replace VARIABLE with the name of the environment
variable and value with the value you want to give it, for example, export KATANA_
PATH=/SharedDisk/Katana.

For a list of the environment variables that Katana understands, see Environment Variables.

On Windows
1. Right-click on My Computer and select Properties.
2. Go to the Advanced tab.
3. Click the Environment Variables... button.

The Environment Variables dialog opens.
4. Click the New... button either under User variables or System variables, depending on whether you

want to set the variable for the current user or all users. To set environment variables for all users, you
need to have administrator privileges.

5. In the Variable name field, enter the name of the environment variable you want to set. For a list of the
environment variables that Katana understands, see Environment Variables.

6. In the Variable value field, enter the value for the variable. The value can be a directory path, for
example.

7. Click OK.

Note: When editing existing system variables, or adding or deleting either user or system
variables, you may need to log off and on again before your changes to environment variables take
effect.

Launching Katana | Environment Variables

https://learn.foundry.com/katana/3.0/dev-guide/EnvironmentVariables.html
https://learn.foundry.com/katana/3.0/dev-guide/EnvironmentVariables.html

USER GUIDE
58

To Check if an Environment Variable Exists

On Linux
1. Launch a shell.
2. Enter echo $VARIABLE. Replace VARIABLE wit the name of the environment variable. For example, to

check if KATANA_DISABLE_LIVEGROUP_CACHING is set, enter echo $KATANA_DISABLE_
LIVEGROUP_CACHING.
If the variable is set, its value is displayed in the shell window.

On Windows
1. Select Start > All Programs > Accessories > Command Prompt.
2. In the command window that opens, enter echo %VARIABLE%. Replace VARIABLE with the name of

the environment variable. For example, to check if KATANA_DISABLE_LIVEGROUP_CACHING is set,
enter echo %KATANA_DISABLE_LIVEGROUP_CACHING%.
If the variable is set, its value is displayed in the command window.

To Display a List of Set Environment Variables

On Linux
1. Launch a shell.
2. Enter printenv.

A list of all environment variables that are set is displayed in the shell window.

On Windows
1. Select Start > All Programs > Accessories > Command Prompt.
2. In the command window that opens, enter set.

A list of all the environment variables that are set is displayed in the command window.

Launching Katana | Environment Variables

USER GUIDE

What is Katana?
Katana was originally designed to solve problems with scalability and flexibility; how to carry out look
development and lighting in a way that could deal with potentially unlimited amounts of scene data. It also

needed to be flexible enough to deal with the requirements of modern CG Feature and VFX production for
customized workflows, with the capability to edit or override anything.

Video: This video gives you an overview of what Katana is.

Katana leverages renderers’ support for recursive procedurals, where arbitrary scene data can be created on
demand. The Katana approach is to have a single procedural that is powerful enough to handle arbitrary
generation and filtering. Essentially, this is a procedural given a custom program in the form of a tree-based
description of filters. At render time, Katana's libraries are called from within this procedural to calculate
scene data as the renderer demands.

What Can Katana Do?
Katana allows you to define what to render by using filters that can create and modify 3D scene data. A
node-based interface allows users to define which filters to use, and interactively inspect their results.

Using filters you can arbitrarily create and modify scene data. You can, for example:
• Bring 3D scene data in from disk, such as from an Alembic geometry cache or camera animation data.
• Create a new instance of a material, such as a 3Delight shader.
• Create cameras and lights.
• Manipulate transforms on cameras, lights and other objects.
• Use rule based expressions to set what materials are assigned to which objects.
• Isolate parts of the scene for different render passes.
• Merge scene components from a number of partial scenes.
• Specify which AOV's you want to use for multiple passes in a single render..
• Use Python scripting to specify arbitrary manipulation of attributes at any location in the scene hierarchy.

59

https://vimeo.com/180183791

USER GUIDE
60

The scene data to be delivered to the renderer is described by a tree of filters, and the filters are evaluated
on demand in an iterative manner. Katana is designed to work well with renderers that are capable of
deferred recursive procedurals. Using recursive procedurals, the tree of filters is handed directly to the
renderer, with scene data calculated on demand, as the renderer requests it (lazy-evaluation). This is typically
done by a procedural inside the renderer that uses Katana libraries, during render, to generate scene data
from the filter tree.

Katana can also be used with renders that don't support procedurals or deferred evaluation, by running a
process that evaluates the scene graph and writes out a scene description file for the renderer. This approach
is without the benefits of deferred evaluation at render time, and the scene description file may be very
large.

Note: Since Katana's filters deliver per-frame scene data in an iterable form, Katana can also be
used to provide 3D scene data for processes other than renderers.

At its core, Katana is a system for the arbitrary creation, filtering, and processing of 3D scene data, with a user
interface primarily designed for the needs of look development and lighting. Katana is also designed for the
needs of power users, who want to create custom pipelines and manipulate 3D scene data in advanced ways.

Scene Graph Iterators
The key to the way Katana executes, filters, and delivers scene data on demand, is that scene data is only ever
accessed through iterators. These iterators allow a calling process (such as a renderer) to walk the scene

What is Katana? |

USER GUIDE
61

graph and examine any part of the data on request. Since that data can be generated as needed, a large
scene graph state doesn't have to be held in memory.

In computer science terms, it is the responsibility of the calling process to maintain its own state. Katana
provides a functional representation of how the scene graph should be generated, that can be statelessly
lazily-evaluated.

At any location in the scene hierarchy Katana provides an iterator that can be asked:
• What named attributes there are at that location?
• What are the values for any named attribute (values are considered to be vectors of time sampled data)?
• What are the child and sibling locations (if any)?

Katana in Look Development and Lighting
Katana's scene generation and filtering are presented as a primary artist facing tool for look development
and lighting by having filter functions that allow you to perform all of the classic operations carried out in
look development and lighting. Primarily:
• Creating instances of shaders, or materials, out of networks of components
• Assigning shaders to objects
• Creating lights
• Moving lights
• Changing visibility flags on objects
• Defining different render passes

Katana's node-based interface provides a natural way to create recipes of which filters to use. Higher-level
operations that may require a number of atomic level filters working together can be wrapped up in a single
node so that the final user doesn't have to be concerned with every individual fine-grain operation. Multiple
nodes can also be packaged together into single, higher-level compound nodes.

Key Concepts
A recipe in Katana is an arrangement of instructions - in the form of connected nodes - to read, process, and
manipulate a 3D scene or image data. A Katana project can be made up of any number of recipes, and
development of these recipes revolves around two tabs: the Node Graph and Scene Graph tabs.

What is Katana? | Key Concepts

USER GUIDE
62

Within the Node Graph tab, Katana utilizes a node-based workflow, where you connect a series of nodes to
read, process, and manipulate 3D scene or image data. These connections form a non-destructive recipe for
processing data. A node’s parameters can be viewed and edited in the Parameters tab.

To view the scene generated up to any node within a recipe, you use the Scene Graph tab. The scene
graph’s hierarchical structure is made up of locations that can be referenced by their path, such as /root.
Each location has a number of attributes that represent the data at that location. You can view, but not edit,
the attributes at a location within the Attributes tab.

These key concepts are explained in greater depth in the Quick Start Guide.

An Example Recipe
In this example of a very basic recipe:
• the Node Graph tab contains the recipe for creating the scene,
• the Scene Graph tab shows the scene generated at the beauty node (a renamed Render node),
• the Parameters tab shows the current parameters of the GafferThree node,
• the Viewer tab shows a 3D view from the point of view of the camera.

What is Katana? | Key Concepts

quick_start_guide.htm

USER GUIDE
63

The User Interface
Katana allows you to create recipes for filters, using a familiar node-based user interface (UI). In the UI, you
can also interactively examine the scene at any point in the node tree, using the same filters that the
renderer runs at render time (but executed in the interface).

When running through the UI, filters are only run on the currently exposed locations in the scene graph
hierarchy. This means you can inspect the results of filters on a controlled sub-set of the scene.

The way you can view the scene generated at any node is similar to the way users of 2D node-based
compositing packages can view composited frames at any node. If you are accustomed to conventional 3D
packages that have a single 3D scene state, it may be a surprise that there is essentially a different 3D scene
viewable at each node. Instead of the scene graph being expanded as rays hit bounding boxes, it is iterated
as you open up the scene graph hierarchy in the UI. Complexity is controlled by only executing filters on
locations in the scene graph that you have expanded.

A scene does not need to be entirely loaded in order to be lit. In Katana, you create recipes that allow scene
data to be generated, rather than directly authoring the scene data itself. It is only the renderer that needs
the ability to see all of the scene data, and then only when it needs it. Katana provides access to any part of
the scene data if you need to work on it. You can set an override deep in the hierarchy, or examine what
attribute values are set when the filters run, but you can work with just a sub-set of the whole scene data
open at a time. This is key to how Katana deals with scenes of potentially unlimited complexity.

Note: As Katana uses procedurally defined iterators, it's possible to define an infinitely sized scene
graph, such as a scene graph defining a fractal structure. An infinite scene graph can never be fully
expanded, but you can still work with it in Katana, opening it to different depths, and using rule-
based nodes to set up edits and overrides.

Note: Katana 2.x uses an application-wide Qt style sheet to apply font preferences to Qt widgets.
Custom widgets that use font metrics before widgets are shown need to be modified to add
QWidget.ensurePolished() calls before working with QtGui.QFontMetrics instances.

What is Katana? | Key Concepts

USER GUIDE
64

Glossary of Katana Terms
This glossary provides short descriptions of the most important terms used throughout the Katana
application and documentation.

Knowledge of these core terms help you to understand the way Katana works and processes data more
clearly, and enable you to make the most of the Katana documentation.

Katana Core Terms

Nodes Nodes are the units used in the Katana interface to build the Recipe for a Katana
project. Nodes feature Parameters that can be used to control their behavior. Nodes
can be created and connected in Katana's Node Graph tab in the UI, and can also be
modified through Python scripting using NodegraphAPI.

Katana ships with many built-in types of nodes, but custom node types can also be
created through Python scripting. There are two major groups of node types shipped
with Katana:

l 3D nodes that produce scene graph that can be inspected in Katana's Scene
Graph tab.

l 2D nodes that produce images that can be viewed in Katana's Monitor tab.

Nodes and their Parameters effectively represent and control corresponding Ops that
form Op graphs that are processed by Katana's geometry library to generate the scene
data that can be viewed and inspected in Katana's Scene Graph and Attributes tabs.

Note: For more information about working with nodes in the Katana UI,
please see, Editing the Node Graph. For working with nodes through Python
Scripting, please see the relevant Working With Nodes section of the Katana
developer guide.

Node Graph Node Graphs in Katana are Recipes of connected nodes that are part of a Katana
project. The nodes in node graphs can be created and connected in Katana's Node
Graph tab in the UI, and can also be modified through Python scripting using
functionality from the NodegraphAPI Python package.

Glossary of Katana Terms | Key Concepts

https://learn.foundry.com/katana/current/dev-guide/Scripting/WorkingWithNodes/
reference_guide.htm
https://learn.foundry.com/katana/current/dev-guide/Scripting/CustomizingNodeTypes/index.html
https://learn.foundry.com/katana/current/dev-guide/Scripting/WorkingWithNodes/
https://learn.foundry.com/katana/current/dev-guide/Scripting/WorkingWithNodes/

USER GUIDE
65

Parameters Parameters are a part of nodes, and typically control their respective node's behavior.
Parameters of nodes can be edited in Katana's Parameters tab in the UI, by setting the
edit flag on a node in the Node Graph tab, and can also be edited through Python
scripting using parts of the NodegraphAPI. Values of parameters can be either
constant, determined by Python expressions, or driven by animation curves.

Recipe Recipes in Katana are node graphs of connected nodes that are part of a Katana
project. Recipes typically represent the steps taken or operations performed to create
3D scene data in a scene graph, or the image manipulations performed to create 2D
images that can be viewed in Katana's Monitor tab and written out to file.

Note: For more information about Recipes in Katana, see Creating a Katana
Project.

Project A Katana Project is the sum of all the nodes and their parameters that form the recipes
that are expressed in the project's node graphs. Projects are saved in Katana project
files with the .katana file extension.

Note: For more information on working with projects, please see Creating a
Project.

Ops Ops are the building blocks of operations that create and manipulate 3D scene data in
Katana, and produce the scene graphs that can be inspected at any point in a Katana
node graph by setting the view flag on a particular node. Ops are instances of Op
Types, which are plug-ins written in C++ that use a particular Katana API to define their
inner workings: the Op API. Some functions available for C++ Ops are documented in
the Katana Developer Guide.

Similar to the various node types, Katana ships with many built-in types of Ops, but
custom Op types can also be created through C++ programming and using the Op API.
When the view flag on a node is set, the node is queried for its corresponding Ops. The
behavior of a node in terms of the creation or modification of 3D scene data can be
defined by a single Op, but can also be defined by a number of Ops arranged in an Op
Chain or Op Graph.

Op Arguments Op Arguments control the behavior of Ops that define the effect of nodes in a Katana
recipe. They roughly correspond to parameters on 3D nodes. When changing the
parameter of a node, corresponding Op Arguments are updated. If the node or any

Glossary of Katana Terms | Key Concepts

https://learn.foundry.com/katana/current/dev-guide/Scripting/WorkingWithNodes/Parameters/index.html
https://learn.foundry.com/katana/current/dev-guide/ParameterExpressions/PythonExpressions.html
create_katana_project.htm
create_katana_project.htm
create_katana_project.htm
create_katana_project.htm
https://learn.foundry.com/katana/current/dev-guide/

USER GUIDE
66

node downstream is being viewed, the scene is recooked.

Cooking Cooking is the act of executing the Ops that correspond to nodes in the Katana recipe,
in order to create scene graph locations and their attributes, which can then be viewed
and inspected in the Scene Graph and Attributes tabs. When setting the view flag on a
node in the node graph, the Ops that correspond to that node and all of the nodes
above it are executed/evaluated/cooked to produce the scene graph at that point in
the node graph. In technical terms, the cook() function of each corresponding Op type
plug-in, is being called to create or modify locations in the resulting scene graph.

Filters Filters are the old equivalent in Katana 1.X releases, of Ops in Katana 2.X releases and
above. They represent the building blocks of operations that create and manipulate 3D
scene data in Katana 1.X releases.

Lazy Evaluation One of the key aspects of Katana's processing paradigm, is that operations are only
evaluated when their results are needed.

For example, the Ops that correspond to a particular node are only cooked when the
node itself or a node downstream of it is being viewed, meaning it has its view flag set.
In the context of the Scene Graph tab, data for scene graph locations is only produced
when the scene graph hierarchy is expanded to reveal them in the tree view widget.

When working with Katana's APIs, lazy evaluation can have an effect on the results of
certain function calls.

Note: For an example of this, see the Knowledge Base Article How to Query
Attributes of Scene Graph Locations via Python using a Geolib3 Client.

Lazy evaluation also applies to aspects of Katana's UI, where a mechanism named
freezing and thawing ensures that the UI is only updated when necessary in response
to user interactions.

Graph State Katana maintains a Graph State data structure when traversing up the node graph. It
contains information such as the current frame and the shutter timings, and is passed
to Ops that are represented by nodes when cooking the scene graph. Nodes can read
from and write to the Graph State as part of identifying their inputs.

For example, a TimeOffset node reads the current time and increments or decrements
it by some amount, as controlled by its inputFrame parameter. The modified Graph
State is then passed to the node above for cooking its Ops. It is important to realize

Glossary of Katana Terms | Key Concepts

https://support.foundry.com/hc/en-us/articles/115001930070-Q100358-How-to-query-attributes-of-scene-graph-locations-via-Python-using-a-Geolib3-Client
https://support.foundry.com/hc/en-us/articles/115001930070-Q100358-How-to-query-attributes-of-scene-graph-locations-via-Python-using-a-Geolib3-Client

USER GUIDE
67

that the Graph State information flows up the node graph, unlike scene data, which
flows down the graph.

Some Python functions to work with Graph State are documented in the Katana
Developer Guide.

Graph State
Variables

Graph State Variables (sometimes abbreviated as GSV) essentially allow users to
define key-value pairs within the Graph State, and can be set at the project or node
level. They can then be referenced and manipulated by other nodes, allowing for a
powerful workflow, where groups of nodes and entire node graph branches can be
enabled and disabled with ease.

Note: For more information, see Graph State Variables.

Project-level GSV are known as Global Graph State Variables, and node-level GSV are
known as Local Graph State Variables. The following types of nodes are available for
working with and/or modifying local GSV:

l VariableSet
l VariableSwitch
l VariableEnabledGroup
l VariableDelete

GenericAssign GenericAssign is an advanced and powerful concept in Katana, in which parameters of
nodes are associated with specific attributes on locations in the scene graph. Such
parameters effectively control the values of their corresponding attributes. Their
widgets in Parameters tabs are capable of showing values of attributes from the
incoming scene, allowing users to inspect and modify those attribute values.

An example of a node type that uses GenericAssign-based parameters is the
RenderSettings node type. The parameters of RenderSettings nodes correspond to
attributes in the renderSettings group attribute on the /root location in the scene
graph. When setting a value of a parameter of a RenderSettings node, the
corresponding attribute in the renderSettings group is set. When connecting a
RenderSettings node to an incoming node graph, the widgets of parameters of the
node show the values of the attributes they correspond to.

State badges that are part of the parameters' widgets show the value states of the
respective parameters, indicating whether the corresponding attributes are set to a
specific value by nodes upstream of the node that is being edited (incoming value), or

Glossary of Katana Terms | Key Concepts

https://learn.foundry.com/katana/current/dev-guide/Scripting/WorkingWithProjects.html
https://learn.foundry.com/katana/current/dev-guide/Scripting/WorkingWithProjects.html

USER GUIDE
68

by the node itself (local value), or whether the attributes are not set to a specific value,
in which case they use a default value instead.

Scene Graph 3D nodes that are part of Katana recipes produce a hierarchical set of data, called the
Scene Graph, which can be interactively inspected in Katana's Scene Graph and
Attributes tabs in the UI, and can be presented to a renderer or any output process.

Examples of data that can be held in the scene graph can include:

l Geometry
l Particle data
l Lights
l Instances of shaders
l Global option settings for renderers.

Note: For more information on the Scene Graph, see Using the Scene Graph.

Locations Locations are the units that make up the Scene Graph hierarchy. Many other 3D
applications refer to these as nodes, but in Katana they are referred to as locations to
avoid confusion with the nodes used in the Node Graph. Locations can uniquely be
identified using their name and the names of all of their ancestor locations in the scene
graph, which form a scene graph location path, for example:
/root/world/geo/pony

Note: For more examples of how to work with locations in the Scene Graph,
see Using the Scene Graph and Manipulating the Scene Graph.

Attributes Attributes are containers for data held on locations in the scene graph. Examples of
data stored in attributes are:

l 3D transforms such as 4x4 matrices
l Vertex positions of geometry,
l Value settings for an instance of a shader.

Attributes of a selected scene graph location can be inspected interactively in Katana's
Attributes tab, but not edited, as their values are determined by nodes and parameters
of the Katana project.

Glossary of Katana Terms | Key Concepts

USER GUIDE
69

Note: For examples of common attributes that locations can have, see
Attribute Conventions in the Katana Developer Guide.
For more detailed information on creating, manipulating or deleting
attributes, see Working with Attributes.

Attribute Types There are different types of attributes for different basic types of data:

l Integer numbers
l Floating-point numbers
l Double-precision numbers
l Strings

In addition to these types of data attributes, attributes can be grouped in hierarchies
using group attributes.

A special type of attribute, the null attribute, is used for specific cases, such as to
declare a certain attribute as not set, so that a default value for the attribute is used
instead.

Katana UI Terms

Value Policies Value Policies in Katana provide data for display in widgets in
Katana's UI. Value policies provide a layer in between underlying
data sources, such as parameters of nodes in the node graph
document, and UI widgets in tabs like the Parameters tab. There are
different types of value policies, tailored to specific data sources and
specific use cases.

The Python base class for value policies is
QT4FormWidgets.AbstractValuePolicy. Value policies take care of
translating from events in the underlying data sources to Qt widget
events, for example, to repaint widgets after a parameter's value has
been changed using a NodegraphAPI call.

Parameter Policies Parameter Policies in Katana are value policies that provide a layer in
between parameters of nodes in the node graph document and
widgets in the Parameters tab. Those widgets show values of
parameters, and can be used to edit those parameter values.

Glossary of Katana Terms | Key Concepts

https://learn.foundry.com/katana/dev-guide/AttributeConventions/index.html
https://learn.foundry.com/katana/current/dev-guide/Scripting/WorkingWithNodes/index.html

USER GUIDE
70

Parameter policies are most relevant when developing parameter
UIs for custom types of nodes, for example SuperTools, using Python
scripting APIs.

Note: For examples of how this can be used in SuperTools,
please see the respective Editor.py files of the example
SuperTools that ship with Katana under:
$KATANA_
ROOT/plugins/Src/Resources/Examples/SuperTools

The Python base class for parameter policies is
UI4.FormMaster.BaseParameterPolicy. It is derived from the
AbstractValuePolicy class. A parameter policy is typically created for
a specific parameter of a specific node by passing a
NodegraphAPI.Parameter instance that represents the respective
parameter to the UI4.FormMaster.CreateParameterPolicy()
function. This returns an instance of a class that is derived from the
BaseParameterPolicy class.

Attribute Policies Attribute Policies in Katana provide a layer in between attributes of
locations in the scene graph and widgets in the Attributes tab that
show values of those attributes.

Attribute policies are created internally by Katana to provide
attribute data for display in the Attributes tab when locations in the
Scene Graph tab are selected. There's rarely a need to create
attribute policies manually.

The Python base class for Geolib3-based attribute policies is
UI4.FormMaster.FnAttributePolicy.AttributePolicy. It is derived
from the AbstractValuePolicy class.

GenericAssignParameterPolicy GenericAssign Parameter Policies (GAPP) in Katana are parameter
policies that provide a layer in between GenericAssign-powered
parameters of nodes in the node graph document and widgets in the
Parameters tab. They can be seen as a hybrid between parameter
policies and attribute policies:

l GenericAssign aspect: GAPPs receive the results of cooking

Glossary of Katana Terms | Key Concepts

USER GUIDE
71

the scene graph that is produced by nodes upstream of the
respective GenericAssign-powered node by way of a built-in
Geolib3 Client that receives events from the Geolib3 Runtime.
This is similar to how attribute policies provide data from
attributes of scene graph locations for display in the Attributes
tab.

l Parameter policy aspect: GAPPs provide cooked attribute
data for use in parameter widgets in the Parameters tab. This is
similar to how parameter policies provide data from
parameters of nodes for display in the Parameters tab.

Freezing and Thawing Freezing means that Katana-specific events that are normally
processed when underlying data changes are temporarily ignored. It
applies to value policies, and to tabs in Katana application windows.
This ensures that they're not needlessly updated when changes are
made to the node graph document or when scene graph location
data is cooked, for example in the case that widgets or tabs are not
actually visible to the user.

Thawing of value policies or tabs is the reverse of freezing: after the
processing of Katana-specific events has temporarily been
suspended, or has never been started before, thawing means that
processing of such events and updating UI components as a result is
resumed or started.

Freezing and thawing is implemented by registering and
unregistering handlers for specific Katana event types, depending on
whether the respective value policies or tabs are frozen.

Note: For information on registering callbacks and event
handlers, refer to Callbacks and Events in the developer
guide.

Typically, when the user switches from one tab to the next in a pane
inside of a Katana window, the previously visible tab is frozen, and the
newly visible tab is thawed. Thus, no widgets in the now hidden tab
are updated in response to Katana events, but widgets in the newly
visible tab are. When working with parameter policies in the context

Glossary of Katana Terms | Key Concepts

https://learn.foundry.com/katana/current/dev-guide/Scripting/CallbacksAndEvents.html

USER GUIDE
72

of parameter UIs for custom types of nodes, for example SuperTools,
it is important to note that Python callback functions need to be
added to such a value policy in order to be notified when the
underlying value of the policy changes. If no such callbacks are added
to a value policy, the value policy is considered frozen.

Note: For more information, see the descriptions of
GenericAssign and Lazy Evaluation in the Katana Core
Terms section of the Glossary, and
GenericAssignParameterPolicy in the UI Terms section.

ScenegraphManager The ScenegraphManager Python module is part of the Nodes3DAPI
Python package. It maintains a single instance of a Scenegraph class
that is responsible for tracking a number of Working Sets that
maintain the open, closed, selection, and pinning states of locations
in Katana's scene graph.

For more information about pinning, see Changing What is Shown in
the Viewer.

The Scenegraph instance can be retrieved by calling
ScenegraphManager.getActiveScenegraph(). The instance can
then be used, for example, to access the list of paths of scene graph
locations that are currently selected:
sg = ScenegraphManager.getActiveScenegraph()

print(sg.getSelectedLocations())

The Scenegraph class also maintains a history of selected scene
graph locations, using an internal SelectionHistory class, for the
purpose of allowing users to step through the history using the
History Forward and History Backward commands in the Viewer
tab.

Katana Rendering Terms

Preview Render A Preview Render is a type of Interactive Render, meaning a render launched from a

Glossary of Katana Terms | Key Concepts

USER GUIDE
73

Katana UI session, in which the rendered image and a progress bar are displayed in
Katana's Monitor tab. In a Preview Render, the renderer process quits when the
rendered image is completed. This is different to a Live Render, in which the renderer
process is kept alive.

Preview Rendering has historically been called interactive rendering in early versions
of Katana.

Note: For more information about Preview Rendering, see Performing a
Render.

Live Render A Live Render is a type of Interactive Render, meaning a render launched from a
Katana UI session, in which the renderer process is kept alive while the rendered image
is displayed in Katana's Monitor tab. When making changes to parameters of nodes in
the Katana project, the renderer is notified of these changes, and the rendered image
updated in the Monitor tab.

It's possible to limit for which scene graph locations updates are sent to the renderer

during a Live Render session, by using the Live Render Updates column in
Katana's Scene Graph tab. This is typically used for projects that produce very large
scene graphs.

Live Rendering has historically been called re-rendering in early versions of Katana.

Note: For more information about Live Rendering, see Performing a
Render.

Disk Render A Disk Render is a type of render in which the rendered image is written to a file on
disk, and then loaded into the Monitor tab when the render has finished. The progress
bars in the Monitor tab are not updated while a Disk Render is in progress.

Disk Rendering has historically been called hot-rendering in early versions of Katana.

While the Preview and Live Render options are available from any node's context menu,
a Disk Render can only be triggered from a Render node.

Note: For more information about Disk Rendering, see Render Types.

Glossary of Katana Terms | Key Concepts

USER GUIDE
74

Interactive
Render

An Interactive Render is a render launched from a Katana UI session. There are two
types of interactive renders available in Katana:

l Preview Render
l Live Render

Interactive
Render Filters

Interactive Render Filters (commonly abbreviated as IRF) allow users to set up
common recipe changes for interactive renders, meaning Preview Renders and Live
Renders, without having to add nodes to effect such changes at various points in a
project's recipe. An IRF can consist of more than one change to the recipe, and it is the
equivalent of appending nodes to the end of the node from which an interactive render
is started.

IRFs are defined in InteractiveRenderFilters nodes and can be selectively activated
and deactivated in the Interactive Render Filters popup. This popup is accessible by

clicking the Interactive Render Filters button at the top of the Katana interface.

Note: Interactive Render Filters are ignored for Disk Renders.

An example use for IRFs is to set them up to reduce the render resolution for
interactive renders without affecting Disk Renders, thus making debugging of such
renders much quicker. Other examples of changes that can be set up by IRFs might
include anti-aliasing settings, shading rate changes, or the number of light bounces.

Note: For more information about setting up Interactive Render Filters, see
Setting up Interactive Render Filters.
You can also refer to the Knowledge Base Article Increasing preview efficiency
with Interactive Render Filters.

Render
Dependency

When starting a render from a Render node, other render passes that the render may
depend on can be rendered to disk automatically by rendering with dependencies.

Historically, this feature was used to produce shadow maps that are then used for a
main render pass.

Note: For more information, see Render Dependencies.

Glossary of Katana Terms | Key Concepts

https://support.foundry.com/hc/en-us/articles/115001769830-Q100356-Increasing-preview-efficiency-with-Interactive-Render-Filters-
https://support.foundry.com/hc/en-us/articles/115001769830-Q100356-Increasing-preview-efficiency-with-Interactive-Render-Filters-

USER GUIDE

User Interface
This section walks you through the main components of the Katana UI.

The Default Workspace

An illustrated overview of the Katana workspace.

The Default Tabs

Tabs are themed panels that present Katana functionality.

Menu Bar Components

A list of the functions available in the menu bar. Plus details of the Message and Notification Centers.

Customizing Your Workspace

A brief introduction to changing the layout.

Adjusting Layouts

How to modify the layout of the tabs.

Saving, Loading, and Deleting Layouts

Katana lets you save your preferred layout.

Managing Keyboard Shortcuts

About the shortcuts.xml file.

The Default Workspace
Here is an illustration of a simple Katana workspace.

75

USER GUIDE
76

1. The menu bar, complete with menus, such as File and Help, and menu icons, such as the Interactive
Render Filter icon, and the Messages menu. For further details, see Menu Bar Components.

2. The top-right pane, containing the Parameters and Catalog tabs.
3. The bottom-right pane, containing the Attributes, Render Log, and Viewer tabs.
4. The Timeline. The Timeline is explained in greater depth in Using the Timeline.
5. The bottom-left pane, containing the Scene Graph, Project Settings, and Python tabs.

For more on the contents of the various tabs, see the The Default Tabs below.
6. The top-left pane, containing the Node Graph, Monitor, Curve Editor, and Dope Sheet tabs.

The Default Tabs
The following are the tabs displayed by default. More tabs are available in the Tabs menu.

Tab Function

Node Graph This is where you build your node tree (a tree graph that represents the recipe for
manipulating a 3D scene).

User Interface | The Default Tabs

USER GUIDE
77

Tab Function

Monitor This is where you view the results of your renders and composites.

Curve Editor Lets you edit animation keys as curves.

Dope Sheet Lets you edit animation keys as a spreadsheet of keys and ranges.

Scene Graph This is where you view the scene data, generated at the current view node in the
Node Graph, in a hierarchical representation. The objects - such as geometry,
particle data, volumetric data, materials, cameras, and lights - that make up the
scene graph are called locations, and are referenced by their path, such as
/root/world/cam/camera.

Project Settings This is where you can view and edit parameters for the whole project.

Python This is where you can enter Python commands as well as view their outputs. It acts as
a Python interactive shell within Katana.

Parameters This is where you adjust the parameters associated with nodes currently selected for
editing.

Catalog Lets you view and organize previous renders.

Attributes Lets you view the attribute values held at each location in the scene graph.

Render Log Lets you view text output from the renderer.

Viewer This is where you can view and manipulate your scene using a 3D representation.
Only objects whose locations that are visible in the Scene Graph tab are displayed.

Menu Bar Components
The Katana menu bar includes the following functions:

Menu Functions

File Commands for disk operations, including creating, loading, and saving
Katana projects.

User Interface | Menu Bar Components

USER GUIDE
78

Menu Functions

Edit Undo, redo, and preferences.

Render Rendering the output.

Util A group of miscellaneous menu items including farm management and
cache handling.

Layouts Adjusting, saving, activating, and deleting layouts.

Tabs Adding floating panes to the interface.

Help Accessing documentation, APIs, and information on the current version.

Collection of Python shelf scripts.

Flush caches: forces assets, such as look files, to be dropped from
memory and reloaded when needed.

Toggles implicit resolvers. This gives a better impression of the data sent
to the renderer at the cost of extra computation. For more on implicit
resolvers, see Turning on Implicit Resolvers.

When enabled, rendering only includes items selected in the Scene
Graph tab.

The auto key icon: when enabled, changing parameters automatically
adds a new key.

Specify what interactive render filters to use for any new interactive
renders. For more on interactive render filters, see Setting up Interactive
Render Filters.

Cancels a live render that is currently in progress.

Specifies whether live rendering is set to update:
• - manually,

• - when changes to materials, lights, or geometry transformations are
made or a parameter change is applied (Pen-up),

• - continuously when changes are made to materials, lights, or
geometry transformations, including some manipulations in the Viewer
tab (Continuous).

User Interface | Menu Bar Components

USER GUIDE
79

Menu Functions

When live rendering is set to Manual, this button triggers an update. This
button is not clickable for either Pen-up or Continuous modes.

Displays any graph state variables that have been set in the Project
Settings tab. If no variables have been set, the icon says variables: none;
if there are variables set, these are displayed in yellow and can be
changed dynamically to influence those in the Project Settings tab, or
the other way around.

For more information on how to set variables, refer to Setting Graph
State Variables in Graph State Variables.

When enabled, displays the Message Center and any messages contained
therein.

When enabled, displays the Notification Center and any notifications
contained therein.

The Message Center

Katana uses the standard Python logging module and, by default, logs messages of types info, warning,
error, and critical. There is also a debug message that can be enabled from within the Message Center.
Katana records messages on activities such as loading scenes, and converting scripts between different
render versions. The message button is on the right-hand side of the menu bar, and uses the following
colors to categorize the messages:
• Critical Messages - marked orange .
• Error Messages - marked red .
• Warning Messages - marked yellow .
• Information Messages - marked green .
• Debug Messages - marked purple .

If you click on the message menu icon , the messages window opens. The message menu icon itself
changes color to match that of the most serious message in the list (so can be any of those listed above, or
unfilled). The Message Center shows a truncated summary of each message. If you select the message and
copy it, you also copy the full text, which you can then paste into a text editor.

User Interface | Menu Bar Components

USER GUIDE
80

Clicking Messages within the Message Center opens the dropdown menu where you can enable or disable
the display of specific message categories, copy selected messages, or delete selected messages.

Messages shown in the UI are generated by the root logger, which is configured with the ${KATANA_
ROOT}/bin/python_log.conf file. To change the level of message generated, edit the logger_root level
parameter in python_log.conf to one of the options listed below:
• DEBUG - generates messages of debug level and higher.
• INFO - generates messages of info level and higher.
• WARNING - generates messages of warning level and higher.
• ERROR - generates messages of error level and higher.
• CRITICAL - generates critical messages only.

For more information on message logging, using either the C++ or Python methods, see Message Logging.

The Notification Center

Katana uses the standard Python logging module to record user notifications. These differ from the
messages in the Message Center, as they are not designed to be related to error messaging, so much as
internal messages you want other users to be aware of. Below is an example of how you can use the
NotificationManager class to record or display notifications in the Notification Center:

for i in range(4):
notificationRecord = UI4.Util.NotificationManager.NotificationRecord

('Title%d' % (1 + i), 'Text %d' % (1 + i))
UI4.Util.NotificationManager.AddRecord(notificationRecord)

If triggering the NotificationManager causes new notifications to be logged, the Notification Center

icon lights up . Click it to toggle the Notification Center window. Any notifications that haven't been
deleted from the Notification Center are displayed in the window, along with the date of the notification,
whether any action is necessary, and additional comments, if applicable.

User Interface | Menu Bar Components

USER GUIDE
81

Clicking Notifications within the Notification Center opens the dropdown menu where you can ignore,
unignore, or delete, specific notifications. You can also right-click on any given notification for the same

options as those in the Notifications dropdown. Clicking on the help icon, opens the full notification
text in a separate window.

Customizing Your Workspace
If you have used 3D applications in the past, you may notice that Katana’s workspace has many familiar
features, such as a timeline, a hierarchical Scene Graph tab, an OpenGL viewer, and a 2D monitor.

You can create layouts designed for whatever function you happen to be performing. For instance: lighting,
look development, or material editing. You can then save your preferred layouts for future use.

During the customization process, you can:
• Resize panes to create space where it’s most needed.
• Maximize the pane under the mouse cursor.
• Move and split panes to create new work areas, for example, to have two Viewers side-by-side.
• Remove panes and all tabs nested inside them.
• Add and remove tabs as required.
• Move tabs to easily access the elements you often need.
• Float and nest tabs to create more space or group similar functions together in the same pane.
• Add a Timebar to the main Katana window or any tab.
• Make the main Katana window fullscreen, hiding the window borders.

Once you are happy with the layout, you can save it for future use.

User Interface | Customizing Your Workspace

USER GUIDE
82

Adjusting Layouts
To make accessing the elements you often need as quick and easy as possible, it’s a good idea to adjust the
default layout(s). Additionally, you can toggle between viewing the main Katana window in fullscreen mode
or standard mode by selecting Layouts > View Fullscreen. Below are more useful layout changes that may
help you customize Katana to your own preference.

Panes
You can resize individual panes, by hovering the mouse over the divider line until the cursor changes to the
resize icon. Click and drag the cursor to resize the pane.

Tip: When moving the divider line, by default, if it crosses multiple panes, the entire line is moved.
To only move the divider line for the local pane, Ctrl+drag.

If you want to maximize a pane so that it expands to the size of the window:

• Click in the top-left corner of the pane,

• Hover over the pane and press Spacebar, or
• Double-click the tab of the pane to maximize.

Alternatively, you can return to the regular interface, by clicking or pressing Spacebar.

Note: If you have any tabs dock widgets, these remain in place when you maximize a pane.

Note: Pressing Spacebar in the Monitor tab does not maximize the pane, instead it swaps the
Front and Back images.

You can move an existing pane to a new location in the interface by hovering over the move pane icon in
the top-left corner of the pane until the cursor changes to the move icon, then clicking and dragging the
pane to a new location. The orange highlight around the destination pane helps you determine where the
pane is moved and whether the destination pane is split horizontally or vertically.

If you want to add a floating pane to the interface, click Tabs > [tab name].

User Interface | Adjusting Layouts

USER GUIDE
83

To remove a pane altogether, and all tabs nested inside it, right-click on any of the tab names and select
Close all.

Adding Tabs
You can add a tab to a specific pane by clicking in the top-left corner of the pane and selecting the tab
you want to add. If you then want to move that tab, or another existing tab, to a new location in the
interface, click and drag it to a new location. The orange highlight around the destination pane helps you
determine where the tab is nested, and if the destination pane is split horizontally or vertically.

Floating Windows
If you want to turn a tab into a floating window, right-click on the name of the tab and select Detach tab.
Alternatively, if you want to nest a floating tab, click on the name of the tab and drag it to where you want it
to dock. Use the orange highlight around the destination pane to help you determine where the tab is
nested and whether the destination pane splits horizontally or vertically.

Docking Tabs
To dock a tab within Katana's main window, right-click on the name of the tab and select Move Tab To, then
select from the following options:

l Left Dock
l Right Dock
l Top Dock
l Bottom Dock

Tabs in dock widgets can be dragged to one of the other dock widget areas, and can also be turned into

floating panes by clicking the Detach Tab button in the title bar of the dock widget, by double-clicking
its title bar, or by dragging a docked tab away from the dock widget areas of the main window.

Docked tabs are saved and restored as part of Katana layout XML files. A Save # Dock Widgets checkbox
has been added to the Save Current Layout dialog that opens when choosing the Layouts > Save Current
Layout menu command. By default, the checkbox is turned on. The checkbox can be turned off to not save
docked tabs as part of the layout.

User Interface | Adjusting Layouts

USER GUIDE
84

Timelines
There are a few visibility options for timelines in tabs. You can show or hide a timeline at the bottom of the
main Katana window by selecting Layouts > Show Main Timeline, or you can show or hide a timeline at the
bottom of any tab by right-clicking on the tab name and selecting Show Timeline.

Editing Node Type Parameters
Clicking the tabs icon, and selecting Node opens a node type panel. This allows you to edit the
parameters of nodes of the specified type, for example the parameters of several GafferThree nodes. By

default, the options under > Node are GafferThree, LookFileManager, and MaterialStack. If you want
to add other node options to the Node dropdown, set the KATANA_NODETYPETAB_NODETYPES
environment variable with the name of the node or nodes, separated by commas. For example, KATANA_
NODETYPETAB_NODETYPES=CameraCreate,PrimitiveCreate.

Note: If you specify nodes with the KATANA_NODETYPETAB_NODETYPES environment

variable, it overwrites the default Katana nodes specified under > Node. If you want to retain
these nodes, in addition to those you specify, they need to be added to the environment variable
list.

You can also access these options from Tabs > Node.

To remove individual tabs, make sure you are viewing the tab you want to remove and click on the close tab
icon in the top-right corner of the pane, or right-click on the name of the tab and select Close tab.

Saving, Loading, and Deleting
Layouts

User Interface | Saving, Loading, and Deleting Layouts

USER GUIDE
85

Saving Layouts
You can save as many of your favorite layouts as needed, retrieving them as necessary.

To save a layout:
1. Once you are happy with your layout, select Layouts > Save Current Layout.

The Save Current Layout dialog opens.
2. In the dialog, enter a name for the new layout.
3. If your layout includes any floating tabs and you want those to be saved with the layout, check Save #

Floating Panes (where # corresponds to the current number of floating panes).
4. If your layout includes any dock widgets and you want those to be saved with the layout, check Save #

Dock Widgets (where # corresponds to the current number of dock widgets).
5. Click Save to preserve your layout.

Loading Layouts
To load a previously saved layout, select it from the Layouts menu in the menu bar.

Deleting Layouts
1. Select Layouts > Edit Saved Layouts.
2. In the dialog that opens, select the layout to delete from the list available.
3. Click Delete Layout and Save.

Managing Keyboard Shortcuts
The $HOME/.katana/shortcuts.xml configuration file can be used to override the default keyboard
shortcuts of actions and key events that are registered with Katana’s new Keyboard Shortcut Manager.

Example of a shortcuts.xml File
Below is an example of a shortcuts.xml file:

User Interface | Managing Keyboard Shortcuts

USER GUIDE
86

<shortcuts>
<shortcut id="430f81d33d338680a0c64ae9ea311cd7"

name="SceneGraphView.ExpandBranchesToAssembly"
shortcut="A"></shortcut>

</shortcuts>

The ID of a keyboard shortcut element is assigned by the developer that registers the action or key event. It
is a hash based on the original name of the action or key event. While the name of an action or key event
changes, the ID remains the same for future versions of Katana. This ensures that the correspondence of
custom keyboard shortcuts to the respective actions or key events remain the same, even if names change in
future Katana releases.

The name attribute of a shortcut XML element only appears for readability, making it easy to identify the
action or key event to which the shortcut has been assigned. The names in the shortcuts.xml file are not
updated automatically when names of actions or key events are changed in the application.

You can view the currently assigned keyboard shortcuts of actions and key events, for which custom
keyboard shortcuts can be assigned, in the Keyboard Shortcuts tab. You can copy an XML representation of
an item in the keyboard shortcuts tree to the selection buffer clipboard by right-clicking the item and
selecting Copy as XML from the context menu. Pasting such an XML representation into the
shortcuts.xml file allows you to override the custom keyboard shortcut assigned for the respective
action or key event.

In future releases of Katana, more and more of Katana’s menu commands and other actions and key events
are adopted to using the new Keyboard Shortcut Manager, so that they can be customized as well.

Getting Help
In the scope of this user guide, it's not possible to go into detail with Python and all the scripts available.
However, there are several sources of more information that you may find useful if you need help using
Python.

Example Projects
Katana ships with a number of example projects covering a wide range of topics from The Basics and Look
Development to Scripting and Graph State Variables. To load a project, navigate to Help > Example
Projects to display a list of available scripts.

User Interface | Getting Help

USER GUIDE
87

You can double-click a project in the list or select the project you want to load and click Open Project.

API Reference
In the API References, you may find some of the things you need in terms of Python examples and ways of
using Python in Katana. You can navigate to these references by clicking Help > API Reference and
selecting the required API from the dropdown menu, or by clicking Help > Developer Guide, which leads
you to a comprehensive page that links you to scripting resources, API references (including plug-in APIs),
and legacy documentation.

Viewing More Examples

Python

Only a few samples of Python are described in this section but there are scripts also available in the following
locations:

• On Windows :

drive letter:\Program Files\Katana6.5v1\plugins\Src

• On Linux:

User Interface | Getting Help

USER GUIDE
88

/usr/local/Katana6.5v1/plugins/Src/Resources

To view an example, select one of the .py files from the Examples folder and open it in any text editor or, to
see what Python files Katana uses as part of the application, view the .py files in the Core folder.

Lua

Only a few samples of Lua are described in this section but there are also scripts available in the The Op API
section and within the application under Help > Example Projects. Any of the OpScript-related projects
under the Scripting section contain Lua examples.

C++

Only a few samples of C++ are described in this section, but there are also scripts available in the following
locations:

On Windows :

drive letter:\Program Files\Katana6.5v1\plugins\Src

• On Linux:

/usr/local/Katana6.5v1/plugins/Src

To view an example, select one of the .cpp files and view them in any text editor.

Using the Help Function
If you are working in the Python tab, one of the quickest ways of getting help on specific things, is to call the
help function with the object you're interested in. For example, the following statement gives you a
description of what the setattr function does:

help(setattr)

This generates the help text for the specified function in the output pane.

If you're unsure how the function should be written or completed, begin typing and then press Tab. A list of
possible matches appears in the output pane.

User Interface | Getting Help

USER GUIDE

Creating a Project

Projects and Recipes
There are no fixed rules as to what constitutes a Katana project. A Katana project is simply a collection of
recipes that are worked on together and stored in a single .katana file. A project could be a shot, a scene, or
look development for one or more assets.

Each recipe within a project can be totally self-contained or it can be linked to others through dependencies.
As an example, look development could have one recipe that creates a Katana look file (.klf) for a piece of
geometry and another recipe that renders out a turntable of that same geometry complete with its newly
created Katana look file assigned.

How you group your recipes into Katana projects is up to you and your studio.

If you’d like a quick start guide to take you through creating nodes to rendering, have a look at the Quick
Start Guide page in this section.

Creating, Saving, and Loading a
New Project
To create a new Katana project:
1. Select File > New (or press Ctrl+N).
2. If needed, click New Project in the Unsaved Changes dialog window to confirm.

Note: Ctrl+N does not work within the Node Graph.

89

quick_start_guide.htm
quick_start_guide.htm

USER GUIDE
90

Saving a Project
To save your current Katana project:

Select File > Save (or press Ctrl+S).

If the file has not been saved before, the file browser dialog displays. See steps 2 to 4 below to select a
location to save.

Saving to a New File

To save your current Katana project to a new file:
1. Select File > Save As... (or press Ctrl+Shift+S).

The file browser dialog displays.
2. Navigate to the directory to save the file.
3. Add the filename to the text field below the main window.

4. Click Accept.

Note: If you’re using a custom asset management system, the dialog you see may be different.

Creating a Project |

USER GUIDE
91

Loading a Project
To load a Katana project:
1. Select File > Open... (or press Ctrl+O).
2. If needed, click Load New Project in the Unsaved Changes dialog window to confirm.
3. Select a Katana project from the file browser dialog (see Using the File Browser below).
4. Click Accept.

Loading a Recently Saved Project

To load a recent Katana project:
1. Select File > Open Recent > ... and select from one of the previously saved projects in the dropdown

menu.
2. If you have a project open already and you've made unsaved changes you don't wish to keep, click Don't

Save, in the Open dialog to continue.

Tip: You can clear the list of recently opened projects by selecting File > Open Recent > Clear
Menu.

Reverting Back to the Last Save

You can revert back to the last time you saved, to do so:
1. Select File > Revert.
2. Click Revert Scene in the Unsaved Changes dialog window to confirm.

The Katana project reverts back to the last save.

Importing and Exporting a Project
To import a Katana project into the current project:
1. Select File > Import... (or press Ctrl+I).
2. Select a Katana project from the file browser dialog (see Using the File Browser below).
3. Click Accept.

Creating a Project | Importing and Exporting a Project

USER GUIDE
92

The imported project’s nodes float with the cursor inside the Node Graph.
4. Click somewhere within the Node Graph to place the imported project at that location.

You can also import a Katana project as a LiveGroup. For more information on LiveGroups, and for help on
how to import a project as a LiveGroup, refer to the LiveGroups and LiveShadingGroups section.

Exporting from Katana gives you the ability to do the equivalent of File > Save As... but for a limited number
of nodes.

To export part of the current project:
1. Select the nodes you wish to export.
2. Select File > Export Selection... (or press Ctrl+E).

The file browser dialog displays.
3. Navigate to the directory to export the file.
4. Add the filename to the text field below the main window.

5. Click Accept.

Changing a Project’s Settings
A project's settings are shared between each of the recipes created within that project. These can all be
changed from within the Project Settings tab.

Creating a Project | Changing a Project’s Settings

USER GUIDE
93

Setting Description

inTime The starting frame number for the timeline.

outTime The ending frame number for the timeline.

currentTime The current frame number.

timeIncrement Changes the frame increment for the move forward and
backwards icons in the timeline.

katanaSceneName The name of the Katana project you have open. If you are
working on an unsaved project, this field is blank.

resolution The default resolution for 2D source files, such as ImageColor.
Not used for the rendering of 3D scenes, they use the
RenderSettings node instead.

plugins

asset The asset manager to use (defaults to File).

fileSequence Plug-in to determine how to interpret a file sequence.

variables

This sub-section is blank if you haven't added any Graph State Variables to your project. Otherwise, the
variables and their values are listed.

compDefaults > fileIn

missingFrames How an ImageRead node behaves when a frame is missing.

inMode What an ImageRead node displays for frames before its first
frame.

outMode What an ImageRead node displays for frames after its last
frame.

compDefaults

useOverscan Whether to use overscan when rendering. Overscan is extra
pixel information around the main render window.

compDefaults > motionBlur

Creating a Project | Changing a Project’s Settings

USER GUIDE
94

Setting Description

shutter The open/close time of the shutter, relative to the current
frame. Changing the value in the second field is the primary way
to control the amount of motion blur applied.

numSamples Number of motion blur steps to compute and merge. Render
times are proportional to this value.

views > main

abbreviation The abbreviation used for the main view when working with
stereo controls in the Monitor tab.

uicolor Specify the color of UI elements in the Monitor tab when the
main view is active.

views > left

abbreviation The abbreviation used for the left view when working with
stereo controls in the Monitor tab.

uicolor Specify the color of UI elements in the Monitor tab when the
left view is active.

views > right

abbreviation The abbreviation used for the right view when working with
stereo controls in the Monitor tab.

uicolor Specify the color of UI elements in the Monitor tab when the
right view is active.

viewerSettings

normalsDisplayScale Changes the size of normals when displayed in the Viewer tab.

proxyCacheSize Number of proxy geometry objects to keep in memory.

viewerSettings > persp

near Distance to the near clipping plane for the perspective camera.

far Distance to the far clipping plane for the perspective camera.

Creating a Project | Changing a Project’s Settings

USER GUIDE
95

Setting Description

viewerSettings > ortho

near Default distance to the near clipping plane for the orthographic
cameras.

far Default distance to the far clipping plane for the orthographic
cameras.

orthoWidth Default width for the orthographic cameras.

viewerSettings > ortho > front

near Distance to the near clipping plane for the front orthographic
camera.

far Distance to the far clipping plane for the front orthographic
camera.

orthoWidth Distance to the width for the front orthographic camera.

viewerSettings > ortho > side

near Distance to the near clipping plane for the side orthographic
camera.

far Distance to the far clipping plane for the side orthographic
camera.

orthoWidth Distance to the width for the side orthographic camera.

viewerSettings > ortho > top

near Distance to the near clipping plane for the top orthographic
camera.

far Distance to the far clipping plane for the top orthographic
camera.

orthoWidth Distance to the width for the top orthographic camera.

monitorSettings

overlayColor Color to use when displaying alpha overlays.

Creating a Project | Changing a Project’s Settings

USER GUIDE
96

Assets and Asset Managers
Dealing With Assets
Katana has been designed from the ground up to work within an asset based production environment. In
fact, the philosophy behind Katana - the non-destructive recipe based approach - works to its fullest when
used with assets that change and update in an iterative workflow. The decoupling of asset creation and their
use in shots, allows a team to work in parallel.

Whether in a small, medium, or large studio, an asset management system helps maintain the large number
of assets and revisions that artists create and use.

With its extensible Asset Management API, Katana can be made to slot into any production workflow that
incorporates an asset management system. Examples of how to incorporate an asset manager using the
Asset Management API are included with the Katana install. A full explanation of this process goes beyond
the scope of this guide. For all examples within this guide, we assume you are using the File asset manager
that ships as the default with Katana. For further details on the asset manager employed by your facility,
consult your pipeline manager.

Selecting an Asset Manager
By default, Katana uses the file system to store assets. But Katana has the ability to plug into a studio’s asset
management system through its Asset Management API. Connecting Katana using this system is beyond the
scope of the Katana User Guide and you should consult your pipeline manager and the technical guide that
accompanies the installation for further information (the Katana Technical Guide is found under Help >
Documentation).

Once connected, you can change the asset manager from within the Project Settings tab. You can select
which asset manager to use by doing the following:
1. In the Project Settings tab, click the plugins > asset dropdown.
2. Select the asset manager from the filterable list.

Using the File Browser
The file browser is the basis for the File asset manager.

Creating a Project | Assets and Asset Managers

USER GUIDE
97

The following correspond to the numbers on the dialog image above:
1. Navigation controls - let you move through the directory structure, bookmark favorite directories, and

create new directory folders.
2. Path name field - displays the current directory path or enter a filepath to the file you want to open.
3. Filter menu - filter what files you can see in the file browser.

Tip: Windows only: You can show/hide the drives that Windows auto-creates by right-clicking
the directory list, selecting Show Defaults, and checking or unchecking the drive.

Creating a Project | Using the File Browser

USER GUIDE
98

Navigation Controls

Use the following controls to navigate between directories:
• Click the Create New Directory button to create a new directory at your current position in the file

hierarchy.
• Click the Up One Directory button to go up one directory closer to the root.
• Click the Previous Directory button to go back one directory.
• Click the Next Directory button to go forward one directory.
• Click the + button to add a directory bookmark.
• Click the edit button to edit the name or path name to a bookmark.
• Click the - button to remove a directory bookmark.

Path Name Field

The path name field allows you to do the following:
• Navigate to a directory by typing the path name in the field.
• Enter a script name by browsing to a directory path and entering the file name after the displayed path.
• Limit the file list to specific file types by using the Filter dropdown menu and sequences checkbox.

Filters and Sequences

To use the Filter dropdown menu and sequences checkbox:
• Select *.<file extension> to display all files of that extension type, for instance *.png.
• Select * to display all files (except hidden files), regardless of what they're associated with.
• Select .* * to display all files, including hidden files.
• Select */ to display directory names, but not their contents.
• Check sequences to display image sequences as single titles, as in fgelement.####.png 1-50 rather than

fgelement.0001.png, fgelement.0002.png, and so on.
• Split incomplete sequences into separate sequences using the split seq checkbox.

Note: File sequences with no file extension, for example, fgelement.0001, fgelement.0002, and so
on, are not displayed as single titles the first time you view the directory in the file browser.
However, they are displayed as single titles once you have navigated to another directory and back
again.

Creating a Project | Using the File Browser

USER GUIDE
99

Select Multiple Files

To select multiple files with the file browser:
1. Browse to the folder where the files are located.
2. Ctrl+click on all the files you want to open to select them.
3. Click Open.

All the selected files open.

Autosaves
Your autosave preferences can be set under Edit > Preferences > application > crashFile.

The crashFile gives you two options, numberOfActions and time, to choose how frequently you want an
autosave of your current scene to take place.
1. numberOfActions - specifies the number of actions before automatically saving the current project to a

file from which the project can be restored after a crash.
2. time - specifies the time in minutes before automatically saving the current project to a file from which

the project can be restored after a crash.

Note: Setting either preference to zero disables the corresponding autosave trigger. If both are
set to zero, no autosave files are created.

Creating a Project | Autosaves

USER GUIDE
100

Note: After an autosave file has been created another one cannot be saved until 15 seconds have
past, even if the conditions set by numberOfActions or time are met.

Loading an Autosave File
There are two ways to load an autosave file, you can either open it using a command line or you can locate
the file within your temporary directory.

Loading an Autosave File using a Command Line
To load an autosave file using a command line:

1. Open a new Command Prompt (cmd) for Windows , or a Terminal for Linux.
2. Specify the path to the Katana executable and add the --crash command line option as demonstrated

in the commands below.

Windows launch command:
C:\Program Files\[KATANA_VERSION]\bin\katanaBin.exe --crash

Linux launch command:
/opt/Foundry/[KATANA_VERSION]/katana --crash

Creating a Project | Autosaves

USER GUIDE
101

3. Execute the command to open Katana.

Katana will open the Katana Crash File Selector window before launching the Katana GUI. This
window displays any and all Katana project files found in your temporary directory.

4. The latest autosaved file is the crashFile saved when an unexpected exit occurred. Select the latest file
and press the Load button to load the project in Katana.

Note: If the crashed scene file had not yet been saved, Katana calls the resulting autosave
Untitled.

5. Once open, make sure to save the file in the location of the original project before continuing to work.
You may want to consider saving this under a different name to the original project, to create a version
history of the file.

Loading an Autosave File by Locating it within your Temporary Directory
When Katana creates a crashFile, it is saved to the machine’s temporary directory. The file can be restored
manually from there using the following steps:

Windows:

Creating a Project | Autosaves

USER GUIDE
102

1. Open the start menu and enter %TEMP% in the search bar:

2. Open the Temp folder and locate the most recent Katana crashFile. The file name should follow a
convention similar to the following.
default_show_default_shot_<projectFileName>_<crashFileId>.<version>.katana

Note: If the crashed scene file had not yet been saved, Katana calls the resulting autosave
Untitled.

3. Open the project in Katana and re-save the file elsewhere.

Linux:

1. Navigate to the temporary directory, which should be located at /tmp, using either the Terminal or a
file browser.

Creating a Project | Autosaves

USER GUIDE
103

2. Locate the most recent Katana crashFile.
3. Open this in Katana and re-save the project file elsewhere.

Creating a Project | Autosaves

USER GUIDE

Editing the Node Graph
Nodes are the basic building blocks of a Katana recipe. You create and connect nodes to form a tree of the
operations you want to perform.

These pages describe how to build and connect nodes within the node graph, and how to edit a node's
parameters using the Parameters tab.

Navigating Inside the Node Graph
As you set up your recipe, you may need to move between clusters of nodes quickly. Katana offers various
navigation methods and shortcuts to help you navigate the Node Graph tab quickly.
• Panning - middle-click and drag the mouse pointer over the workspace. The recipe moves with your

pointer.
• Zooming in - move your mouse pointer over the area you want to zoom in on, and press + (Plus key)

repeatedly until the workspace displays the recipe at the desired scale, or press Alt+left/right-click and
drag right. Alternatively, move the mouse pointer over the area you want to zoom in on, and scroll up with
the mouse wheel.

• Zooming out - move your mouse pointer over the area you want to zoom out from, and press - (Minus
key) repeatedly until the workspace displays the recipe at the desired scale, or press Alt+left/right-click
and drag left. Alternatively, move the mouse pointer over the area you want to zoom out from, and scroll
down with the mouse wheel.

104

USER GUIDE
105

Note: In many Linux windows managers, the Alt key is used by default as a mouse modifier key.
This can cause problems in 3D applications where Alt is used for camera navigation in 3D
environments.

You can use key mapping to assign the mouse modifier to another key, such as the (Super or
Meta) key, but the method changes depending on which flavor of Linux you're using. Please refer
to the documentation on key mapping for your particular Linux distribution for more information.

• Fitting selected nodes in the node graph - in the Node Graph tab, press F. If no nodes are selected, then
the entire node tree fills the Node Graph.

• Fitting the entire node tree in the node graph - in the Node Graph, press A.

Adding Nodes
You can add nodes to the Node Graph using the Tab menu, the New menu, or the right-click menu.

To add a node using the Tab menu:
1. With the mouse over the Node Graph tab, press the Tab button.

Katana displays a list of all available nodes.
2. Narrow the list of nodes by either:

• typing the starting letters of the node name, or
• typing the capital letters that make up the node name (for instance, typing MA for the MaterialAssign

node).

3. To select the node you want to add from the list, either:
• click it, or
• scroll to it with the Up and Down arrow keys and press Return.

Editing the Node Graph | Adding Nodes

USER GUIDE
106

4. Click on an empty space in the Node Graph to place the node.

Tip: To add another copy of the last node created using this method, simply press Tab and then
Return. Katana accepts wildcards while typing the name of the node to create. For instance, *_In
would give you the following options:

To add a node using the New menu:
1. In the Node Graph tab, click New and select the node you want to add.
2. Click on an empty space in the Node Graph to place the node.

To add a node using the right-click menu:
1. Right-click on the Node Graph (or press N) and select the node you want to add from the menu.
2. Click on an empty space in the Node Graph to place the node.

Tip: While the node is floating with the mouse cursor, you can cancel the node's creation by
pressing Esc. To have Katana automatically connect the new node to the currently selected node,
check the option Edit > Auto Connect New Nodes Based On Selection within the Node Graph.
Instead of placing the node and then connecting it, you can connect the node straight into the
node tree by either clicking on a connection, or clicking on another node’s input or output,
followed by clicking an empty space in the Node Graph.

Node Basics
Changing a Node’s Name
You can edit node names in a number of different ways:

Editing the Node Graph | Node Basics

USER GUIDE
107

• In the Parameters tab, or in the navigation bar of the Node Graph tab while looking inside a Group node,
you can rename a node by pressing F2 or Return with the mouse pointer over the node name.

• In the Node Graph tab, you can rename a selected node by pressing F2 or N.
• In the Node Graph tab, you can rename a node under the mouse pointer by pressing Return.

Some nodes derive their name from one of their parameters, for instance passName in Render nodes, or
name in Material nodes. In these cases, you can edit the parameter directly or indirectly by one of the above
methods. Changing the node name with either methods updates the name in all instances.

Note: Node names cannot contain spaces. Any spaces or invalid characters that are used in the
node name are converted into underscores. For example, the node name "Material Plastic"
becomes "Material_Plastic".

Indicators on Nodes
There are several indicators that can display on the nodes in the Node Graph. The following table describes
what each indicator means.

Indicator What it means

This node is selected.

This node’s parameters are being edited in the Parameters tab.

This node is being viewed. The scene graph generated up to this node is
currently displayed in the Scene Graph tab.

Editing the Node Graph | Node Basics

USER GUIDE
108

Indicator What it means

This node is disabled.

Edits to the currently selected location using an interactive manipulator within
the Viewer tab are fed back to this node.

An error occurred in the processing of the scene graph at this node.

An error occurred in the processing of the scene graph at a node within this
node.

Tip: To see which node, Ctrl+middle-click on the node to view inside.

Edits to the currently selected location using an interactive manipulator within
the Viewer tab are fed back to the node inside this node.

Tip: To see which node, Ctrl+middle-click on the node to view inside.

A node inside this node has its parameters being edited in the Parameters tab.

Tip: To see which node, Ctrl+middle-click on the node to view inside.

A node inside this node is being viewed. The scene graph generated up to that
node is currently displayed in the Scene Graph tab.

Tip: To see which node, Ctrl+middle-click on the node to view inside.

Editing the Node Graph | Node Basics

USER GUIDE
109

Node Buttons
Node Buttons are used in the UI to represent nodes that exist in the current project's node graph. For
example, a Node Button in the Scene Graph tab represents the currently viewed node, and Node Buttons in
the Parameters tab represent the nodes whose parameters are edited.

Node Buttons show the name of the node they represent, show a view and/or edit icon if the node has its
view and/or edit flags set, and use the color of the node for the button's background, if a node color is set.

Node Button Keyboard Shortcuts
Node Buttons have been designed to mimic the ways you can interact with nodes in the Node Graph tab.
With the pointer over a Node Button, you can use the following keyboard shortcuts to make changes to the
node represented by the Node Button:

Keyboard
Shortcuts

Action

E Sets the edit flag on the node. This shows the parameters of the node in the Parameters
tab.

F2 When a single node is selected, opens a pop-up to edit the name of that node.

N Opens the right-click node creation menu at the current pointer position.

When a single node is selected and visible in the Node Graph tab, opens a pop-up to
edit the name of that node.

V Sets the view flag on the node. This shows the scene graph that is produced by the node
in the Scene Graph tab.

Shift+E Toggles the edit flag of the node.

Shift+V Toggles the view flag of the node.

D Toggles the disabled state of the node.

Return, Enter When the pointer is over a node, opens a pop-up to edit the name of that node.

Ctrl+left-click Reveals and selects the node in the Node Graph tab.

Middle- Drags a representation of the node.

Editing the Node Graph | Node Basics

USER GUIDE
110

Keyboard
Shortcuts

Action

click+drag

Right-click Opens the same context menu that can be opened for a node in the Node Graph tab.

Disabling and Re-Enabling Nodes
You can toggle a node between enabled and disabled. To toggle whether a node is enabled:

Hover over the node and press D.

OR
1. Select the node(s).
2. In the Node Graph, select Edit > Toggle Disabled State of Selected Nodes (or press Alt+D).

Selecting Nodes
Katana offers a number of options for selecting nodes. Selected nodes are highlighted in yellow.

To select a single node, click once on the node. To select multiple nodes, press Shift while clicking on each
node you want to select, or drag on the Node Graph to draw a marquee. Katana selects all nodes inscribed
by the marquee.

Editing the Node Graph | Selecting Nodes

USER GUIDE
111

Single node selected. Multiple nodes selected.

To select all nodes upstream of the currently selected node(s), click on a node and press Ctrl+Up Arrow.
Katana selects all nodes that feed data to the selected node.

To select all nodes downstream, of the currently selected node(s), click on a node and press Ctrl+Down
Arrow. Katana selects all nodes downstream from the selected node.

Upstream nodes selected. Downstream nodes selected.

To add to a selection, Shift+click to select more nodes without clearing the current selection.

To deselect a node, Shift+click.

Connecting Nodes
As you build up a scene, you’ll need to create connections between nodes or change the connections that
already exist. Any nodes that are not connected to the overall node tree do not have any effect.

Nodes have input and output ports that are used to connect one node to another. Input ports are rectangles,
usually located at the top of a node. Output ports are triangles, usually located at the bottom.

Connecting a Node into the Recipe
There are a number of different ways to connect a node into the recipe, you can:

Editing the Node Graph | Connecting Nodes

USER GUIDE
112

1. Click the output port of the first node you want to connect.
2. Drag the resulting arrow to the input port of the second node.
3. Release the mouse button when the input highlights in yellow.

OR
1. Hover the cursor over the first node you want to connect.
2. Press the Backtick key (‘) once.
3. Hover the cursor over the second node and press the Backtick key again.

OR
1. Drag one node over the input or output of a second node, and release the mouse button to establish a

connection.
2. Click on an empty space in the Node Graph to then place the node there.

OR
1. Hover the cursor over the first node you want to connect.
2. Press a number from 1 to 9 to choose the output port at that position.
3. Hover the cursor over the second node and press a number from 1 to 9 to connect to the input port at

that position.

Adding a Node Between Two Other Nodes
1. Drag the node into the space between two already connected nodes.

When the cursor is over the connection, the connection becomes active (turns yellow).
2. Release the node you are dragging.

It automatically wires itself into the network between the two nodes.

Merging Nodes
You can merge any number of selected nodes in the Node Graph tab either through the tab's Edit menu or
the available keyboard shortcut. Merging selected nodes creates a Merge node that links up the selected
nodes' outputs to the inputs of the Merge node. A Merge node with a single input is effectively a no-Op
node.

To merge selected nodes, either press M when in the Node Graph tab or select Edit > Merge Selected
Nodes from the Node Graph tab's menu bar.

Editing the Node Graph | Merging Nodes

USER GUIDE
113

Removing, Replacing, and Deleting
Nodes
Removing a Node
There are two different ways to disconnect a node without deleting it:
• remove the inputs/outputs manually, or
• extract it, which removes all connections and attempts to repair the recipe by connecting the nodes that

are around the extracted node.

To disconnect a node, drag the head or tail of the connecting arrow to an empty area of the workspace.

To extract a node, removing all the connections to the node without deleting it:
1. Select the node you wish to extract.
2. In the Node Graph, select Edit > Extract Selected Nodes (or press X)

This removes all connections from the selected node, extracting it from the recipe.

Replacing Nodes
To replace one node with another you can use the R key to replace a node using the same Tab menu.

To replace a node using the R key:
1. In the Node Graph, select the node you want to replace.
2. Press R and start typing the name of the node you want to create.

Katana displays a list of matches.
3. To select the node you want to add from the list, either:

• click on it, or
• scroll to it with the Up and Down arrow keys and press Return.
The new node replaces the selected node in the Node Graph.

Deleting Nodes
To delete selected nodes

Editing the Node Graph | Removing, Replacing, and Deleting Nodes

USER GUIDE
114

1. Select the node(s) you want to delete.
2. Press Delete.

Katana removes the node(s) from the scene.

To delete all nodes not contributing to the current Scene Graph, in the Node Graph, select Edit > Delete All
Non-Contributing Nodes. Disabled nodes that would contribute if enabled are not deleted.

Copying, Pasting, and Cloning
Nodes
Copying and Pasting Nodes
To copy, paste, and perform other editing functions in the node tree, you can use the standard editing keys
(for example, Ctrl+C to copy and Ctrl+V to paste). Copied nodes inherit the values of their original, but
these values, unlike those in cloned nodes (see below), are not actively linked - that is, you can assign
different values to the original and the copy.

To copy nodes to the clipboard:
1. Select the node(s) you want to copy.
2. In the Node Graph, select Edit > Copy (or press Ctrl+C).

To paste nodes from the clipboard:
• In the Node Graph, select Edit > Paste (or press Ctrl+V).

Katana adds the nodes to the scene.

To cut nodes from the Node Graph
1. Select the node(s) you want to cut.
2. In the Node Graph, select Edit > Cut (or press Ctrl+X).

Katana removes the node(s) from the scene and writes the node(s) to the clipboard.

Cloning Nodes
You can clone nodes and place them elsewhere in a recipe. Cloned nodes inherit the values of their parent,
but unlike copied nodes, they also maintain an active link with their parents’ values. If you alter the values of

Editing the Node Graph | Copying, Pasting, and Cloning Nodes

USER GUIDE
115

the parent node, the clone automatically inherits these changes.

To clone nodes:
1. Select the node or nodes you want to clone.
2. In the Node Graph, select Edit > Clone.

Katana clones the node or nodes and creates an expression between each parameter of the parent node
and that of the clone. Any change on the parent is therefore reflected in the child.

To declone nodes:
1. Select the node or nodes you want to declone.

2. In the Parameters tab, select > Reset Parameters.

Katana removes the clone status of the selected nodes and resets all its parameters to the nodes’
defaults.

Grouping Nodes
Group nodes are used to group together a number of nodes into a single node, which can help to simplify
the node graph.

Creating Group Nodes
To create a Group node, in the Node Graph tab, select a number of nodes and press G. A new Group node,
with the previously selected nodes as its children, is created. Any connections between selected nodes are
preserved.

To create an empty Group node:
1. In the Node Graph tab, either:

• Press Tab and select Group from the node list,
• Right-click and select Other > Group from the menu, or
• From the Node Graph tab's menu, navigate to New > Other > Group.
The Group node floats with the cursor.

2. Click inside the Node Graph tab to place it at that location.
A new empty Group node is created.

You can duplicate Group nodes like any other node, which also creates duplicates of any child nodes.

Editing the Node Graph | Grouping Nodes

USER GUIDE
116

Navigating in Hierarchies of Group Nodes
Group nodes are similar to folders in a file system, in that they can be used to group other nodes, including
other Group nodes, thereby creating hierarchies of nested Groups.

A breadcrumbs bar at the top of the Node Graph tab uses Node Buttons to represent the Group node
whose contents are shown in the tab, as well as all of its ancestor Group nodes. You can click any Node
Button in the breadcrumbs bar to enter the corresponding ancestor Group node.

To enter a Group node, either:
• Select the Group node to enter and press Ctrl+Return,
• Ctrl+middle-click the Group node to enter,
• Select the Group node to enter, and navigate to Go > Enter Selected Group in the Node Graph tab's

menu.
• Click the Node Button that represents the node in the breadcrumbs bar, or
• Drag the Group node into the breadcrumbs bar.

To leave a Group node that was entered, either:
• Press Ctrl+Backspace,
• Click the - icon in the title bar of an entered Group,
• Click the Node Button that represents the parent node of the Group node (if any),
• From the Node Graph tab's menu, navigate to Go > Up,
• Click the Node Button that represents the parent node of the Group node (if any) in the breadcrumbs bar,

or
• Click the Go To Root button in the breadcrumbs bar (if the Group node exists in the root level of the node

graph).

To jump up to the root level of the node graph, either:
• Press Ctrl+Shift+Backspace,
• From the Node Graph tab's menu, navigate to Go > To Root, or
• Click the Go To Root button in the breadcrumbs bar.

Connecting Group Nodes
Group nodes can have any number of input and output ports, to which nodes from outside of the Group can
be connected, in order to connect to nodes inside the Group.

Editing the Node Graph | Grouping Nodes

USER GUIDE
117

The simplest way to create input or output ports is to expand the Group node bubble to show its contents.
Nodes from outside of the Group can then be directly connected to nodes inside the Group, which
automatically creates the input or output port on the Group as required.

Note: For more on Group nodes, and their incoming and outgoing connections, see Help >
Developer Guide.

Editing Group Nodes
Group nodes do not provide any parameters by default. However, you can add custom parameters to Group
nodes, and link parameters of child nodes inside the Group nodes to those parameters through parameter
expressions. That way, a Group node's parameters can act as the interface of the Group as a whole.

In order to edit the parameters of a Group node, either:
• Click the green edit flag on the Group node in the Node Graph tab,
• Move the pointer over the Group node, and press the E key, or
• Select the Group node, and press Alt+E.

Note: See the section on Adding User Parameters for more information.

Editing the Node Graph | Grouping Nodes

USER GUIDE
118

Backdrop Nodes
You can use Backdrop nodes to help document your recipes, making them easier to read and navigate. They
can be placed at the side of important nodes to explain their use for future users, around a collection of
nodes that perform a particular function, or just as a title for your entire recipe. How you use them is up to
you!

Creating a Backdrop Node
A Backdrop node is created in the same way as any other node, through the Tab menu, the right-click menu,
or with the New menu within the Node Graph. As well as these methods you can also create a Backdrop
node around a number of nodes using the method below.

To fit a Backdrop node around the currently selected nodes:
1. Select the nodes the Backdrop node is to encompass.

A minimum of two nodes must be selected.
2. Select Edit > Fit Backdrop Node to Selected Nodes.

If you select a Backdrop node with the selected nodes, Katana uses that Backdrop node, otherwise a new
Backdrop node is created.

Editing a Backdrop Node
To change the parameters of a Backdrop node:
1. Double-click within the horizontal lines at the top of the node.

This brings up the EditBackdrop Node dialog.

Editing the Node Graph | Backdrop Nodes

USER GUIDE
119

2. In the dialog you can:
• Enter or edit the text in the main text box.
• Change the size of the text with fontScale.
• Change the background color.
• Toggle whether this Backdrop node should be part of the jump-to menu with Show In Bookmarks

(See Navigating with Backdrop Nodes).
• Toggle whether this Backdrop node should be drawn behind other nodes with Send to Back.

3. Click Ok to save changes.

You can also resize a Backdrop node by dragging from the bottom-right corner.

Navigating with Backdrop Nodes
One extremely useful function of Backdrop nodes is their ability to act as jump to points throughout a
project.
1. In the Node Graph, select Go > Jump to Bookmark (or press J) to bring up the Backdrop nodes jump

to menu.
Katana displays all the Backdrop nodes that have the bookmark flag enabled with their background color
displayed to the left.

Editing the Node Graph | Backdrop Nodes

USER GUIDE
120

Tip: The first line of a Backdrop node is used as its title for the Jump to Bookmark menu.

2. Start typing the name of the node you wish to navigate to.
This narrows down the displayed list.

3. To select the Backdrop node to navigate to, either:
• click on it, or
• scroll to it with the Up and Down arrow keys and press Return.

If you want to select all nodes within the bounds of a Backdrop node (as well as the node itself), you can
Ctrl+click within the two horizontal bars at the top of the node.

Locking and Unlocking Backdrop Nodes
To lock Backdrop nodes so they can’t be edited or selected, select Edit > Lock All Backdrop Nodes. All
Backdrop nodes are locked, but if you create a new Backdrop node it is not locked.

To unlock all Backdrop nodes, select Edit > Unlock All Backdrop Nodes.

Dot Nodes
Dot nodes are used to help tidy a recipe and make the flow of the connections clearer. They also have a
unique ability in that disabling a Dot node ignores the contribution of all the nodes upstream.

To insert a Dot node:

Editing the Node Graph | Dot Nodes

USER GUIDE
121

1. Decide where to place the Dot node by:
• selecting the node before the connector you want to bend, or
• hovering the mouse over the connection you wish to bend.

2. Press . (period) to create a Dot node.

Tip: You can also create the Dot node in the same way as any other node using the Tab
menu, New menu, or right-click menu.

3. Drag the Dot node as necessary to reposition the connections.

Advanced Display Options
You can change how a node is displayed to improve clarity and readability and to provide additional
information about a node’s behavior. You can also reduce the contrast around nodes and their connections
by selecting Edit > Draw Graph with Low Contrast , in the Node Graph. You can do this in conjunction
with dimming unconnected nodes, described in more detail below.

Changing a Node’s Background Color
To change a node’s background color to one of the preset colors:
1. Select the node or nodes to change.
2. In the Node Graph, select Colors, and choose a color from the presets.

Note: If in the Node Graph, Edit > Dim Nodes Unconnected to View Node is selected, or a
node is ignored, its background color does not change.

To change a node’s background color to a custom color:
1. Select the node or nodes to change.
2. In the Node Graph, select Colors > Set Custom Color, and choose a color from the Color Picker

window.

Note: To reset a node’s color back to the default, select the node, then choose Colors > None.

Editing the Node Graph | Advanced Display Options

USER GUIDE
122

Dimming Nodes not Connected to the View Node
To improve visibility you can dim all nodes not relevant to the currently viewed scene graph. In the node
graph, select Edit > Dim Nodes Unconnected to View Node or press Alt+. (period) in the Node Graph
tab.

For instance, with the Switch node, you can use the Dim Nodes Not Contributing to Viewed Node option
in the Edit menu of the Node Graph tab to visualize which portion of the node graph has been selected by
the Switch node.

Note: The Dim Nodes Not Contributing to Viewed Node feature does not take into account
nodes whose parameters are referenced in parameter expressions on nodes that are contributing
to the currently viewed node.

Displaying Nodes Linked by an Expression
Some nodes are linked to other nodes through expressions. To display this relationship with a dark dashed
line in the Node Graph, select Edit > Show Expression Links (or press Q) from within the Node Graph tab.

Editing the Node Graph | Advanced Display Options

USER GUIDE
123

Aiding Project Readability with Node Icons
By default, some nodes have icons displayed to their left making it clearer what their function is. This
behavior is toggled within the Preferences dialog.

To toggle node icons:
1. Select Edit > Preferences to bring up the Preferences dialog or press Ctrl+, (comma).
2. Click nodegraph in the list on the left.
3. Change showNodeIcons to Yes to display the icons, or No to hide.
4. Click Ok to make the changes permanent.

Image Thumbnails
Thumbnails provide a guide to the image generated at a particular node within the recipe. Most 2D nodes
can display thumbnails, as can the Render node. Although some nodes display thumbnails by default, others
need it activated.

To toggle thumbnail display for thumbnail capable nodes, right-click and select Display Thumbnail.

To update a thumbnail, right-click and select Regenerate Thumbnail.

Editing the Node Graph | Advanced Display Options

USER GUIDE
124

Note: Thumbnails don’t update automatically!

Editing a Node’s Parameters
Each node has parameters that alter how the node behaves within the recipe. These parameters can be
changed within the Parameters tab.

A parameter’s value comes from one of three things:
• A constant.

For example: 9, test, or /root/world/cam/camera
• An expression.

For example: 16-3, scenegraphLocationFromNode(getNode(’CameraCreate’)), or getNode
(’CameraCreate’).fov. Please refer to the Developer Guide for more information.

• A curve: only available for numeric inputs. See Animation.

Node Parameter Basics
Default Parameters Tab Icons
Nodes displayed in the Parameters tab have a number of default icons.

1. Open/Close the node grouping.
2. The name of the node, which can be changed in the parameters or by clicking on the name.
3. The type of node selected.
4. Toggle the node tooltip.
5. Toggle the node shelf.
6. Toggle the graph state variables window.

Editing the Node Graph | Editing a Node’s Parameters

USER GUIDE
125

7. Toggle user comments for the node.
8. Toggle the parameters menu.
9. Toggle the parameter search window.

Opening and Closing a Node’s Parameters
Once a node’s parameters are visible within the Parameter tab they are grouped with the node type and

name at the top. This can be opened and closed with the / icons next to the node type.

Note: If the Parameter tab is not visible you can either, add it to a pane by clicking the
icon on the relevant pane and selecting Parameters, or create a new floating pane, by clicking
Tabs > Parameters.

Accessing a Node’s Parameters
To edit a node’s parameters, they need to be in the Parameters tab. To do this, select the node(s) whose
parameters you want to edit, then:
• In the Node Graph, select Edit > Edit Selected Nodes (or press Alt+E).
• Hover the mouse pointer over the node you wish to edit and press E .
• Click within the faint square to the right of a node.
• Double-click on a node. This also sets the current scene graph view to that node. See Using the Scene

Graph for more information.

A node that has its parameters in the Parameters tab has a green square on the right-hand side.

Editing a Node’s Parameters
Each node has parameters that alter how the node behaves within the recipe. These parameters can be
changed within the Parameters tab.

Editing the Node Graph | Editing a Node’s Parameters

USER GUIDE
126

A parameter’s value comes from one of three things:
• A constant.

For example: 9, test, or /root/world/cam/camera
• An expression.

For example: 16-3, scenegraphLocationFromNode(getNode(’CameraCreate’)), or getNode
(’CameraCreate’).fov. Please refer to the Developer Guide for more information.

• A curve: only available for numeric inputs. See Animation for more information.

Each parameter type has a control associated with it, and listed below are a few ways you can change the
common parameter types.

Changing a Numeric Value
You can change a numeric value by:
• Double-clicking in the field to select the whole value and entering a new value in the input field.

Note: Positive and negative numbers are supported. You can also enter integers (12345),
Floating/Double points (12.345), scientific notations (1e2345), and hexadecimal numbers
(0x9abcd).

Tip: Katana also allows you to enter formulas into fields, making it easy to do quick calculations.
For example, if you wanted to halve a value of 378, you could simply type 378/2 into a field and
press Enter to get 189.

You can increment or decrement field values by hundreds, tens, tenths, hundredths, and so on. The
magnitude of change depends on the initial position of your cursor. For example if you wanted to increment
the initial value of 20.51 by ones, you would insert your cursor before the 0.

To increment or decrement a field value:
• Click to insert the cursor just prior to the digit you want to increment or decrement and press the up arrow

to increment by one unit, or the down arrow to decrement by one unit.

Tip: You can also increment and decrement values using the mouse wheel (if available).

• Click and drag on the parameter name, also known as scrubbing. Dragging to the left decreases the value,
and dragging to the right increases.

Editing the Node Graph | Editing a Node’s Parameters

USER GUIDE
127

Note: If the stickyDrag option has been enabled in the nodegraph preferences, you can click on
the parameter label and move the mouse left to decrease the value or right to increase it.
To access the Preferences dialog, either select Edit > Preferences from the main menu bar or
select Edit > Preferences from the Node Graph tab's menu bar.

Tip: To make the changes coarser, hold down the Shift key while scrubbing, to make them finer,
hold down the Ctrl key. Pressing Shift with the up and down arrows makes the change coarser, or
pressing Ctrl makes it finer. Also, to change the increment and decrement amount, right-click and
select the sensitivity from the Sensitivity menu.

Changing a Color Value
Use the color picker or the pixel probe to change the color.

Changing the Value of a Dropdown Menu
To change the value in a dropdown menu:
1. Click on the dropdown menu.
2. Then, either:

• Click on the new value from the list.
• Use the Up and Down Arrow keys to highlight the new value and press the Return key.

Changing a Text String
A string can be used to represent a texture name, scene graph location, node name, or whatever a plug-in
may need. Depending on what it is representing it can be displayed in a number of ways. These can be:
• a plain text input field,
• a scene graph location, or
• a filename.

Manipulating a Scene Graph Location Parameter
Scene graph location parameters are used to either point to where a new location is inserted into the scene
graph or to reference an existing location.

Editing the Node Graph | Editing a Node’s Parameters

USER GUIDE
128

When the node creates a new location within the Scene Graph tab, the icon presents you with common

path prefixes to aid in placing the new location. When the node modifies an existing location, the icon
allows you to get the path from either:
• the current Scene Graph tab selection, or
• the current Node Graph node selection.

If you choose the second option, Katana creates an expression that points to the scene graph location
created by the selected node.

To find the location that the parameter references and select it within the Scene Graph tab, click and
select Select In Scenegraph.

Note: Some nodes that create scene graph locations can be linked to a parameter via an
expression so whatever scene graph location is created by the node becomes the value of the
parameter. To generate the link Shift+middle-click and drag from the node to the parameter.

Assigning Locations to a CEL Parameter
CEL parameters can be made up of one or more statements. Each statement can be one of three things:
• a path,
• a collection (a CEL statement stored on a scene graph location), or
• a custom CEL statement.

Common Parameter Widgets
These widget groups are common to many nodes in Katana and are outlined here. For more information
regarding the addition of user parameters and specific widget types, refer to Widget Types and Adding User
Parameters.

Asset and File Path Widget Types
The Asset (assetIdInput) and File Path (fileInput) widget types allow you to navigate to assets and files on
your file system. Several node types that ship with Katana use the Asset and File Path widget types for

Editing the Node Graph | Editing a Node’s Parameters

USER GUIDE
129

parameters of various names, for example: abcAsset, file, filePath, lookfile, procedural, saveTo, and
source.

Parameters that use the Asset and File Path widget types can be found on the following types of nodes:

• Alembic_In • LookFileGlobalsAssign
• AttributeFile_In • LookFileMaterialsIn
• CameraImagePlaneCreate • LookFileMaterialsOut
• GafferThree • LookFileMultiBake
• ImageCoordinate • LookFileOverrideEnable
• ImageRead • Material
• LiveGroup • RendererProceduralArgs
• LookFileAssign • RenderOutputDefine
• LookFileBake

Menu Command Description

Browse... Brings up the file browser or your studio's asset management browser and
enables you to select the asset to use.

Set Node Name From Path Changes the name of the node to match the filename but without the path or
extension.

Attribute Name Widget Type
The Attribute Name (attributeName) widget type allows you to type, or drag and drop attributes from the
Attributes tab, onto parameters of type String in the user parameters. When dropping a dragged attribute,
the target parameter's value is set to the name of the dropped attribute instead of the value of the dropped
attribute. Names of ancestor group attributes are separated by dots, for example, xform.translate.

Parameters that use the AttributeName widget type can be found on the following types of nodes:

• AttributeSet

Editing the Node Graph | Editing a Node’s Parameters

USER GUIDE
130

Menu Command Description

Text field

newParameter Type, or drag and drop attributes from the Attributes tab to set the
parameter's value to the name of the attribute.

Attribute Type Widget Type
The Attribute Type (attributeType) widget type allows you to select from a drop-down menu, or drag and
drop attributes from the Attributes tab, onto parameters of type String in the user parameters. When
dropping a dragged attribute, the target parameter's value is set to the name of the dropped attribute's
type, for example, float.

Parameters that use the AttributeType widget type can be found on the following types of nodes:

• AttributeSet

Menu Command Description

Text field

newParameter Select an attribute type from the drop-down menu, or drag and drop
attributes from the Attributes tab, to set the parameter's value to the
attribute type.

CEL Statement Widget Type
The CEL Statement (cel) widget type allows you to build and edit CEL statements that are stored in string
parameters on nodes. Several node types that ship with Katana use the CEL Statement widget type for
parameters of various names, for example: CEL, cel, toCel, fromCel, celSelection, disableAt, exclusivity,
lights, objects, off, and on.

Parameters that use the CEL Statement widget type can be found on the following types of nodes:

• AttributeCopy • LightLinkEdit • Prune
• AttributeEditor • LightLinkSetup • RendererProceduralArgs
• AttributeFile_In • LocationGenerate • RendererProceduralAssign

Editing the Node Graph | Editing a Node’s Parameters

USER GUIDE
131

• AttributeSet • LodSelect • ReverseNormals
• CollectionCreate • LodValuesAssign • ScenegraphObjectSettings
• GafferThree • LookFileAssign • VelocityApply
• GenericOp • Material • ViewerObjectSettings
• LightLink • OpScript • VisibilityAssign

Menu Command Description

Add Statements • Paths - Adds a Paths list to this CEL parameter.
• Collections - Adds a Collections list to this CEL parameter.
• Custom - Adds a Custom parameter to this CEL parameter.
• Append Scene Graph Selection - Adds a Paths list to this CEL parameter

and places selected scene graph locations in the new list.
• Replace With Scene Graph Selection - Removes any parameters within

this CEL parameter and creates a new Paths list and populates it with any
selected scene graph locations.

• Copy CEL Statement As Text - Copies this CEL statement to the clipboard.
• Paste CEL Statement - Removes any parameters within this CEL parameter

and pastes the CEL statement in the clipboard to this parameter.
• Replace With Parameter Expression - Converts the current CEL parameter

into an expression.

Paths > Action

Add Scenegraph Selection Adds the currently selected scene graph location to this list.

Remove Scenegraph
Selection

Removes the currently selected scene graph location from this list.

Remove Selected Paths Removes the path(s), selected in this Paths list, from this list.

Select All Selects all the paths in this list.

Select Selected Paths In
Scenegraph

Selects the scene graph locations of the selected paths in this list.

Copy Selected Paths to
Clipboard

Copies the selected paths from this list to the clipboard.

Editing the Node Graph | Editing a Node’s Parameters

USER GUIDE
132

Menu Command Description

Show Extended View... Brings up a dialog with the contents of this Paths list.

Collections > Action

Add Collections From
Scenegraph Selection...

Brings up a dialog box with a list of the collections from the currently selected
scene graph locations. You can then select from these collections to add
them to this list.

Add Scene Root
Collections...

Brings up a dialog box populated with the collections currently on /root. You
can then select from these collections to add them to this list.

Remove Selected Paths Removes the selected collection(s) from this list.

Select All Selects all the collections in this list.

Copy Selected Paths to
Clipboard

Copies all the selected collections and their paths to the clipboard.

"Find And Select" Selected
Items...

Union dropdown • Union
• Difference
• Intersect

Does not occur in all nodes with CEL widgets. Only occurs on additional
statements added to the widget after an initial statement.

Color Widget Type
The Color (color) widget type allows you to pick a color by specifying RGB or RGBA component values
directly in the Parameters tab, or through a color picker dialog. Several node types that ship with Katana use
the Color widget type for parameters of various names, for example: bottomLeft, bottomRight, color,
constantColor, fadeToColor, gamma, and previewColor.

Parameters that use the Color widget type can be found on the following types of nodes:

• GafferThree • ImageColor • ImageRamp
• ImageBackgroundColor • ImageClamp • ImageText
• ImageChannels • ImageContrast • ImageThreshold

Editing the Node Graph | Editing a Node’s Parameters

USER GUIDE
133

• ImageCheckerboard • ImageFade • LightCreate
• ImageGamma • ViewerObjectSettings
• ImageInvert
• ImageLevels

Menu Command Description

color The color (RGBA values) for the given parameter.

Picks the color (RGBA) values of the selection.

>

Average Sets the color picker to use the average values.

Min Sets the color picker to use the minimum values.

Max Sets the color picker to use the maximum values.

Front Sets the color picker to use the front values.

Back Sets the color picker to use the back values.

Auto-Disable Upon Release Toggle the ability to automatically disable the picker on mouse-button
release.

color > RGB

red Sets the red value of the pixels.

green Sets the green value of the pixels.

blue Sets the blue value of the pixels.

alpha Sets the alpha value of the pixels.

color > HSL

hue Sets the hue of the pixels.

saturation Sets the saturation of the pixels.

Editing the Node Graph | Editing a Node’s Parameters

USER GUIDE
134

lightness Sets the lightness of the pixels.

alpha Sets the alpha value of the pixels.

color > HSV

hue Sets the hue of the pixels.

saturation Sets the saturation of the pixels.

value Sets the value of the pixels.

alpha Sets the alpha value of the pixels.

color options continued

Enable Display Transform Toggles gamma correction in the color picker, which is especially useful
when working with OCIO.

Restrict RGBA Components Restricts the alpha to 0,1 and the color channels to 0,a.

Common 2D Node Widget Type
The Common 2D Node (node2d) widget type allows you to pick channels that are affected by a particular
2D node and specify masking parameters. This widget type is not exposed for use as a custom user
parameter.

The Common 2D Node widget type can be found in each Image node, except for Image BackgroundColor,
ImageChannels, ImageCheckerboard, ImageColor, ImageCoordinate, ImageCrop, ImageRamp, ImageRead,
ImageText, and ImageWrite.

Note: Not all of the Image nodes have the Mask parameter.

Menu Command Description

[view] Specify whether the controls are set for the main, left, or right views, or set
the controls to Enable All.

When a specific component (R, G, B, or A) is enabled, the controls affect only
that component.

Editing the Node Graph | Editing a Node’s Parameters

USER GUIDE
135

Menu Command Description

mix Dissolves between the bg image at 0 and the full merge effect at 1.

Mask

channel The channel from the out_mask input to use as a mask:
• R - use the red channel as the mask.
• G - use the green channel as the mask.
• B - use the blue channel as the mask.
• A - use the alpha channel as the mask.

By default, the merge is limited to the non-black areas of the mask.

invert Inverts the use of the mask channel so that the merge is limited to the non-
white areas of the mask.

fringe When enabled, the mask is modified so that, by default, the merge is limited
to the fringe (semi-transparent areas).

This is common alpha treatment, which modifies a normal mask such that it
only affects the fringe (semi-transparent) areas.

New Scene Graph Location Widget Type
The newScenegraphLocation (newScenegraphLocation) widget type allows you to specify the path of a
scene graph location that is to be created by the respective node. It is used, for example, for the name
parameter of CameraCreate nodes.

This widget type is not exposed for use as a custom user parameter, but can be accessed by setting the
widget type hint to newScenegraphLocation. Several node types that ship with Katana use the
newScenegraphLocation widget type for parameters of various names, for example: location, locations,
and name.

Parameters that use the newScenegraphLocation widget type can be found on the following types of
nodes:

• Alembic_In • PonyStack
• CameraCreate • PrimitiveCreate
• ImageCoordinate • TeapotCreate
• LightCreate

Editing the Node Graph | Editing a Node’s Parameters

USER GUIDE
136

Menu Command Description

Parent to Scenegraph
Selection

Sets the parent location of the object created to be the current scene graph
selection.

Parent to
/root/world/geo/...

Sets the parent location of the object created to be /root/world/geo/.

Parent to
/root/world/lgt/...

Sets the parent location of the object created to be /root/world/lgt/.

Parent to
/root/world/cam/...

Sets the parent location of the object created to be /root/world/cam/.

Select In Scene Graph Selects the location specified by this parameter in the Scene Graph tab.

Note: This option may be included in both the dropdown menu
and as an icon to the right of the parameter name, or may only be
present in one of these locations.

Locations Widget Type
The Locations (locations) widget type allows you to select scene graph locations by paths or expressions. It
is not an exposed widget type for use as a custom user parameter. Out of all node types that ship with
Katana, only Isolate nodes use the Locations widget type, namely for their isolateLocation parameter.

Menu Command Description

Path Adds another path to this parameter's list of paths.

Expressions

Append Scene Graph
Selection

For each selected scene graph location, a new path is added to this
parameter's list of paths and populated with the location.

Replace with Scene Graph
Selection

Removes all existing paths and replaces them with paths populated with the
currently selected Scene Graph tab locations.

Editing the Node Graph | Editing a Node’s Parameters

USER GUIDE
137

Append Node Graph Node
Locations

For each selected Node Graph node, a new path is added to this parameter's
list of paths and an expression that links the scene graph location created by
that node to the path.

Replace with Node Graph
Node Locations

Removes all existing paths and replaces them with a path for each selected
Node Graph node and links the scene graph location created by that node
to the path.

Append Node Graph
Locations as Parameter
Expressions

Replace Node Graph
Locations as Parameter
Expressions

Clear All Removes all paths from this parameter.

Look File Pass Name Widget Type
The Look File Pass Name (lookfilePassname) widget type allows you to set the pass name to use from a
chosen Look File. This widget type is not exposed for use as a custom user parameter, but can be accessed
by setting the widget type hint to lookfilePassname. Node types that ship with Katana use the Look File
Pass Name widget type for the passName parameter.

Parameters that use the Look File Pass Name widget type can be found on the following types of nodes:
• LookFileMaterialsIn
• LookFileOverrideEnable
• LookFileResolve

Menu Command Description

Choose Look File Pass
from Selection...

Editing the Node Graph | Editing a Node’s Parameters

USER GUIDE
138

Rectangle Widget Type
The Rectangle (rectangle) widget type allows you to specify rectangular bounds to use by a node. This
widget type is not exposed for use as a custom user parameter. Several node types that ship with Katana use
the Rectangle widget type for parameters of various names, for example: bounds, resolution, or rect.

Parameters that use the Rectangle widget type can be found on the following types of nodes:

Menu Command Description

bounds or rect >

Copy from Monitor ROI

Copy to Monitor ROI

Scene Graph Location Widget Type
The Scene Graph Location (scenegraphLocation) widget type allows you to specify the path of an existing
scene graph location that a node is meant to work with. Several node types that ship with Katana use the
Scene Graph Location widget type for parameters of various names, for example: baseLocation,
cameraLocation, location, locations, path, paths, sourceLocation, and targetPath.

Parameters that use the Scene Graph Location widget type can be found on the following types of nodes:

• AimConstraint • GafferThree • OpScript
• AttributeCopy • HierarchyCopy • OrientConstraint
• AttributeSet • InfoCreate • ParentChildConstraint
• BillboardConstraint • Isolate • PointConstraint
• BoundsAdjust • LightLink • ReflectionConstraint
• CameraClippingPlaneEdit • LightLinkEdit • Rename
• CameraImagePlaneCreate • LightLinkSetup • RendererProceduralArgs
• CameraScreenWindowConstraint • LightLinkEdit • RendererProceduralAssign
• ClippingConstraint • LocationCreate • RenderOutputDefine
• CollectionCreate • LookFileBake • RenderSettings

Editing the Node Graph | Editing a Node’s Parameters

USER GUIDE
139

• ConstraintCache • LookFileMultiBake • ScreenCoordinateConstraint
• CoordinateSystemDefine • Material • Transform3D
• DollyConstraint • NetworkMaterialInterfaceControls • TransformEdit
• FaceSetCreate • NetworkMaterialParameterEdit
• FOVConstraint • NetworkMaterialSplice

Menu Command Description

Adopt Scenegraph
Selection

The currently selected Scene Graph tab location is used to populate the
parameter.

Adopt Selected
Nodegraph Node

Creates an expression from the currently selected Node Graph node linking
the scene graph location created by that node to this parameter.

Select In Scenegraph Selects the location specified by this parameter in the Scene Graph tab.

Note: This option may be included in both the dropdown
menu and as an icon to the right of the parameter name, or may
only be present in one of these locations.

Adjust Path Relative To
'basePath'

Converts the current targetPath to a path relative to the basePath. If the
targetPath is an expression, it is converted to a constant.

Note: This option does not appear in all instances and may only be
available when both the basePath and targetPath parameters exist
for a node.

Scene Graph Locations Widget Type
The Scene Graph Locations (scenegraphLocationArray) widget type allows you to specify a list of paths of
existing scene graph locations that a node is meant to work with. Several node types that ship with Katana
use the Scene Graph Locations widget type for parameters of various names, for example:
destinationLocations, lightPaths, locations, paths, and rootLocations.

Parameters that use the Scene Graph Locations widget type can be found on the following types of nodes:

Editing the Node Graph | Editing a Node’s Parameters

USER GUIDE
140

• AimConstraint • InfoCreate
• AttributeSet • LightLink
• BillboardConstraint • LightListEdit
• ClippingConstraint • LocationCreate
• ConstraintCache • LookFileBake
• ConstraintListEdit • LookFileMultiBake
• DollyConstraint • PointConstraint
• FOVConstraint • ScreenCoordinateConstraint
• HierarchyCopy

Menu Command Description

Path Adds another path to this parameter's list of paths.

Append Scenegraph
Selection

For each selected scene graph location, a new path is added to this
parameter's list of paths and populated with the location.

Replace with Scenegraph
Selection

Removes all existing paths and replaces them with paths populated with the
currently selected Scene Graph tab locations.

Append Nodegraph Node
Locations

For each selected Node Graph node, a new path is added to this parameter's
list of paths and an expression that links the scene graph location created by
that node to the path.

Replace with Nodegraph
Node Locations

Removes all existing paths and replaces them with a path for each selected
Node Graph node and links the scene graph location created by that node
to the path.

Clear All Removes all paths from this parameter.

Find Instances beneath
Scene Graph Selection... Note: This option is only found on the rootLocations parameter.

Transform Controls Widget Type
The Transform Controls widget type allows you to manipulate the transformation matrix. This widget type
is not exposed for use as a custom user parameter. Node types that ship with Katana use the Transform
Controls widget type for the transform parameter.

Editing the Node Graph | Editing a Node’s Parameters

USER GUIDE
141

Parameters that use the Transform Controls widget type can be found on the following types of nodes:
• CameraCreate
• GafferThree
• LightCreate
• PonyStack
• PrimitiveCreate
• TeapotCreate

Menu Command Description

transform

interface Sets the transform control layout:
• SRT Values - exposes the scale, rotation, and translation controls.
• Transform Matrix - exposes a matrix to control transformations.

Note: If you select Transform Matrix, the translate, rotation, and
scale fields are replaced by a matrix field instead.

transformOrder Sets the order in which transforms are applied: Scale Rotate Translate, Scale
Translate Rotate, Rotate Scale Translate, Rotate Translate Scale,
Translate Scale Rotate, Translate Rotate Scale.

rotationOrder Sets the order in which rotation is applied: XYZ, XZY, YXZ, YZX, ZXY, ZYX.

transform > interface: SRT Values

translate Controls camera translation on the xyz axes.

rotate Controls camera rotation on the xyz axes.

scale Controls camera scale on the xyz axes.

transform > interface: Transform Matrix

matrix Controls transformations using a matrix in place of individual SRT controls.

Note: This field is only available if you have selected Transform
Matrix in the interface field.

Editing the Node Graph | Editing a Node’s Parameters

USER GUIDE
142

Transform Tools Widget Type
The Transform Tools widget type allows you to manipulate transformation data for scene graph locations.
This widget type is not exposed for use as a custom user parameter. Node types that ship with Katana use
the Transform Tools widget type for the transform parameter.

Parameters that use the Transform Tools widget type can be found on the following types of nodes:
• CameraCreate
• GafferThree
• LightCreate
• PrimitiveCreate
• TeapotCreate

Menu Command Description

transform > Tools

Snap to Position of Scene
Graph Selection

Moves the position of the light to the position of the item selected in the
Scene Graph tab.

Copy Scene Graph
Selection World Transform

Copies the world SRT values of the item selected in the Scene Graph tab into
the translate, rotate, and scale parameters under Object tab > transform.

Copy Scene Graph
Selection Local Transform

Copies the local SRT values of the item selected in the Scene Graph tab into
the translate, rotate, and scale parameters under Object tab > transform.

Fit to Bounds of Scene
Graph Selection

Fits the light to the bounds set by the item selected in the Scene Graph tab.

Register to Scene Graph
Camera

Places an object at a specified distance from a camera that is selected in the
Scene Graph tab, oriented to face the camera, and scaled to fit the camera's
screen window exactly. This is designed for use with primitive planes and may
set unexpected transforms on other object types.

This option is only available if a camera or light is selected in the Scene Graph
tab.

Reset Transform Resets any previous transforms, bringing the light back to the origin (0,0,0).

Editing the Node Graph | Editing a Node’s Parameters

USER GUIDE
143

Parameter State Badges
Some parameters, and all attributes, have an icon to help you determine how the current value is being
assigned. These are referred to as state badges.

Icon What it means

This parameter or attribute has not been set and is getting its value from a predefined
default.

This parameter is being forced to use the predefined default value.

This parameter has a local change and is being set at this node.

This parameter or attribute has been set and is not getting its value from the default. A
parameter with this icon would have already been set further up the node tree.

This attribute is inherited from a parent location further up the scene graph hierarchy.

This parameter or attribute has an active reference to a parameter in another file.
Changes to the other file update this parameter when reloaded.

Adding User Parameters
You can add user parameters to any node, but they’re particularly useful in groups and macros, where user
parameters on the parent node can drive parameters on child nodes. User parameters can also drive
parameters on nodes in the recipe outside of the group or macro. It can be useful to present the user of a
group or macro with a series of known, valid choices in the form of a pop-up menu. You can create this, as
shown below, by editing the user parameters.
1. Start with a recipe consisting of a Group node with a child PrimitiveCreate node, and a connection out of

the group from the PrimitiveCreate to a Merge node.

Editing the Node Graph | Editing a Node’s Parameters

USER GUIDE
144

2. Select the Group node and press Alt+E to edit it.

3. In the Group node’s Parameters tab, click > Edit User Parameters.

4. On the user parameter, click Add > String.
A new user parameter of type string is created.

5. Change the widget type of your user parameter to Popup Menu by clicking the menu on the user
parameter and selecting Widget Type > Popup Menu.
This changes the user parameters widget type to pop-up menu, where each entry in the menu is a string.

6. Edit the pop-up menu to add new entries, each corresponding to a valid PrimitiveCreate node type. To

do this, in the menu of the new parameter, click Widget Options.... In the resulting widget options
dialog, click Add > New Entry, and name them "sphere", "cube", and "cone".

7. Link the user parameter pop-up menu to the type parameter of the PrimitiveCreate node by right-
clicking on the user parameter pop-up menu and clicking Copy, then selecting the PrimitiveCreate node.
Right-click on its type parameter, and select Paste > Paste Expression.
The type parameter’s background turns blue to let you know it’s set by an expression.

Editing the Node Graph | Editing a Node’s Parameters

USER GUIDE
145

Tip: If you want the user parameters to be shown at the top level on the Group node, you can click
> Show User Parameters At Top Level in the Group node's parameters before you finish

editing the user parameters.

8. Finish editing the Group node’s user parameters by clicking > Finish Editing User Parameters.

9. Select the group, then click the pop-up user parameter to change between the "sphere", "cube", and
"cone" options. The type parameter of the PrimitiveCreate node changes to match.

Tip: Katana offers a shortcut to automatically create and populate user parameters. Perform step 3
from the example above, then Shift+click the PrimitiveCreate node as well as the group.
Shift+middle-click and drag from the PrimitiveCreate node’s type parameter onto the Group
node's Add menu. A new user parameter of the correct type (in this case a pop-up menu),
populated with the applicable entries, is created. You still need to link the new menu to the
PrimitiveCreate node’s type parameter, but this should speed up the process.

Widget Types
Depending on the user parameter defined in a shader's Args File, different Widget Types are available to
choose from. The main user parameters are the Number, String, and color parameters. The widget types
available for a Number shader parameter are shown below.

The widget types for a String shader parameter are shown below.

Editing the Node Graph | Editing a Node’s Parameters

USER GUIDE
146

The widget types and widget hint values for the different user parameters are shown in the table below:

Widget Type Widget Hint Values Description and Example

Number, String, Button, Toolbar, TeleParameter, and Node Drop Proxy

Boolean boolean Displays two values or options, such as true or false.
<param name="opacity" widget="boolean"/>

Popup popup Displays entries specified in the Widget Options in a
dropdown menu.
<param name="opacity" widget="popup">

<hintlist name="options">

<string value="1.0"/>

<string value="1.5"/>

 <string value="2.0"/>

</hintlist>

</param>

Mapping Popup
Menu

mapper Similar to Popup Menu, but with the option to map
values. See Widget Options for more information.
<param name="opacity" widget="mapper">

<hintdict name="options">

<float value="0.0" name="A"/>

<float value="0.5" name="B"/>

 <float value="1.0" name="C"/>

</hintdict>

Editing the Node Graph | Editing a Node’s Parameters

USER GUIDE
147

Widget Type Widget Hint Values Description and Example

</param>

Check Box checkBox Similar to Boolean, but displayed as a checkbox.
<param name="opacity"

widget="checkBox"/>

String, Button, Toolbar, TeleParameter, and Node Drop Proxy

Scene Graph
Location

scenegraphLocation Widget for specifying locations in the Scene Graph
tab, for example, /root/world/geo/pony1
<param name="loc"

widget="scenegraphLocation"/>

CEL Statement cel Specify a CEL Statement. For more information, see
Collections and CEL.
<param name="loc" widget="cel"/>

Resolution resolution A resolution, for example: 1024x768.
<param name="loc"

widget="resolution"/>

Asset assetIdInput Widget to represent an asset. The fields that are
displayed in the UI and the browser that is used for
selection can be customized using the Asset
Management System API.
<param name="EnvMap"

widget="assetIdInput"/>

File Path fileInput String parameter representing a file on disk. Uses the
standard Katana file browser for selection.
<param name="texname"

widget="fileInput"/>

Script Button scriptButton A button executing a Python script when clicked.
<param scriptText="print 'Hello'"

name="btn"

buttonText="Run Script"

widget="scriptButton"/>

TeleParameter teleparam Creates a parameter that 'teleports' parameters from
another source (node, SuperTool, or similar).
<param name="EnvMap"

Editing the Node Graph | Editing a Node’s Parameters

USER GUIDE
148

Widget Type Widget Hint Values Description and Example

widget="teleparam"/>

Script Editor scriptEditor A field for entering a script as the parameter.
<param name="EnvMap"

widget="scriptEditor"/>

Dynamic Array dynamicArray A number or string array of dynamic size. Not available
through the UI wrench menu.
<numberarray_parameter hints="
{';widget': '

dynamicArray'}" name="testNumArray" size="3"

tupleSize="1">

<number_parameter name="i0"

value="0"/>

<number_parameter name="i1"

value="0"/>

<number_parameter name="i2"

value="0"/>

</numberarray_parameter>

Multi-line Text text Enables a string field to support multiple lines of text.
For example, you can set KatanaBlinn.args with the
following line:
<param name="BumpMap" widget="text"/>

to set BumpMap to take multiple lines of text and
display the expected UI.

String Only

Attribute Name attributeName String parameter value which is the full name of an
attribute, with names of ancestor group attributes
separated by dots:
xform.translate

Attribute Type attributeType String parameter value which is the name of the
attribute's type:
float

Group Only

Multi multi Creates a group set of parameters within a group.

Editing the Node Graph | Editing a Node’s Parameters

USER GUIDE
149

Widget Type Widget Hint Values Description and Example

Number Array Only

Color color Creates a color widget that allows you to set the RGB,
HSL, and HSV values.

String Array Only

Scene Graph
Locations

scenegraphLocationArray Creates three Scene Graph Locations widgets that
allow you to set locations.

Note: See Help > Developer Guide for more on setting hint strings on User Parameters.

Note: See also Adding User Parameters.

Widget Options
Based on the specified widget type, there are a number of options available. In case of a color parameters for
example, these options allow settings like the restriction of the components (RGBA) to a range between 0
and 1. For numeric parameters, the display format and slider options, such as range and sensitivity, can be
specified.

Editing the Node Graph | Editing a Node’s Parameters

USER GUIDE
150

For example, in the widget options of a Mapping Popup menu, if you specify a list of numbers and their
labels, they are displayed as a dropdown list.

Note: For more information about user parameters and widget options, refer to Adding User
Parameters or for a list of specific widget options for each widget type, refer to Widget Types.

Conditional Behavior
You can make the behavior of user parameters within a macro or group conditional, dependent on any user
parameter values. For example, create a group, containing a scene that includes 3Delight and Arnold
shaders. Select which shader to use from a pop-up menu, then show and hide shader options using
conditional behavior.

Conditional Visibility Example
First, follow the steps below to set up a scene you can use to learn about conditional visibility.
1. Create a Katana scene with a PrimitiveCreate node, a Material node, a CameraCreate node, and a Merge

node.
2. Connect the outputs of the PrimitiveCreate, Material, and CameraCreate nodes to inputs on the Merge

node.
3. Create a MaterialAssign node, and place it downstream of the Merge node.
4. Add GafferThree and RenderSettings nodes in a series, downstream of the MaterialAssign node. Finally,

add a Render node at the end of the chain.

Editing the Node Graph | Editing a Node’s Parameters

USER GUIDE
151

Note: You can overload Material and GafferThree nodes with more than one shader type. For
example, a Material node can hold both 3Delight and Arnold shaders.
At render time, only shaders relevant to the selected renderer are considered.

5. In the Material node, add a 3Delight surface shader of type Material3Delight, and an Arnold surface
shader of type standard.

6. In the GafferThree node, add both a 3Delight spotlight, and an Arnold spot_light, switching profiles to
do so.

Note: For more information on how to add lights and assign shaders to them, refer to Getting to
Grips with the GafferThree Node.

7. Position the lights.
8. Select all of the nodes except for Render, and press G to group all of the selected nodes together. The

result is a Group node with a single output, connected to a Render node.

Once you've set up the scene, you can go into the Group node and change the RenderSettings node
renderer parameter to switch between your available renderers. However, you can also use conditional
visibility to streamline this operation by adding a pop-up menu to the UI of the Group node and linking to
the renderer parameter on the RenderSettings node by expression.

Follow the steps below to switch between 3Delight and Arnold rendering options using conditional visibility:

Editing the Node Graph | Editing a Node’s Parameters

USER GUIDE
152

1. Select the Group and click > Edit User Parameters.

2. Select Add > String and then select Widget Type > Popup Menu from the new parameter’s menu.

3. Select Widget Options... from the new parameter’s menu.

4. In the widget options dialog, select Add > New Entry, so there are two entries in the menu. Edit one
entry to read "dl" and the other to read "arnold", then click OK.

5. In the Group node’s Parameters tab, right-click on the pop-up menu widget and select Copy.
6. Expand the contents of the Group node in the node graph. Select the RenderSettings node and press

Alt+E to edit the parameters in the Parameters tab. Right-click on the node’s renderer parameter, and
select Paste Expression.
The background of the renderer parameter turns blue, to indicate that it’s driven by an expression.

The value of the RenderSettings node renderer parameter is linked by expression to the selected entry in the

Group node’s pop-up menu. If you select > Finish Editing User Parameters from the group’s
Parameters tab, the pop-up menu now displays as a parameter.

Create New User Parameters for Conditional Visibility
The state of the pop-up menu can also conditionally affect visibility of other user parameters in the Group
node. Using the examples scene you've already set up from Conditional Visibility Example, create new user
parameters on the group to control the diffuse color values on the 3Delight and Arnold shaders contained
within it.

This example also shows how to add conditional behavior so that only the color controls for shaders relevant
to the selected renderer are shown:

1. In the Group node’s Parameters tab, select the > Edit User Parameters, then click Add > Color,
RGB twice.

2. Right-click on the first Color, RGB user parameter and select Copy. Expand the contents of the group in
the node graph, then Shift+middle-click and drag the Material node to the Parameters tab to view it.

3. Expand the parameters for the Material3Delight, right-click on the color parameter (base layer), and
select Paste Expression.

4. In the Group node’s Parameters tab, right-click on the second Color, RGB user parameter and select
Copy.

5. Expand the parameters for the Material node's arnoldSurfaceShader, right-click on the kd_color
parameter, and select Paste Expression.

The diffuse color values of the 3Delight and Arnold shaders are linked by expression to the color widgets in

the group's parameters. If you select Finish Editing User Parameters from the group’s menu, the color

Editing the Node Graph | Editing a Node’s Parameters

USER GUIDE
153

widgets display in the group’s Parameters tab. Their values affect the diffuse colors of the 3Delight and
Arnold shaders.

Hide Conditional Visibility Options
Only one shader at a time is considered, so it would be useful to hide the settings for the shader not
applicable to the selected renderer.

1. In the Group node’s Parameters tab, click > Edit User Parameters. Select > Conditional
Visibility Options... for the first Color, RGB widget.
The Conditional Visibility Options dialog opens.
The conditional visibility options editor sets "and/or" conditions for showing the selected widget.
Conditions are evaluated against a specified user parameter, in the format:
if <selected parameter> is <selected condition> relative to an entered value, then show the widget.

2. In the Conditional Visibility Options dialog, select Add Condition > contains. In the text entry field,
enter "dl".

The condition in this case is if <the pop-up menu> contains < the string dl> then show the target user
parameter.

3. In the Conditional Visibility Options window, click on the icon to choose the user parameter to test
against, and select the pop-up menu from the list.

4. Repeat the process above for the second Color, RGB widget, and the Arnold entry in the pop-up menu.

If you select the group’s > Finish Editing User Parameters, and view the completed Group node’s
Parameters tab, only one color widget at a time displays in the group’s Parameters tab. Which one is
dependent on the value chosen in the pop-up menu.

Editing the Node Graph | Editing a Node’s Parameters

USER GUIDE
154

Creating Help Text for User
Parameters
Within a newly created user parameter, you have the option to create help text.

1. In the new parameter's menu, select Edit Help Text... from the options.

2. The Edit Help Text dialog is split into two panes: editor and preview. Using the dropdown menu at the
top of the dialog, you can choose to:
• View Editor and Preview - type into the editor, on the top pane, and see the results in the preview

pane, on the bottom.
• View Only Editor - type into the editor only, without previewing the results.
• View Only Preview - view the preview window only, without viewing the editor. This is useful for

review purposes.

As well as typing into the editor, you can insert images and links using the Insert Image and Insert

Link icons above the editor pane.

Note: The image and link options are only available if you have the editor displayed.

Editing the Node Graph | Editing a Node’s Parameters

USER GUIDE
155

3. The dropdown menu at the bottom of the dialog allows you to specify what kind of help text the
message is: normal, warning, or error.

4. Click OK to save your changes. You can now see your message by clicking on the question mark icon to
the left of the parameter.

You can also generate help text for a user parameter programmatically instead of setting it through the UI.
To do this, set the help text string like the example below:

myParameter = NodegraphAPI.GetNode('Group').getParameter
('user.exampleUserParameter')hints = eval(myParameter.getHintString())
hints['help'] = """
This is some example help text

 Visit Foundry's website'
"""
myParameter.setHintString(str(hints))

Editing the Node Graph | Editing a Node’s Parameters

USER GUIDE

Animation

Computer based animation owes its core concepts to the techniques employed by pencil-drawn animators
since the dawn of the animation business. In order to reduce time, the lead animators of large studios would
draw key poses - known as keyframes or keys - defining the extreme positions within a scene.

A different animator would then fill in the poses between the keyframes using a technique called tweening,
thereby creating the illusion of movement. For some scenes, breakdowns were created to show how the
transition from one keyframe flowed to the next. Katana does the animation heavy lifting by interpolating
the values between keyframes. You can tell Katana how you want these in-between frames to be generated
by specifying a segment function.

Two keyframes on frames zero and fifty with a linear segment function applied to the first. The most versatile
segment function is the bezier curve; it uses a mathematical formula to calculate a curve between two

anchor points. Bezier curves use four points to interpolate a curve: two anchor points (these are the
keyframes) and two control points.

156

USER GUIDE
157

The same two keyframes with the bezier segment function applied. The arrowheads represent the location of
the two control points. A tangent and its control points control the slope of the curve around the tangent’s

keyframe.

The selected control point handles, shown
in yellow, form a tangent around the
keyframe.

Here, a straight line between control points
would not pass through the keyframe;
hence the tangent is broken.

Breakdowns within the Curve Editor maintain the relative time between the keyframe before and the
keyframe after.

Keyframes have been placed on frames 30,
50, and 70. The middle keyframe, on frame
50, has been converted into a breakdown.

Moving the third keyframe from frame 70 to
frame 60, automatically moves the
breakdown to frame 45.

|

USER GUIDE
158

Keyframes, breakdowns, segment functions, and tangents all combine to create a curve that represents how
a value changes over time. A curve is plotted on a graph within the Curve Editor tab with time (in frames)
along the x axis and the parameter’s value plotted on the y axis. When a parameter uses a curve, its
background color within the Parameter tab changes to green. Light green signifies that the parameter has a
keyframe at the current frame; a dark green parameter signifies that the value is interpolated.

A bright green parameter signifies a
keyframe on the current frame.

A dark green parameter signifies the value
for the current frame is interpolated.

Setting Keys
You can set keys either manually or Katana can automatically set a key every time you change the parameter
value. To have Katana automatically create keys when you enter a new value, you need to turn on Auto Key
mode for that parameter.

Toggling Auto Key

While a parameter has the Auto Key icon highlighted , entering a value in the parameter field creates a
new keyframe at the current frame.

To toggle Auto Key mode:
• Right-click on the parameter to toggle and select Auto Key.

OR

• Click the Auto Key icon, / , next to the parameter.

Setting Keys Manually
To set a key manually:
1. Move the Timeline to the correct frame.
2. Set the parameter to the desired value.

|

USER GUIDE
159

3. Right-click the parameter and select Key. If a key has not been set on the parameter before, select
Curve. Selecting Curve not only sets a key, it also converts that parameter from a Constant or
Expression to a Curve.

Note: You can also set keys within the Curve Editor tab using Insert mode, as well as converting
an interpolated value into a key. See Setting Keys and Baking a Segment of the Curve for more
information.

Baking a Curve

Whether from an expression or a keyframed curve, you can convert part or all of a curve to keyframes.

Generating Keyframes from a Curve or Expression
1. Right-click on the parameter.
2. Select Bake to FCurve... .

The Bake to Curve dialog displays.

3. Change the dialog values to suit the curve you are creating. You can change the:
• startFrame - the frame to start generating keys.
• endFrame - the last frame to generate a key.
• interval - how often to generate a key (in frames).

4. Click Bake.
The parameter changes from an expression to a curve and keys are generated from startFrame to
endFrame.
All the newly generated keys are assigned the linear segment function.

|

USER GUIDE
160

The expression abs(sin(frame*pi/40))
displayed in the Curve Editor.

The baked curve with a startFrame of 0, endFrame of
80, and an interval of 10.

Note: Although most commonly used with expressions, Bake to FCurve... can be used to
automatically generate keyframes for any type of parameter, whether it’s an expression, a constant,
or already a curve.

Exporting and Importing a Curve

Curves can be exported and imported.

To export a curve:
1. Right-click on the parameter to export.
2. Select Export FCurve... .

To import a curve:
1. Right-click on the parameter to change.
2. Select Import FCurve... .

Displaying Keyframes

You can use the Curve Editor tab, Dope Sheet tab, and Timeline to view and manipulate keyframes. They
only show a parameter’s keyframes if the parameter has the Show Curve icon highlighted.

To toggle the Show Curve icon:
1. Right-click on the parameter.
2. Select the Show Curve menu item.

OR

Click or to the left of the parameter input field.

|

USER GUIDE
161

Curve Editor Overview
The Curve Editor is the heart of animating within Katana. Here you can move keyframes; change their
segment function, tangents and weights; set breakdowns; and make any curve manipulations necessary to
get the curve you need.

The Curve Editor is split into three areas:
1. The left-hand side is a hierarchical view of all parameters with Show Curve enabled.
2. The right-hand side shows these parameter values plotted over time. The parameter value range is on

the left and the time frame across the bottom. This area is referred to as the Curve Editor graph.
3. The bottom of the Curve Editor has a toolbar containing ways to manipulate the keyframes.

Tip: Although the Curve Editor is primarily for manipulating curves, it can also be used to view the
results of an Expression. To view an Expression in the Curve Editor, enable Show Curve for the
Expression parameter.

Using the Hierarchical View

On the left of the Curve Editor is a hierarchical view of the curves and expressions that have Show Curve
enabled. You can use this view to expand and collapse the parameters, lock the curves against editing, and
toggle the curves that are shown in the Curve Editor graph.

|

USER GUIDE
162

Expanding or Collapsing a Curve

Double-click on the part of the parameter name to expand or collapse.

OR

Click to expand or to collapse.

Note: Collapsing a parameter in the hierarchical view only changes whether its children are
displayed in the hierarchical view. Its only use is to keep the hierarchy more manageable.

Selecting a Curve in the Hierarchical View

Click on a parameter name to select its curve - it must be the leaf name as that corresponds to the actual
parameter.

Tip: You can select more than one parameter by Ctrl+clicking further parameters and
Shift+clicking to select all the parameters from your last selection to where you click.

Locking or Hiding a Curve

You can lock a parameter to stop its curve from being editable within the Curve Editor.

To locking a parameter and stop it from being editable within the Curve Editor, click within the

hierarchical view in the Curve Editor. If you then want to unlock the parameter again, click .

Note: Parameters that are expressions are always locked and cannot be modified within the Curve
Editor.

Even though a parameter has Show Curve selected, you may not want to display it within the Curve Editor
graph.

To hide a parameter curve within the Curve Editor, click within the hierarchical view in the Curve Editor.

If you then want to show the parameter curve again, click within the hierarchical view in the Curve
Editor.

|

USER GUIDE
163

Switching the Display of a Parameter’s Children

When only some of the children of a parameter are shown, is displayed.

To switch the display state of the children of a parameter name, click within the hierarchical view in the
Curve Editor.

By clicking the two child curves have changed their display states - one becoming hidden and the other
visible.

Setting Keys

You can set keys quickly and easily within the Curve Editor with the insert mode. The insert mode enables
you to click on the graph at any point and insert a new key at that position.

To insert keys with insert mode:
1. Select the curve for the new keys.
2. Press the Insert key.

|

USER GUIDE
164

This puts you into insert mode.
3. Click a point on the graph to insert a new key at that position.
4. Repeat step 3 to insert as many keys as required.

Select a different curve within the hierarchical view to insert keys on that curve.
5. To finish adding keys and disable insert mode, press Insert again.

Selecting and Moving Keyframes

You can selecting keyframes by clicking on them or by marquee dragging over them. If you want to select all
keyframes for a curve, double click the curve. To add a keyframe to the current selection, hold Shift while
selecting the keyframe(s). If you want to remove that keyframe again, or any keyframe in the selection, hold
Ctrl while selecting the keyframe(s).

You have two ways to move keyframes within the Curve Editor: using the mouse or using the X and Y input
fields.

To move keyframes using the mouse:
1. Select the keyframe(s) you want to move.
2. Click-and-drag one of the selected keyframes.

To move a single keyframe using the input fields:
1. Select the keyframe you want to move.
2. Make any changes in the input fields below the graph:

• Enter a new frame number in the X input field.
• Enter a new value in the Y input field.

The values entered into X and Y are absolute and not relative. For instance, entering 10 in the X input field,
moves the keyframe to frame 10.

To move multiple keyframes using the input fields:
1. Select the keyframes you want to move.

|

USER GUIDE
165

2. Make any changes in the input fields below the graph. All changes are relative, for instance 3 would add
3 to the current value or frame number and -3 would subtract 3 from the current value or frame number:
• Enter a relative frame number in the X+ input field.
• Enter a relative value in the Y+ input field.

Changing the Display Range and Display Elements

Katana provides a number of ways to change the frame range and parameter value range in the Curve Editor
graph.

Action Description

Panning

Panning in the graph Middle-click and drag within the graph area.

Panning in a single axis Shift+middle-click and drag within the graph area.

Zooming

Zooming in or out Use the scroll wheel to scroll up (zoom in) and down (zoom out). Alternatively,
press the + (Plus) key to zoom in or press the - (Minus) key to zoom out.

Framing

Framing all keyframes in
the graph

Right-click and select Frame > All > Frame All (or press A).

Framing all keyframes in
the graph in the X axis

Right-click and select Frame > All > Frame All X Only.

Framing all keyframes in
the graph in the Y axis

Right-click and select Frame > All > Frame All Y Only.

Framing the selected
keyframes

Right-click and select Frame > Frame (or press F). Alternatively, right-click and
select Frame > Selected > Frame Selected.

Framing the selected Right-click and select Frame > Selected > Frame Selected X Only.

|

USER GUIDE
166

Action Description

keyframes in the X axis

Framing the selected
keyframes in the Y axis

Right-click and select Frame > Selected > Frame Selected Y Only.

You can display other information in conjunction with the parameter curves. Additional elements that can be
displayed include: a domain slider to show the value on a curve for a given time; a curves velocity and
acceleration; and a label to identify which curve corresponds to which parameter.

Displaying the Domain Slider

To toggle the display of the Domain Slider, right-click and select Show > Domain Slider (or press D). The
Domain Slider, the orange vertical bar, can be moved left and right across the frame range to display the
value for the highlighted curve at a particular frame.

Displaying a Velocity Curve

You can use a velocity curve for a parameter to help you spot non-tangential keyframes; these are
characterized by breaks in the velocity curve. Non-tangential keyframes can be jarring when making realistic
movement through animation. The velocity curve is calculated by analyzing the changes in the y axis of the
curve at small increments along the x axis.

|

USER GUIDE
167

The purple velocity curve is broken (not continuous) at frame 40, as is the highlighted tangent.

To toggle the display of a curve’s velocity:
1. Select the curve(s) within the hierarchical view.
2. Right-click an empty part of the graph and select Show > Velocity.

The velocity curve is shown in lavender.

Displaying an Acceleration Curve

You can use the acceleration of a curve to provide a useful insight into the forces that act on that curve. For
instance, an object whose only force is gravity should have a horizontal acceleration curve (assuming it
doesn’t hit anything).

Between frames 0 and 5, the acceleration curve shows a consistent force is acting on the parameter (the
acceleration curve is straight).

To toggle the display of a curve’s acceleration:
1. Select the curve(s) within the hierarchical view.

|

USER GUIDE
168

2. Right-click anywhere on the graph and select Show > Acceleration.
The acceleration curve is shown in pink.

Displaying Curve Labels

To toggle the display of curve labels, right-click and select Show > Heads Up Labels (or press H). The curve
label, based on the parameter name, sits just above the curve on the left-hand side.

Snapping Keyframes

When moving keyframes within the Curve Editor tab, you can snap their values in place. Snapping to the X
axis affects the frame number and snapping to the Y axis affects the parameter’s value.

You can snap the frame number of a keyframe while moving it in the Curve Editor tab in two ways:
• Right-click and select Grid Snapping > X Snap to Integers.

Katana snaps keyframe changes to whole frame numbers.
• Right-click and select Grid Snapping > X Snap to Grid.

Katana snaps keyframe changes to the vertical grid lines.

Note: Selecting either of these menu options does not change the current Y axis snap settings.

To snap only a keyframe’s value while moving it in the Curve Editor tab, right-click and select Grid
Snapping > Y Snap to Grid. Katana snaps value changes to the horizontal grid lines.

If you want to turn off keyframe snapping altogether,
• Right-click and select Grid Snapping > X Snapping Off.

|

USER GUIDE
169

Katana no longer snaps keyframe changes in the x axis.
• Right-click and select Grid Snapping > Y Snapping Off.

Katana no longer snaps keyframe changes in the y axis.
• Select off from the dropdown menu to the right of the Reset Tangents button at the bottom of the Curve

Editor.

Katana no longer snaps keyframe changes in any direction.

Katana also comes with some pre-defined snapping options in a dropdown menu to the right of the Reset
Tangents button at the bottom of the Curve Editor. These are:
• off - Katana no longer snaps keyframe changes in any direction.
• frames - Katana snaps the x axis to whole frame numbers but does not snap the keys in the y axis.
• grid - Katana snaps the keyframes to grid intersection points.
• custom - the last snap setting you selected that does not match frames, grid, or off. (This option only

becomes available once you have made a snap setting change that does not match frames, grid, or off.)

Tip: To cycling through the preset snapping options (Off, Frames, Grid, and Custom), right-click
and select Grid Snapping > Cycle Snapping (or press S).

Locking and Deleting Keyframes

To locking keyframes in order to prevent accidental editing:
1. Select the keyframes to lock.
2. Right-click and select Keyframe > Lock.

Katana locks the keyframes and turns them orange.

|

USER GUIDE
170

Note: Locking a keyframe only applies to inside the Curve Editor tab.

To unlock keyframes again:
1. Select the keyframes to unlock.
2. Right-click and select Keyframe > Unlock.

Katana unlocks the keyframes and turns them yellow.

If you want to delete keyframes:
1. Select the keyframes to delete.
2. Right-click and select Keyframe > Delete (or press Delete).

Turning a Keyframe into a Breakdown

Katana supports a special kind of keyframe known as a breakdown. Breakdowns help you describe the
motion between two keyframes by providing an intermediate value. Breakdowns maintain the same relative
time with the keyframes either side, this helps maintain timing. For instance, with keyframes on frames 0 and
60 and a breakdown on frame 20, moving the keyframe on frame 60 to frame 30 would automatically move
the breakdown to frame 10, thereby maintaining the 1:2 ratio of frames before and after. If a breakdown falls
at the beginning or end of a curve, then moving the keyframe next to it moves the breakdown.

|

USER GUIDE
171

When the keyframe on frame 60 is moved to frame 30, the
breakdown on frame 20 automatically moves to frame 10.

To convert a keyframe into a breakdown:
1. Select the keyframe(s) to convert.
2. Right-click and select Keyframe > Breakdown.

Tip: To change a breakdown back to a keyframe, repeat the steps above.

Note: Breakdowns are only different to keyframes while within the Curve Editor. Elsewhere, such
as within the Dope Sheet, breakdowns are treated as normal keyframes.

Segment Functions

Katana interpolates the values between one keyframe and the next based on the segment function assigned
to the first of the two keyframes. Three special segment functions can also be assigned to the segment
before the first keyframe or after the last: cycle(), cycle_offset(), and mirror().

To change the segment function for either a keyframe or for the segment at the beginning or end of a curve
1. Select the keyframe(s) or segment to change (to select a segment click on it).
2. Then, either:

• Right-click and select Segment Type >
OR

• Select the segment function from the dropdown menu in the bottom-right corner of the Curve Editor.

|

USER GUIDE
172

Available Segment Functions

The following are a list of available segment functions:
• bezier()

The bezier segment function is the most versatile. It uses four points - the keyframes at the start and end,
and two control points - to define the segment. The control point position is shown with an arrowhead. The
weight of a control point, which determines how strong its influence is over the generated curve, is
determined by the length of the handle.

• constant()

The constant segment function uses the keyframe’s value for the entire segment.

• constant_next()

The constant_next segment function uses the next keyframe’s value for the entire segment.

|

USER GUIDE
173

• ease()

The ease segment function flattens out the segment at its beginning and end. This is similar to having flat
tangents on the two control points when using bezier curves.

• easein()

The easein segment function starts the segment flat and then maintains the same acceleration until it
reaches the next keyframe. This results in the velocity curve for the segment being a straight line that starts
at zero.

• easeout()

The easeout segment function finishes the segment flat while maintaining a constant acceleration
throughout the segment. This results in both the velocity curve for the segment being a straight line that
ends at zero.

|

USER GUIDE
174

• linear()

The default segment function. The values from one keyframe move in a straight line to the next keyframe.

• match()

The match segment function gives the segment the same velocity (rate of change) at both the start and
end of the segment.

• matchin()

A segment with the matchin segment function begins with a velocity that matches that at the end of the
previous segment, the segment ends with zero velocity. This has the effect of making the tangent at the
start match the slope of the previous segment and the tangent at the end flat.

|

USER GUIDE
175

• matchout()

A segment with the matchout segment function begins with zero velocity and ends with a velocity that
matches that at the beginning of the next segment. This has the effect of making the tangent at the start
flat and the tangent at the end match the slope of the next segment.

• spline()

The spline segment function uses the Catmull-Rom spline function that uses four keyframes to calculate
the value at a given frame. As the frame approaches a keyframe, the curve tends towards the value at the
keyframe, eventually passing through it.

Available Extrapolation Functions

Extrapolation functions are used to extend the behavior of a curve before the first keyframe and after the
final keyframe. The available options are:

|

USER GUIDE
176

• cycle()

The cycle extrapolation function repeats the curve an infinite number of times either before (if applied to the
segment before the first keyframe) or after (if applied to the segment after the last keyframe).

• cycle_offset()

The cycle_offset segment function only works on the segments at the start or end of a curve. It should not
be used on a keyframe. It repeats the curve an infinite number of times; each time the curve repeats the
new beginning keyframe starts from the end keyframe from the previous cycle, thus offsetting the curve.

• mirror()

The mirror segment function only works on the segments at the start and end of a curve. It continuously
flips the curve vertically.

|

USER GUIDE
177

Tip: It is also possible for you to type your own segment or extrapolation function in the
dropdown menu. The function must use Python syntax:
x() can be used to represent the current frame. For instance, sin(x()*pi/20).

Changing the Control Points of a Bezier Segment Function

Of all the segment functions, the bezier is the most versatile. With the addition of two control points, you
have much finer control over how the curve flows between keyframes.

When you change the segment function at a keyframe, you change how the curve is interpolated from that
keyframe to the next. When you change the tangent at a keyframe, you affect the control points that sit
either side of that keyframe.

The range of any changes to the
segment function.

The control points influenced by
tangent changes.

To change the tangent type at a keyframe:
1. Select the keyframe(s) to change the control points.
2. Right-click and select Tangent > Type >

To changing between weighted and non-weighted tangents:
1. Select the keyframes whose tangents you want to change.
2. Right-click and select Tangent > Weighted.

Katana toggles the tangent between weighted and non-weighted.

With a non-weighted tangent using the manipulator only changes the angle of the control point. Weighted
tangents enable you to change the amount of influence a control point has over the segment function by

|

USER GUIDE
178

changing the distance from the keyframe to the end of the tangent. The bigger the distance, the more
influence the control point has.

Available Tangent Types

The following are a list of tangent types:
• Fixed

The Fixed tangent type doesn’t change the current control points but they no longer update as keyframes
around them are moved. This becomes the tangent type once any tangent has been manually moved.

• Flat

The Flat tangent type makes the control points sit horizontally either side of the keyframe. All the
keyframes are using the Flat tangent type.

• Linear

The Linear tangent type places the control point directly in line with the keyframe that acts as the other
anchor point for the segment. If both control points for a bezier segment are linear, the segment is a
straight line from one keyframe to the next. The first and middle keyframes use the linear tangent, the right
keyframe does not.

• Smooth

The Smooth tangent type places the control points either side of a keyframe forming a line that runs
parallel to a line formed by the keyframes either side. The line formed by the control points remains parallel
to the line created by the keyframes.

|

USER GUIDE
179

• Smooth Normal

The Smooth Normal tangent type places the two control points vertically in line with the keyframe.
Whichever keyframe is higher between the keyframes to the left and right, controls the direction of the
curve. Should the keyframes to the left and right be equal, both control points are placed vertically below.

With the right keyframe above the left,
the curve goes down through the

middle keyframe.

With the right keyframe below the left,
the curve goes up through the middle

keyframe.

• Plateau

The Plateau tangent type uses the Flat and Smooth tangent types depending on its keyframes location
relative to the keyframes on either side. If the keyframes on either side are both above or both below the
tangent’s keyframe, then the Flat tangent type is used. If the tangent’s keyframe falls between the values
for the keyframes on either side, then the Smooth tangent type is used. When using the Smooth tangent
type, if one of the control points for the tangent would fall outside the range between the keyframes on
either side, then that control point converts to the Flat tangent type instead.

|

USER GUIDE
180

Here the Plateau tangent type uses the same
algorithm as the Flat tangent type.

Once again the Flat tangent type is
used.

Here the Plateau tangent type uses the
same algorithm as the Smooth tangent

type.

As the lower control point would drop
below the keyframe to the right, that

control point becomes Flat.

Baking a Segment of the Curve

Baking a segment of the curve converts the interpolated values at each frame of the segment into keyframes.

To bake a segment of the curve:
1. Select the keyframe at the start of the segment.
2. Right-click and select Transform > Bake.

Tip: Multiple segments can be baked at once by selecting multiple keyframes.

|

USER GUIDE
181

Editing Curves and Curve Segments

Smoothing a Segment of the Curve
Smoothing a segment of the curve makes the curve flatter - reducing its peaks and troughs.

To smooth a segment of the curve:
1. Select the keyframe at the start of the segment you want to smooth.
2. Right-click and select Transform > Smooth... .

The Smooth dialog displays.

3. Change the values within the dialog where appropriate:
• Step Size - how often to create a keyframe.
• Radius - how much to smooth the curve (higher values for smoother, lower values for closer to

original).
• Filter - which algorithm to use, Triangle or Box.

4. Click Apply to smooth the curve.

Note: For the best results, smooth multiple segments at once by selecting a number of keyframes
together.

|

USER GUIDE
182

Smoothing with the default settings:
Step Size 4, Radius 2, and Triangle
Filter (the original curve is ghosted

out).

Smoothing with Step Size 2 and
Radius 4.

Step Size 5 and Radius 2. Step Size 4 and Radius 4.

Flipping the Curve Horizontally or Vertically
You can flip a curve either horizontally or vertically.

To flip a curve horizontally or vertically:
1. Select a curve or a curve’s keyframe.
2. Right-click and select Transform > Flip... .

The Flip dialog displays.

3. Select whether you want to flip the curve horizontally or vertically or both:
• Horizontal (press Alt+H) - flips the curve horizontally.
• Vertical (press Alt+V) - flips the curve vertically.
• Center (press Alt+C) - the point at which to flip the curve (if a keyframe is selected it defaults to that

keyframe position).
4. Click Apply to flip the curve.

|

USER GUIDE
183

Scaling and Offsetting a Curve
Katana gives you the ability to scale or offset a curve.

To scale or offset a curve:
1. Select the curve or a curve’s keyframe.
2. Right-click and select Transform > Scale & Offset... .

The Scale & Offset dialog displays.

3. Change the values within the dialog to get the desired effect:
• Scale (press Alt+S) - scales in either the x direction (changing timing) or y direction (changing the

parameter value). Negative values reflect the curve about the values entered in the Pivot fields.
• Pivot (press Alt+P) - the point about which to scale (if a keyframe is selected it defaults to that

keyframe position).
• Offset (press Alt+O) - moves the curve in the direction of the offset.

4. Click Apply to effect the curve.

Dope Sheet Overview
In the Dope Sheet, you can manipulate keyframes by either retiming (sliding them left or right) or copy and
pasting. The Dope Sheet’s simple interface makes it easy for you to see keyframe timings across multiple
parameters, whereas the Curve Editor can become cluttered when dealing with more than one curve.

|

USER GUIDE
184

The numbered list that follows corresponds to those numbers in the image above:
1. The Dope Sheet has a hierarchical view down the left-hand side.
2. The main area has time (in frames) across the top and blocks (to signify keyframes) at the intersection of

their parameter on the left-hand side and their frame number above.

Note: Within the Dope Sheet breakdowns are treated as normal keyframes - this means they do
not move automatically when the keyframes either side are moved.

Changing the Displayed Frame Range

There are multiple ways for you to change the frame range displayed within the Dope Sheet. You can:
• Scroll the mouse-wheel; to zoom in scroll up and to zoom out scroll down.
• Alt+middle-click and drag.
• Press the + (Plus) key to zoom in or the - (Minus) key to zoom out.
• Right-click and select Frame All (or press A) to have the frame range zoom to fit all the keyframes.
• Right-click and select Frame Selected (or press F) to have the frame range zoom to fit only the selected

keyframes.
• Right-click and select Frame Global In/Out (or press Home) to have the frame range go from the project

settings’ inTime to the project settings’ outTime.
• Right-click and select Frame Working In/Out (or press W) to have the frame range go from In to Out

from the Timeline.

|

USER GUIDE
185

To pan the displayed frame range within the Dope Sheet, middle-click and drag.

Using Keyframes

Selecting Keyframes
The Dope Sheet has standard controls for selecting single or multiple keyframes.

To select a keyframe, click on it or drag a marquee around it. To select multiple keyframes, drag a marquee
around all the keyframes you want to select, or right-click and choose Select All from the menu (or press
Ctrl+A) to select all visible keyframes.

You can add to a selection at any time by clicking, or dragging a marquee over the keyframe(s), while
holding the Shift key. If you want to remove from a selection, click it, or drag a marquee over the keyframe(s)
while holding the Ctrl key.

To move keyframe(s):
1. Select the keyframe(s) to move.
2. Click on one of the selected keyframe(s) and drag left or right.

At times you may want to convert an interpolated value into a keyframe; you can achieve this by right-
clicking at the intersection of the frame and parameter (this is where the keyframe block displays) and
selecting Set Key. A new keyframe is created with the same value as previously interpolated at that frame.

Copy and Pasting Keyframes
The Dope Sheet provides the simplest method for copying and pasting keyframes.
1. Select the keyframe(s) to copy.
2. Right-click and select Copy Selected Key(s) (or press Ctrl+C).
3. Right-click and select Paste Key.

If you right-click on an empty part of the Dope Sheet, the keyframe(s) are inserted in the same
parameter from which it was copied at the point shown by a ghosted vertical line. If you right-click
horizontally in line with a parameter, the keyframe(s) are added there. The precise positions are
highlighted when you first right-click.
Alternatively, if you are using the Timeline, move the current frame to where you want to insert the new
keyframe(s) and press Ctrl+V.

|

USER GUIDE
186

Deleting Keyframes
To delete keyframe(s):
1. Select the keyframe(s) to delete.
2. Right-click and select Delete Selected Key(s) (or press Del).

Tip: When creating, copying, or deleting keyframes within the Dope Sheet, it is a good idea to
keep checking the new curve within the Curve Editor to make sure the curve segments are
interpolated using the right segment function.

Toggling Tooltip Display

To toggle tooltip display, right-click and select Show Tool Tips (or press H). The value, parameter name, and
frame number for the keyframe display.

|

USER GUIDE

Using the Timeline
Katana's timeline allows you to move from one frame to another and view keyframes over the frame range.

Changing the Current Frame

To change frames in Katana, you can:
• Press the Right Arrow key to increment the current frame by Inc, or Left Arrow key to decrement.

• Click to increment the current frame by Inc, or to decrement.

• Click on the timeline at the relevant frame.
• Type the frame number in the field marked Cur.
• Press Ctrl+Right Arrow to jump to the next keyframe, or Ctrl+Left Arrow to jump back to the previous.

• Click to jump to the next keyframe, or to jump back to the previous.

Panning the Frame Range

To pan the current frame range, you can:
• Drag the timeline with the middle mouse button, or
• Drag the scroll bar directly under the time range.

Zooming the Frame Range

To zoom into/out of an area of the frame range, you can:
• Ctrl+drag to select an area of the frame range, then upon release of the mouse button the timeline zooms

to that range.
• Scroll up with the mouse wheel over a frame to zoom in at that point, or scroll down to zoom out.
• Press the + key to zoom in, or the - key to zoom out.

• Click to set the range from inTime to outTime in the Project Settings tab.

• Press the Home key to set the range from inTime to outTime in the Project Settings tab.
• Press the F key to set the range to fit all keyframes on the timeline.

187

USER GUIDE
188

Changing the Frame Range In and Out Points

To change the frame range in and out points, you can:
• Press the [key to set the in point to the current frame, or press the] key to set the out point.
• Type the in frame number into the In field on the timeline, or type the out frame number in the Out field.

|

USER GUIDE

Using the Scene Graph
The scene graph is a hierarchical structure that represents the scene generated by stepping through the
recipe up to the node in the Node Graph with the blue square. The node with the blue square is sometimes

referred to as the view node, this is because the scene graph is just a view of the 3D scene generated up to
that node.

The information within the Scene Graph tab contains (but is not limited to) geometry, materials, lights,
cameras, and render settings. Each node within the Node Graph tab describes a step within the recipe,
which adds, deletes, or modifies scene graph locations or scene graph data. Scene graph data is stored as
attributes on locations.

Scene Graph Terminology

The selected location has a path of /root/materials.
• Parent - the location /root is the parent of /root/materials.
• Child - the location /root/materials/Material is a child of /root/materials.
• Sibling - the location /root/world is a sibling of /root/materials.
• Leaf - the location /root/world/geo/primitive is a leaf location. A leaf is a location with no children.
• Branch - the locations /root/world and /root/materials are two branches from /root.

Locations within Katana have a special attribute called type. This attribute tells Katana what type of
information to expect at that location. In the example above, there are five group locations and one
geometry material location.

189

USER GUIDE
190

Viewing the Scene Graph
You can view the scene graph generated at any node within the Node Graph. This shows the 3D scene
generated by the recipe up to that point. To view the scene graph at a particular node:
1. Select the node in the Node Graph.
2. In the Node Graph, select Edit > View Selected Node.

OR
1. Hover the mouse over the node.
2. Press the V key.

OR

Click within the faint square to the left of the node.

Note: A blue square highlights the current node in the Node Graph tab, from which the scene
graph is generated. This node is known as the view node. If the node moves off the screen, or is
hidden within another node, its location is indicated by a small blue triangle.

Navigating the Scene Graph History
Katana keeps a history of the view node that can be traversed. To go back and forward through the history,
use the icons in the upper-left area of the Scene Graph tab.

Viewing a Location’s Attributes
To view the attributes stored at a location within the scene graph, select the location within the Scene Graph
tab and the attributes display in the Attributes tab. The Attributes tab is read-only.

Using the Scene Graph |

USER GUIDE
191

Turning on Implicit Resolvers
Katana defers some procedures, such as a material copy, until they are needed by the renderer. This
deferring has a number of positive results:
• It speeds up the initial scene graph generation.
• You can keep everything at a higher level making it easier to edit and override. For instance, you can

change what material is at a given location rather than having to edit or override all the individual shader
values.

Some examples of procedures that are deferred are:
• The copying of all the material details to a location.
• The copying of all the texture details to a location.

These deferred procedures are also known as implicit resolvers. To turn on implicit resolvers click .

The Process of Generating Scene
Graph Data
As mentioned earlier, the real core of Katana is that what we want to render is described by a tree of filters,
and that these filters are designed to be evaluated on demand. We're now going to look in a bit more detail
at how Katana generates scene graph data.

The main interface that users have is the Node Graph tab. They create a network of nodes to specify things
like Alembic files to bring in; create materials and cameras; set edits and overrides; and they can create
multiple render outputs in a single project. The parameters for nodes can be animated, set using
expressions, and manipulated in the Curve Editor and Dope Sheet views. The Node Graph can have
multiple outputs and even separate disconnected parts, and it has potentially different parameter settings at
any time on the timeline.

When we want to evaluate scene data, such as when doing a render or inspecting values in the UI, the nodes
are used to create a description of all the filters that are needed. This filter tree has a single root, and
represents the recipe of filters needed to create the scene graph data for the current frame at the particular
node we are using for output.

Using the Scene Graph | The Process of Generating Scene Graph Data

USER GUIDE
192

It is this filter tree description that is handed to output processes such as 3Delight or Renderman. For the
geekily inclined: this is actually done by handing a serialized description of the filter tree as a parameter to
the output process, for example, a string parameter to a render procedural.

The actual generation of scene graph data is done by using this description of the filters to create scene
graph iterators. These are then used to walk the scene graph and access attribute values at any desired
locations in the Scene Graph tab. This approach of using iterators is the key to Katana's scalability and how
all scene graph data can be generated on demand.

Using the filter tree, the first base iterator at /root is created. This can be interrogated to get:
• A list of the named attributes at that location.
• The value of any particular named attribute or group of attributes. For animated values there may be

multiple time samples, with any sample relevant to the shutter interval being returned.
• New iterators for child and sibling locations to walk the hierarchy.

This process is also used inside the UI to inspect scene graph data when using the Scene Graph, Attributes
and Viewer tabs. In the UI, the same filters and libraries that are used while rendering are called as the user
expands the scene graph and inspects the results. This allows the user to inspect the scene graph data that is
generated at any node for the current frame. TD's can use the UI as an IDE for setting up filters in a visual
programming approach, and then running those filters to see how they affect the generated scene graph
data.

The APIs are covered in more detail later, but the main API to create and modify the node graph is the
Python NodegraphAPI, and the main one to create new filters is the C++ Scene Graph Generator API.

Manipulating the Scene Graph
Katana's Scene Graph tab is designed to work with scenes of almost unlimited complexity by only displaying
the elements of the scene graph that are needed. By default the scene graph starts with its locations
collapsed, so only /root is visible.

Selecting and Deselecting Locations
To select multiple scene graph locations:
1. Select the first location.
2. Shift+click a second location.

Katana selects both locations and all in-between locations that are visible within the scene graph.

Using the Scene Graph | Manipulating the Scene Graph

USER GUIDE
193

OR
1. Select the first location.
2. Ctrl+click the locations to add.

To select the parent of the selected location(s):
1. Right-click on the selected location(s).
2. Select Select > Select Parents.

To select the children of the selected location(s):
1. Right-click on the selected location(s).
2. Select Select > Select Children.

To select the leaves of the selected location(s):
1. Right-click on the selected location(s).
2. Select Select > Select Visible Leaves.

To invert the selection with its siblings:
1. Right-click on the selected location(s).
2. Select Select > Invert Selection.

To select the material location assigned to the currently selected location:
1. Select a location with a materialAssign attribute.
2. Right-click on the selected location.
3. Select Select > Select Assigned Material Location.

Katana selects the location of the material that is assigned at this location. That material location is
stored in the materialAssign attribute.

To deselect a location, Ctrl+click on the location.

Using the Scene Graph | Manipulating the Scene Graph

USER GUIDE
194

Selecting Locations with the Search Facility
Katana scene graphs can get extremely complicated. To make it easy to find the location you need, Katana
has a search facility.

To use the search facility:

1. Click to bring up the search dialog.

2. To narrow the search results you can:
• Select the type of locations to search for in the dropdown at the top of the dialog (Selected, Pinned,

Cameras, Lights, and All), or
• Type text in the Filter field to narrow the search to only include locations with matching text.
• Search for nodes by their Name or Type by switching between the two options in the dropdown next

to Filter.
3. To select a location, select its path within the dialog.

OR
To select all the locations displayed in the dialog, click Select All Matching.

Note: Only locations that are exposed within the scene graph are searched.

The Type filter also filters nodes by their nodeType. When dealing with renderer-specific nodes, such as
Shading Nodes, the node’s Type may not be the same as its NodeType. For example, the Type for a
DlPrincipled Node is DlShadingNode, while its nodeType is dlPrincipled. The Type parameter defines the
node as being a 3Delight node, while the nodeType defines what the node’s function is within a shading
network. Seeing a node’s nodeType allows you to quickly see which Shading Nodes are present in your
shading network and how they may be contributing. This applies to any shading nodes belonging to third
party render vendors such as Arnold, USD or RenderMan.

Expanding the Scene Graph
To expand the Scene Graph completely below a location:
1. Right-click on the location to expand.
2. Select Expand All.

Using the Scene Graph | Manipulating the Scene Graph

USER GUIDE
195

Warning: Use with caution on big scenes as it can be time consuming to expand the entire scene
graph.

Assemblies, components, and lod-group (level of detail group) locations are special locations designed to
help organize complicated scene graphs. They are explained in greater depth at Making Use of Different
Location Types and Proxies.

To expand the Scene Graph to a limited level:
1. Right-click on the location to expand.
2. Select the level of the scene graph to expose:

• Expand To > assembly, component or lod-group
Expands the scene graph from the selected location until it reaches either an assembly, component, or
lod-group location. If none are found down a scene graph branch, it expands to the leaf location. This
is the same as double-clicking a scene graph location.

• Expand To > component
Expands the scene graph until it reaches a component location. If none are found down a scene graph
branch, it expands to the leaf location.

• Expand To > assembly
Expands the scene graph until it reaches an assembly location. If none are found down a scene graph
branch, it expands to the leaf location.

• Expand To > lod-group
Expands the scene graph until it reaches an lod-group location. If none are found down a scene graph
branch, it expands to the leaf location.

• Expand To > Viewer Visibility
Expands the scene graph until it reaches a Viewer Visibility working set location with a non-empty
state.

• Expand To > Render
Expands the scene graph until it reaches a Render working working set location with a non-empty
state.

• Expand To > Live Render Updates
Expands the scene graph until it reaches a Live Render Updates working set location with a non-empty
state.

Using the Scene Graph | Manipulating the Scene Graph

USER GUIDE
196

Note: You can also right-click on a location and select Expand To and Select Proxy Children to
reveal scene graph locations that provide proxy data.

To expand the Scene Graph location to only one level:

• Click next to the location name.

OR

1. Right-click on the location to expand.
2. Select Expansion > Open.

Collapsing the Scene Graph
To collapse a location and all its children:
1. Right-click on the location to collapse.
2. Select Close All.

To collapse a Scene Graph location:

• Click next to the location name.

OR

1. Right-click on the location to collapse.
2. Select Expansion > Close.

To collapse the Scene Graph completely:
• Right-click on /root and select Close All.

OR

• Click > Clear Scene Graph State.

This option doesn't just clear the scene graph, it also clears your selection and pins from the scene graph.

Using the Scene Graph | Manipulating the Scene Graph

USER GUIDE
197

Structured Scene Graph Data
While Katana can handle quite arbitrarily structured scene graph data, there are a number of things worth
considering both from the point of view of presenting good data to the renderer, as well as to enable users
to work with the scene graph data in the user interface.

Bounding Boxes and Good Data for
Renderers
When working with renderers that allow recursive deferred loading, the standard way that Katana works is to
expand the scene graph until it reaches locations that have bounding boxes defined, then declare a new
procedural call-back to be evaluated if the renderer asks for the data inside that box.

To make use of deferred loading these bounding boxes should be declared with assets, and nested
bounding boxes should be structured so that only what is needed has to be evaluated. For instance, if you
have a cityscape where only the top of most buildings is seen by the renderer, it is inefficient to have just a
single bounding box for the whole of each building. This is because a lot more geometry than needed is
declared to the renderer whenever the top of a building is seen.

There is an optional attribute called forceExpand that can be placed at any location to force expansion of
the hierarchy under that location rather than stopping when a bounding box is reached. This can be useful
when you know that the whole of the contents of a bounding box are going to be needed if any part of it is
requested. There are also times when it is more efficient to simply declare the whole scene graph to a
renderer than use deferred evaluation, such as if you are calculating the global illumination for a scene that
you know can fit into memory. In particular, some renderers can better optimize their spatial acceleration
structures if they have all of the geometry data in advance rather than using deferred loading.

Proxies and Good Data for Users
Since users are working with scene graph data in Katana it's also good to consider things that may help them
navigate and make sense of the scene.

Using the Scene Graph | Structured Scene Graph Data

USER GUIDE
198

The bounding boxes used by the renderer can also help provide a simplified representation in the Viewer of
the contents of a branch of the hierarchy when the user opens the scene graph to a given location.

To give an even better visualization you can register proxies at any location, which are displayed in the
Viewer but not sent to a renderer.

Ops can be used to define viewer proxies on scene graph locations. Two main attribute conventions are
currently supported:
• ViewerProxyLoader (legacy mode) - An Alembic cache can be loaded through the default

ViewerProxyLoader, setting the proxies.viewer string attribute on the target location to the path to the
relevant .abc file. You can also customize Katana to read proxies from custom data formats by creating a
Scene Graph Generator to read the relevant file format and using a plug-in for the Viewer that simply
declares which Scene Graph Generator to use for a given file extension.

• Op-based - Ops can be chained to create the geometry to be used as a proxy by adding group child
attributes to the proxies.viewer group attribute on the target location. Each child group attribute
represents an Op and its content must contain:

• a string attribute named opType defining the type of the Op to be used.
• a group attribute named opArgs containing attributes defining the Op arguments.

This proxy Op chain is always evaluated in isolation, starting at the /root location of an empty scene graph.

Here's an example of the attributes hierarchy using two Ops to generate the proxy geometry:

Location
/root/world/geo/group

Attributes:
...
proxies

viewer
proxyOp_1
opType 'AlembicIn' (StringAttribute)
opArgs

fileName '/tmp/myProxy.abc' (StringAttribute)
proxyOp_2
opType 'Messer' (StringAttribute)
opArgs

displacement 0.23 (DoubleAttribute)
...

Proxy caches are considered animated by default. If the proxy file has animation, that is used by default, but
you can also explicitly control what frame from a proxy is read using these additional attributes:
proxies.currentFrame, proxies.firstFrame, and proxies.lastFrame. Static proxy caches can be defined by
setting the proxies.static IntAttribute to 1.

Using the Scene Graph | Structured Scene Graph Data

USER GUIDE
199

To help users navigate the scene graph, group locations can be indicated as being assemblies or
components. These terms originate from Sony Pictures Imageworks where they are used to indicate
whether an asset is a building block component or an assembly of other assets. In Katana's user interface
they are simply used as indicators for locations that are good for the user to open the scene graph up to. In
the Scene Graph tab there are options to open to the next assembly, component, or level-of-detail level,
and double-clicking on a location automatically opens the scene graph to the next of these levels.

You can also right-click on a location and select Expand To and Select Proxy Children to reveal scene
graph locations that provide proxy data.

For the user it's useful if proxies or bounding boxes are at groups indicated as being assemblies or
components, so the user can open the scene graph to those levels and see a sensible representation of the
assets in the Viewer.

To turn a group location into an assembly or component the type attribute at that location simply needs to
be set to assembly or component.

In general it also helps users if the hierarchy isn't too 'flat', with groups containing a very large number of
children. Structure can help users navigate the scene graph.

Level-of-Detail Groups
Levels of Detail (LODs) is used to allow an asset to have multiple representations. Katana can then be used to
select which representation is used in a given render output.

Conventionally LODs are used to hold a number of asset versions each with a different amount of geometric
complexity, such as a high level of detail to use if the asset is close to the camera and middle and low levels
of detail if the asset is further away. By selecting an appropriate version of each asset to send to the renderer
the overall complexity of a shot can be controlled and render times managed.

In Katana, LODs can also be used to declare completely different versions of an asset for different target
outputs, such as a bounding volume representation for a volumetric renderer in addition to standard
geometrical representations, such as polygon meshes, to be used by conventional scanline renderers or ray-
tracers.

Multiple levels of detail for an asset are declared by having a level-of-detail group location that has a
number of level-of-detail child locations. Each of these child locations has metadata to determine when
that level of detail is to be used. Under each of these locations you have a separate branch of the hierarchy
that declares the actual geometry used for that LOD representation of the asset.

Using the Scene Graph | Structured Scene Graph Data

USER GUIDE
200

The most common metadata used to determine which level of detail to use are tags or weights. Tags allow
each level of detail to be given a 'tag' name with a string. Selection of which level of detail to use can be
done using this tag name, such as select the level of detail called 'high' or 'boundingVolume'.

Weights allow a floating point value to be assigned to each level of detail. Selection can then be done by
choosing the closest level of detail to a given weight value. This allows sparse population of levels of detail,
for example not every asset might have a 'medium' level of detail, but if you select them by weight then the
most appropriate LOD from whatever representations exist can be selected.

The LodSelect node can be used to select which one of the LODs to use using either tags or weight values.
This uses a CEL expression to specify the LOD groups you want to base the selection on.

Some renderers, such a Pixar's RenderMan, have features to handle multiple LODs themselves. Selection of
which LOD to use, and potential blending between the LODs as they transition, is done at render-time. This is
specified by having range data associated with each LOD that describes the range of distances from camera
to use that LOD for, and the transition range for any blending. LOD range data can be set up using the
LodGroupCreate or LodValuesAssign nodes

Alembic and Other Input Data
Formats
It is possible to bring in 3D scene data from any source. However, due to the way that filters can get called
recursively on-demand, it is best to work with formats that can be efficiently accessed in this manner. This is
one of the reasons that we recommend Alembic as being ideally suited for delivering assets to Katana.

If you want to write a custom plug-in to read in data from a new source, such as using an in-house geometry
caching format, you can write an Op Type plug-in. This is a C++ API that allows you to create new locations
in the scene graph hierarchy and set attribute values at those locations.

Working Sets
Working Sets provide a flexible way to work with particular locations and branches of a scene graph.

Using the Scene Graph | Working Sets

USER GUIDE
201

The main purpose of Working Sets is to decouple the expansion and selection states of scene graph
locations in the Scene Graph tab from what's being drawn in the Viewer tab and from what's being
rendered when rendering. Traditionally in Katana, the Viewer tab was closely linked to the Scene Graph tab.
through the ScenegraphManager Python module, which maintained a global expansion and selection
state for the whole application. The Viewer displayed geometry of locations that were expanded in the Scene
Graph tab, and you could choose a sub-set of objects to be rendered using the Render Selected Objects
Only option. The expansion and selection states were therefore critical to an artist's workflow. The main
purpose of Working Sets is to decouple the expansion and selection states of scene graph locations in the
Scene Graph tab from what's being drawn in the Viewer tab and from what's being rendered when
rendering. Working Sets also provide a reusable API for similar cases that need a definable set of target
locations in the UI.

Working Sets are intended to allow artists to inspect a scene in the Scene Graph tab by expanding and
collapsing branches at will, without incurring draw operations in the Viewer tab or render updates when Live
Rendering. Artists are to be able to add and remove scene graph locations to and from specific Working
Sets, and to use specific Working Sets in relevant UI operations.

Technically speaking, a Working Set is a set of scene graph locations for which membership is defined by a
set of location states. There are four explicit states: Included, Included with Children, Excluded, and
Excluded with Children. A scene graph location is a member of a Working Set if it is explicitly included or if
it inherits inclusion from an ancestor that is Included with Children and is not explicitly excluded and does
not inherit exclusion from an ancestor that is Excluded with Children. Working Sets are independent of the
existence of scene graph locations, and their expansion states.

Working Sets provide the ability to work with particular locations and branches of a scene graph with much
more flexibility than is afforded by scene graph expansion, pinning, and selection. For example, a Working
Set can be used to control which objects to render in Preview Renders and Live Renders. You can specify
which scene graph locations are part of that Working Set in the Render column of the Scene Graph tab.

Note: You can disable the Working Sets UI elements, including the Viewer Visibility and Render
columns in the Scene Graph tab and the corresponding buttons in the Viewer and Monitor tabs,
by setting the KATANA_DISABLE_WORKING_SETS_UI environment variable to 1.

Working Sets in Scene Graph Tab
The Scene Graph tab contains columns for defining which locations to include or exclude in specific pre-
defined Working Sets that are built into Katana:

Using the Scene Graph | Working Sets

USER GUIDE
202

Column Description

Viewer Visibility Controls which objects to show in the Viewer tab.

Render Controls which objects to render in Preview Renders and Live Renders.

Live Render Updates Controls which objects trigger updates during a Live Render.

Screenshot of the Scene Graph tab showing various location states set for various locations in
the pre-defined Working Set columns.

The states of scene graph locations in each Working Set are represented by icons in the corresponding
Working Set column. The following table lists the icons that are used and the location states they represent:

Icon Description

- Empty The location is neither explicitly included nor excluded in the Working Set,
meaning it is not part of the Working Set.

Using the Scene Graph | Working Sets

USER GUIDE
203

Icon Description

- Included The location is explicitly included in the Working Set.

- Included with Children The location and all of its children are included in the Working Set, except
those that are explicitly excluded.

- Excluded The location is explicitly excluded from the Working Set.

- Excluded with Children The location and all of its children are excluded from the Working Set,
except those that are explicitly included.

- Included by inheritance The location is included in the Working Set because one of its ancestors is
Included with Children.

- Excluded by inheritance The location is excluded from the Working Set because one of its
ancestors is Excluded with Children.

In addition to the above icons, the following icon decorations are used to indicate location states of children
and/or restrictions on the states that a location is permitted to have:

Icon Decoration Description

- Children included Children of the location are explicitly included in the Working Set.

- Children excluded Children of the location are explicitly excluded from the Working Set.

- States restricted Only certain states are allowed to be set for the location.

Interacting with Working Sets
Three pre-defined Working Sets can be manipulated through their columns in the Scene Graph tab: the
Viewer Visibility Working Set, the Render Working Set, and the Live Render Updates Working Set.

Viewer Visibility Working Set

The Viewer Visibility column allows you to interact with the Viewer Visibility Working Set that controls
the visibility of objects in the Viewer tab. When the Viewer Visibility column is turned off, the Viewer
displays locations depending on the scene graph expansion and pinned locations. When it is turned on, it
displays locations included in the Working Set. You can turn on the Viewer Visibility Working Set by clicking

Using the Scene Graph | Working Sets

USER GUIDE
204

on the Viewer Visibility icon, either in the Scene Graph or Viewer tab. You can create arbitrary
hierarchies of included and excluded scene graph branches. For example, you can include one location with
all but one of its children.

You can also directly select an object in the Viewer tab and set a Working Set location state for it. Simply
select one or more objects, then right-click and select a state from the menu.

The Viewer tab works in two modes:
• Scene graph expansion - visibility depends on scene graph expansion state and pinned locations.
• Visibility Working Set - locations included in the Visibility Working Set.

Note: While the Viewer is following the Viewer Visibility Working Set (Viewer Visibility column is
turned on), proxies and bounds are displayed only on leaf locations as defined by the Working Set,
regardless of the existence of any child locations. Such leaf locations are directly set as Included,
have no explicitly included children, and do not inherit inclusion. This allows proxy visibility to be
determined without the need to cook child locations.

Render Working Set

The Render column allows you to interact with the Render Working Set that controls which locations are
rendered in Interactive Renders. You can turn on the Render Working Set by clicking on the Render icon,
either in the Scene Graph or Monitor tab.

Note: If the Render Only Selected Objects toggle is turned on and the Render Working Set is
enabled, only locations that are both selected and contained in the Render Working Set are
rendered. For more information, refer to Rendering only Selected Locations.

Live Render Updates Working Set

The Live Render Updates column allows you to interact with the Live Render Updates Working Set that
controls for which locations updates are sent to the renderer when Live Rendering.

The /root location is always included, as Live Rendering requires updates to its attributes, notably

liveRenderSettings, to be communicated to the renderer plug-in. The small blue lock in the icon indicates
that only some of the available location states can be set for the corresponding location.

Using the Scene Graph | Working Sets

USER GUIDE
205

Note: For more information on how to use the Live Render Updates column, refer to Using the
Scene Graph.

Revealing Locations with Working Set States

You can expand the Scene Graph, through the right-click context menu, to a working set location with a non-
empty state:
1. In the Scene Graph, right-click on the location to expand.
2. Select one of the following working sets to expose:

• Expand To > Viewer Visibility
This expands the scene graph until it reaches a Viewer Visibility working set location with a non-empty
state.

• Expand To > Render
This expands the scene graph until it reaches a Render working set location with a non-empty state.

• Expand To > Live Render Updates
This expands the scene graph until it reaches a Live Render Updates working set location with a non-
empty state.

Including Proxy Children in Working Sets

In the Scene Graph, you can include locations with proxies attributes into the respective Working Set. To do
so, in the Viewer Visibility, Render, or Live Render Updates column, right-click on one or more selected
locations and select Include Proxy Children...

Saving and Restoring Working Sets States
Bookmarks can be used to save and restore Working Sets, and the currently expanded and -selected parts of
the scene graph, within a single session of Katana, and between sessions when Katana is quit and re-started.
This allows you to return quickly to a Working Set configuration or scene graph state at any time. For
example, if you want Katana to show a particular set of objects in the Viewer, or are interested in inspecting
the attributes of a specific deeply-nested location.

Note: To store the state of the Working Sets in your Katana project in a scene graph bookmark,
refer to Bookmarking a Scene Graph State and Working Sets.

Using the Scene Graph | Working Sets

USER GUIDE
206

Changing What is Shown in the
Viewer
The Viewer tab is a 3D representation of the scene currently open in the scene graph. Part of Katana’s ability
to deal with extremely complex scenes comes from it only loading scene graph data when it is needed. The
Viewer tab only shows locations that are expanded in the Scene Graph tab, as well as any pinned locations
that have been set.

Pinning can make navigating and organizing the Viewer easier by quickly showing/hiding specific locations.
Pinned items are still visible in the Viewer, even when their locations are collapsed in the Scene Graph tab.

Note: If your Viewer is empty, it probably means that no locations with geometry have been
expanded in the Scene Graph tab, and no pins have been set.

There are a couple options for pinning locations in the scene graph - you can pin selected locations or all
visible leaf locations. When a location is pinned, it appears with a blue, active pin icon next to it in the
Scene Graph tab. If a location is pinned further down in the hierarchy, but the location is hidden in the scene
graph because one of its ancestors is collapsed, then its nearest visible ancestor is shown with a gray, tilted
pin icon . This denotes that there is a child pin somewhere in the hierarchy below that location. If you
follow the "trail" of icons through the scene graph, it leads you to the exact pinned location, shown with
.

To pin a location or locations:
1. Select the location(s) you want to pin in the Scene Graph tab.
2. Right-click and select Pin > Set Local Pin.

The pin icon appears next to the selected location(s).

To pin all the visible leaves, first ensure the locations you wish to pin are expanded in the Scene Graph tab,
then:
1. Select the top-level location(s) for the leaves you want to pin.
2. Right-click and select Pin > Pin Visible Leaves.

Katana pins all the visible leaf locations below the selected location(s). The leaf locations are marked with
pin icons.

To clear selected pins:

Using the Scene Graph | ChangingWhat is Shown in the Viewer

USER GUIDE
207

1. Select the location(s) where you want to remove the pin.
2. Right-click and select Pin > Remove Local Pin.

The pin icon is removed from the selected location(s).

To clear pins below a selection:
1. Select the top-level location(s) from where you want to remove lower-level pins.

The top-level locations show the pin icon if they have pins on a lower-level location.
2. Right-click and select Pin > Clear Pins Below.

Katana removes any pins found on child locations beneath the selected location(s).

Bookmarking a Scene Graph State
and Working Sets
Bookmarks can be used to save and restore Working Sets, and the currently expanded and selected parts of
the scene graph, within a single session of Katana, and between sessions when Katana is closed and re-
opened. This allows you to return quickly to a Working Sets location state or a scene graph state at any time,
for example, if you want Katana to show a particular set of objects in the Viewer, or are interested in
inspecting the attributes of a specific deeply-nested location.

Tip: Saving a Katana project also saves its bookmarks.

Bookmarks are especially useful when rendering only selected items in the Scene Graph tab (accessible from

the Render Only Selected Objects menu bar button or pressing F7). Saving the Working Sets,
expanded state and current selections of the Scene Graph tab ensures that if you want to select a different
location or click elsewhere in the scene graph, your current locations can be easily reloaded and aren't lost.

Options for creating, managing, importing, and exporting bookmarks are all contained in the Scene Graph
Bookmarks dropdown menu in the Scene Graph tab. Alternatively, you can also clear the scene graph
state and Working Sets at any time by clicking > Clear Scene Graph State or Clear All Working Sets in
the dropdown menu.

Creating a Scene Graph Bookmark
1. Click > Create Bookmark....

Using the Scene Graph | Bookmarking a Scene Graph State andWorking Sets

USER GUIDE
208

The Create Scene Graph Bookmark dialog displays.
2. Type a bookmark name in the Bookmark name field or select Last File Save from the dropdown menu.

The Last File Save option overwrites the Last File Save bookmark of the previously saved file with the
expansion state, but not the selection state.

3. To create the bookmark within a folder, type the folder name in the Create in folder field.
4. Select the Working Sets to include within the bookmark:

• liveRenderUpdates - stores which locations are active when Live Rendering.
• render - stores which locations are rendered in Preview Rendering.
• scenegraphExpansion - stores which locations are open or closed.
• scenegraphPinning- stores which locations are pinned. For more on pins, see Changing What is

Shown in the Viewer.
• scenegraphSelection - stores which locations are selected.
• viewerVisibility - stores which objects are shown in the Viewer tab.

5. Click Save to create the bookmark.

Note: For more on Working Sets, see Working Sets in Scene Graph Tab.

Deleting Unused Bookmarks
1. Click > Organize Bookmarks....

The Organize Scene Graph Bookmarks dialog displays.
2. Right-click on the bookmark and select Delete to delete it.
3. To close the dialog again, click the x in the upper-right corner of the dialog.

The bookmark is successfully deleted and the dialog is closed.

Exporting the Project’s Bookmarks
1. Click > Export Bookmarks....

The Export Scene Graph Bookmarks dialog displays.
2. Choose a location and filename.
3. Click Accept.

A file containing all the exported bookmarks is saved.

Using the Scene Graph | Bookmarking a Scene Graph State andWorking Sets

USER GUIDE
209

Importing Previously Exported Bookmarks
1. Click > Import Bookmarks....

The Import Scene Graph Bookmarks dialog displays.
2. Navigate to where the bookmarks file is saved to import.
3. Click Accept.

The bookmarks from the file are loaded into the project and can now be found in the bookmark
dropdown.

Controlling Live Rendering in the
Scene Graph
The Scene Graph tab allows you to select which lights or materials you wish to Live Render with the Live
Render Updates column and you can also choose how to trigger a Live Render with the 3D Update
Mode.

Using the Scene Graph | Controlling Live Rendering in the Scene Graph

USER GUIDE
210

Using the Live Render Updates Column
In the Scene Graph tab, simply tick the relevant boxes in the Live Render Updates column depending on
which light and/or material changes you want to send to the renderer. For more information on the Live
Render Updates column, see Global Options.

Using the 3D Update Mode
Select how to trigger Live Rendering updates with the following options:

3D Update Mode Indicators Actions

Manual mode Changes to materials, lights, or geometry transformations don’t
trigger a Live Render update. To have the changes take effect,

click the Trigger 3D Update button .

Pen-up mode Changes to materials, lights, or geometry transformations
trigger a Live Render only when the mouse is released or a
parameter change is applied.

Continuous mode Changes to materials, lights, or geometry transformations,
including some manipulations in the Viewer tab, trigger a Live
Render.

3D node parameter values are finalized with all pending changes prior to performing a render. For more
information on the 3D Update Mode, see Global Options in Rendering Your Scene.

Making Use of Different Location
Types and Proxies
Only loading what is needed, when it is needed, is a key part of the philosophy of Katana. If you want to
position the specular highlight on your main character, for instance, you don’t need to load the entire scene.
One way to avoid unnecessary loading is to define your scene with special hierarchies and proxies.

Using the Scene Graph | Making Use of Different Location Types and Proxies

USER GUIDE
211

The hierarchical scene structure can be created using special location types. Special types that can be used
are assemblies, components, level-of-detail groups, and level-of-detail locations.

Proxies enable you to get a good idea of a scene without opening up too much of the hierarchy. Placing
proxies on assemblies and components enables you to open a hierarchy to convenient levels of scene
complexity.

Using Assemblies and Components
Assemblies and components help you define convenient points of expansion for the scene graph. They are
usually defined as part of the asset creation process, but you can also define them within Katana. An asset’s
hierarchy usually consists of an assembly and then below the assembly are other assemblies or components,
and below the components is the full geometry data.

A scene graph example containing assembly and component locations.

Using the Scene Graph | Making Use of Different Location Types and Proxies

USER GUIDE
212

A simple example of using an AttributeSet node to change the location type, which is simply the type
attribute for a location, to assembly.

Resolvers
Resolvers are Ops that must be run before actual rendering, in order to get data into the correct final form.
Typically they are used for things like material assignments, executing overrides, and calculating the effects
of constraints.

The only data the can be passed from one Op to the next is the scene graph, with its attributes. Resolvers are
procedural processes that can be executed with just attribute data, which allows us to separate executing
procedural process into two stages:
1. Set up appropriate attributes in the scene graph that define what process to run and any parameters that

need to be handed to the procedural.
2. Run a resolver that reads those attributes and executes the procedural process.

Using the Scene Graph | Resolvers

USER GUIDE
213

This separation into two stages gives a lot more flexibility than if all procedural processes had to be executed
immediately. Because they are only dependent on the correct attributes being set at locations in the scene
the configuration to set up the process can be done in a variety of different ways.

For instance, material assignment is based on a single string attribute named materialAssign, which gives
the path to the location of the material to be used. This attribute is then used in a resolver called
MaterialResolve, which takes the material from the path in the materialAssign attribute and creates a local
copy, with all the relevant attributes set to their correct values (taking into account things like material
overrides). Because MaterialResolve only looks for an attribute called materialAssign, material assignment
can be set up in a number of different ways:
• Using MaterialAssign nodes, which set the materialAssign attribute at locations that match the CEL

expression on the node.
• Using an OpScript to set the value of materialAssign using a Lua script.
• Using a custom Op to set the value of materialAssign.

You can also use a LookFile that resolves the correct value for materialAssign onto given objects.

The LookFile system has special behavior for handling materials that have been assigned to an asset. This
allows other users to make edits and overrides to material values, while also keeping processing efficient for
the majority of cases where there isn’t any need for modifications. This behavior is also designed to handle
cases where there may be more than one version of a look file used in a shot and where there are multiple
output passes, and overrides may need to be applied to any selection of passes. Renderer procedurals are
also handled in a similar manner to materials.

LookFileResolve is designed to look for the existence of materials (and renderer procedurals) at specific
locations in the scene graph. If materials are found at these locations then materialAssign attributes are set
at locations in the asset that use those materials. This allows you to make modifications, such as material
overrides, to all objects that use a material from the LookFile. If no material is found at any of the search
locations then the materials from the LookFile are directly applied to locations in the asset without using
materialAssign.

The main reason for this system is efficiency: most materials on most assets probably don’t need any
modifications, such as overrides, and it is more efficient to simply paste the relevant attribute values onto the
asset. However, if you want to apply overrides then it's more convenient to bring the materials directly into
the scene and set them up as assigned materials.

To avoid clashes between materials with the same name that are brought in from different LookFiles, a
namespace path is used as the location under which the materials are brought in. This is constructed using
the following options:
• A custom path (specified by a parameter on LookFileOverrideEnable) or a path provided by the asset

management system based on the LookFile asset using getUniqueScenegraphLocationFromAssetId().

Using the Scene Graph | Resolvers

USER GUIDE
214

• If the asset management system provides version numbers for look files, the path can either explicitly
include the version number, which means that any overrides only apply to assets that use that explicit
version LookFile, or a version-less path, which means that any overrides apply to assets that use any version
of the LookFile.

Resolvers allow us to keep the data high-level and user meaningful as possible since until the resolver runs
the user can directly manipulate the attributes that describe how the process should run instead of only
being able to manipulate the data that comes out of the process.

For instance, since material assignment is based on the materialAssign attribute we can:
• Change what material an object gets by changing that one attribute’s value.
• Change the material on every object that is assigned a specific material by changing the attributes of the

original material.

In essence resolvers manipulate the parameters of the process, rather than just the data that comes out of
the process, with access to all the tools available in Katana for inspecting, modifying and overriding
attributes.

Examples of Resolvers
As well as MaterialResolve there are a number of other common resolvers:
• ConstraintResolve. This evaluates the effect of a constraint on the transform of a location.
• LookFileResolve. This replays the changes described in a look file back onto an asset. This is probably the

resolver that users are most likely to be directly exposed to if they don't use the LookFileManager as they
are directly using LookFileResolve nodes.

• OpResolve. This resolves any deferred Ops that have been set to run during an op resolve.
• LightLinkResolve. This resolves the attributes, which the LightLinkSetup node sets on

/root/world.lightList.

Implicit Resolvers
Resolvers can be run by putting nodes explicitly into a project, but there are also a standard set of resolvers
that are automatically implicitly run before rendering. In effect these are nodes that are automatically
appended to the root of a node graph before rendering, so that it’s not necessary to manually add all the

Using the Scene Graph | Resolvers

USER GUIDE
215

needed resolvers. This allows execution of procedural processes that are always needed, such as
MaterialResolve.

The list of implicit resolvers is as follows:
• Preprocess Resolvers

• OpResolve(resolveIds=implicit_preprocess, lookfileresolve) - this resolves deferred Ops set to
resolve during katana look file resolve. Ordinarily, such ops are resolved by LookFileResolve nodes;
this resolver is a fail safe for when a LookFileResolve node is not present.

• Standard Resolvers
• LightLink.Resolve - this resolves light linking information that was previously set up by a

LightLinkSetup node.
• ReferentialInheritanceResolve - this resolves all locations with an inherits attribute referencing

another location. The attributes from the referenced location are overlayed.
• MaterialResolve - this looks for materialAssign attributes and creates local copies of materials taking

into account any material overrides.
• OpResolve(material attr) - this resolves deferred Ops set to resolve during material resolve.
• MaterialUnderlayAttributesResolve - this resolves material underlay information by copying

attributes from a location's material.underlayAttrs group to that location's root level without
clobbering existing attributes.

• RendererProceduralResolve - this is similar to MaterialResolve but for renderer procedurals. It looks
for any locations with rendererProceduralAssign attributes.

• FilenameResolve - this resolves {attr:xxx} tokens in material and rendererProcedural attribute
groups. Refer to Using the {attr:xxx} and {globalattr:xxx} Syntax for Shader Parameters section for more
information.

• BoundsAdjust - this resolves any deferred bounds padding task that was previously set up by a
BoundsAdjust node.

• BoundsPropagateToAncestors - this resolves any deferred bounds propagation task that was
previously set up by a BoundsAdjust node.

• AdjustScreenWindowResolve - this resolves any screen window adjustment previously set up by a
RenderSettings node.

• ConstraintResolve - this looks for any constraints defined at /root/world in globals.constraintList
and calculates the effects of any constraint on the transforms of locations.

• MuteResolve - resolves mute states for lights created by GafferThree nodes.
• Postprocess Resolvers

• OpResolve(resolveIds=all) - this resolves deferred Ops set to resolve during op resolve.
• RenderSettingsLocalize - this resolves render resolution, sample rate, and region of interest.

Normally when you inspect scene data in Katana’s UI you see the results before the implicit resolvers are run.
It's only at render time that the implicit resolvers are added. If you want to see the effect of the implicit

Using the Scene Graph | Resolvers

USER GUIDE
216

resolvers on the scene data you can switch them on by clicking on the Toggle Scene Graph Implicit
Resolvers clapper-board icon in the menu bar or at top-right-hand side of the Scene Graph, Attributes or
Viewer tabs. It then glows orange and a warning message is displayed to indicate that the implicit resolvers
are now active in the UI.

For instance, if you switch the implicit resolvers on and view the attributes at a location that has an assigned
material you'll see that:
• There is now an attribute group called material with a local copy of the assigned material.
• Any material overrides have been applied to the shader parameter values.
• The original materialAssign value is removed.
• Similarly any materialOverride attributes are removed.
• The values of materialAssign and materialOverride are copied into info so they can still be inspected, for

reference, but they are no longer active.

Creating Your Own Resolvers
Custom Resolvers in the Node Graph
You can use OpScripts or custom Ops to create your own resolvers, including having them run implicitly.

There are a number of modes available for OpScript, GenericOp, and Op execution. These are controlled by
the resolveIds values in the attributes. There are two modes available for the execution mode:
• immediate - the script/Op is run at the locations specified in the applyWhere parameter as it is evaluated

at this node's point in the node graph.
• deferred - the script/Op is set up by this node but won't actually be run until a later node in the node

graph, as specified by the applyWhen parameter.

And depending on what you choose, you have the option to set where or when the script/Op is run. When
the execution mode is immediate, the applyWhere parameter can be set:
• at all locations - at all the locations in the node graph.
• at specific location - at only the location specified by the location parameter. If this location doesn't exist,

it is created automatically.
• at locations matching CEL - at only those locations in the node graph that match the CEL statements.

When the execution mode is deferred, the applyWhen parameter can be set:

Using the Scene Graph | Resolvers

USER GUIDE
217

• during op resolve - the script/Op and its arguments are added as attributes to be executed later by an
OpResolve node. If the Op isn't run by an explicit OpResolve node placed in the node graph, it is
automatically run at render time by the implicit resolvers.

• during material resolve - the script/Op and its arguments are added as attributes under the material.ops
group attribute. This is primarily intended for material scene graph locations, allowing the material to
specify a procedural process that is run at every location that the material is assigned to. The script/Op is
run as part of the material resolve process, and is executed just after the initial values for the material
shader are created at the location. Examples of its use include randomizing or procedural control over
shader parameters.

• during katana look file resolve - the script/Op and its arguments are added as attributes under the ops
group attribute and are evaluated by a LookFileResolve node or by the first implicit resolver if no
LookFileResolve node is present.

For more information on OpScripts, see the Working with Attributes section. For more information on
GenericOp and Op API, refer to The Op API.

Custom Implicit Resolvers
Custom implicit resolvers can also be made persistent across the Katana session, without the need for
additional nodes in the node graph. The Nodes3DAPI module provides the RegisterImplicitResolver()
function for this purpose, with the following signature:
RegisterImplicitResolver(stage, opType, opArgs, addSystemArgs=False)

The stage parameter determines where the new resolver should be inserted in the chain of implicit resolvers.
The stages are described in Implicit Resolvers. Its value should be one of:
• ImplicitResolverStage.BeforePreprocessResolvers
• ImplicitResolverStage.BeforeStandardResolvers
• ImplicitResolverStage.AfterStandardResolvers
• ImplicitResolverStage.AfterPostprocessResolvers

Op types, args, and system args are described in The Op API.

Using the Scene Graph | Resolvers

USER GUIDE

Building Your Scene
This section walks you through setting up your scene in Katana.

Adding 3D Assets - Usually, a recipe is started by defining the 3D assets.

Collections and CEL - Use Collection Expression Language (CEL) to describe locations in the scene graph that
receive operations or assignments.

Working with Attributes - How to manipulate scene graph attributes.

Katana does not assume a given scene scale. There are no physics solvers, like those in Maya, that need to
know what real world measurement a unit represents. If you're using a shader library that has real world
units for shade parameters, such as emissive lights with power per unit area, that's handled by the shader
implementation rather than Katana.

The unit of measure used is up to you, because Katana equates any value as being equal to one unit in 3D
space. The image shows a simple scene containing an object and a camera. If the large white square in the
Viewer represents one unit of measure, so the smaller squares represent one tenth of that unit. So, if you
measured on set in meters, one small square could be equal to a meter, centimeter, or millimeter.

218

USER GUIDE
219

Adding 3D Assets
The most common way to start a recipe is by defining the steps that bring in your 3D assets. Possible assets
include static geometry, animated geometry in the form of a geometry cache, a particle cache, or an
animated camera from a camera tracking package.

Katana's most common nodes for bringing in scene assets are:
• PrimitiveCreate

The PrimitiveCreate node contains a list of basic geometry shapes used in most 3D packages. These range
from simple shapes such as planes and cylinders to teapots and gnomes.

• CameraCreate

A simple node designed to create a camera. You can also import cameras using the Alembic_In node.
• Alembic_In

The Alembic open standard has been adopted by Katana as its preferred means of asset interchange.
Alembic is covered in more depth in Adopting Alembic.

• Importomatic

The Importomatic is a one-stop-shop for bringing in assets. It has a plug-in structure enabling assets to be
imported from different formats. It ships with plug-ins for Alembic_In and Casting Sheets. To learn more on
its use, see Using the Importomatic.

Note: Your studio may use its own geometry format, complete with a custom node to bring that
format into Katana.

Adopting Alembic
Alembic is an open source scene information interchange framework. Alembic distills complex, animated
scenes into non-procedural, application-independent, baked geometric results. It stores only the baked
information and not how that information was obtained. For instance, a fully rigged and animated character
would have its vertices efficiently stored for each frame of the animation but the control rig itself would not
be stored. You can export to Alembic from most popular 3D applications.

Building Your Scene | Adding 3D Assets

USER GUIDE
220

For more information on Alembic, see http://code.google.com/p/alembic/.

Adding an Alembic Asset
To add an Alembic asset:
1. Create an Alembic_In node and add it to your recipe (assets are usually added first to any recipe).
2. Select the Alembic_In node and press Alt+E.

The Alembic_In node becomes editable within the Parameters tab.
3. In the name parameter, enter the scene graph location to place the Alembic data.
4. Enter the asset filename in the abcAsset parameter.

Using the Importomatic
The Importomatic node is used to bring in multiple assets and - if needed - assign them a look file or
attribute file. Packaging this into one node keeps the recipe simpler to understand and debug.

With the Importomatic node you can:
• Read in multiple Alembic assets in a single node.
• Assign look files to any of the assets (for more on look files, see Look Development with Look Files).
• Assign attribute files to any of the assets.
• Branch from the Importomatic node, allowing multiple outputs.

Tip: Providing a full description of how to describe a scene using XML is beyond the scope of the
User Guide. For more information, consult the developer’s documentation accessed through the
Help > Documentation menu.

Adding Assets Using the Importomatic
To add assets using the Importomatic:
1. Create the Importomatic node and place it within the project.
2. Select it and press Alt+E.

The Importomatic node becomes editable within the Parameters tab.

3. Click within the Parameters tab.

The asset and output menu is displayed.

Building Your Scene | Adding 3D Assets

http://code.google.com/p/alembic/

USER GUIDE
221

4. Select Add Alembic or Add Casting Sheet and select the asset from the file browser or asset
management browser.
The new asset is added to the Importomatic’s hierarchy.

Note: See Importing Assets Using Casting Sheets for more information.

Importing Assets Using Casting Sheets

The Add Casting Sheet option of the Importomatic node opens a .cast file (casting sheet) that contains
assets and names for those assets. This allows you to load multiple alembic files at once.

Below is an example of a casting sheet file:

<castingsheet>
<entry assetid="/tmp/Gnome.abc" name="gnomeA"/>
<entry assetid="/tmp/Pony.xml" name="ponyA"/>

</castingsheet>

The assetid XML attribute is an asset identifier you can use with whichever asset management system you
are working with. If you are working with files then the assetid XML attribute is a file path. For more on Asset
IDs, see Concepts.

Note: Make sure to specify a file extension in your file path for the casting sheet to determine
which asset type to load.

The name XML attribute is the identifier that is used to reference an instance of that asset in your Katana
scene. You can use it to determine the default scene graph location for the asset and to label the node used
to import it.

Editing an Importomatic Asset’s Parameters
To edit an asset’s parameters:
1. Select the asset within the Importomatic’s hierarchy within the Parameters tab.

The asset’s parameters are displayed below the hierarchy.
2. Make any changes to the asset that are needed. The parameters that are available are dependent on the

asset type.

Building Your Scene | Adding 3D Assets

USER GUIDE
222

Editing an Asset’s Name
To edit the name:
1. Select the asset within the Importomatic’s hierarchy.

The asset’s parameters are displayed below the hierarchy.
2. Toggle use custom asset name on.

The asset name becomes editable.

Building Your Scene | Adding 3D Assets

USER GUIDE
223

3. Change the asset name in the field directly below the hierarchy.
Changing the asset’s name within the Importomatic does not influence its location within the Scene
Graph tab.

Disabling and Enabling an Asset
To disable an asset:
1. In the Importomatic parameters, right-click on the asset name within the hierarchy.
2. Select Ignore Asset (or press D).

The asset is no longer created.

To enable an asset:
1. In the Importomatic parameters, right-click on the asset name within the hierarchy.
2. Select Unignore Asset (or press D).

Deleting an Asset from the Importomatic
To delete an asset:
1. In the Importomatic parameters, right-click on the asset name within the hierarchy.
2. Select Remove Item (or press Delete).

Building Your Scene | Adding 3D Assets

USER GUIDE
224

Assigning a Look File to an Asset
To assign a look file:
1. In the Importomatic parameters, right-click on the asset name within the hierarchy.
2. Select Assign Look File.

The file browser or your studio’s asset picker displays.
3. Select the look file from the file browser or asset picker.

Assigning an Attributes File to an Asset
To assign an attributes file to an asset:
1. In the Importomatic parameters, right-click on the asset name within the hierarchy.
2. Select Assign Attribute File.

The file browser or your studio’s asset picker displays.
3. Select the attribute file from the asset picker or file browser.

Note: Use attribute files to add attributes to existing locations. For a full explanation on using
attribute files, see the accompanying PDF, which is accessed through the Help > Documentation.

Adding Additional Outputs to the Importomatic
To add an additional output:

1. In the Importomatic parameters, click .

The asset and output menu is displayed.
2. Select Add New Output.

A new output is added to the node and hierarchy.

Changing an Output’s Name
Apart from the default output, the outputs from the Importomatic can be changed.

To change the name of an output:
1. In the Importomatic parameters, select the output in the hierarchy.
2. Type the new output name in the output parameter.

Building Your Scene | Adding 3D Assets

USER GUIDE
225

Collections and CEL
Collection Expression Language, or CEL, is used to describe the scene graph locations on which an operation
or assignment acts. CEL statements can also be used to define collections that may then be referenced in
other CEL statements.

There are two different purposes that CEL statements are used for: matching and collecting.

Matching is the most common operation, and is used as scene graph data is generated. Many nodes in
Katana have CEL statements that allow the user to specify which locations the operation defined by this node
act on. For instance, CEL statements are used in MaterialAssign nodes to specify which locations in the
hierarchy have a particular material assigned to them. As each scene graph location is generated it is tested
against the CEL statement to see if there is a match. If it is, the operation is executed at that location. This
matching process is generally a very fast one to compute.

Collection is a completely different type of operation, a CEL statement used to generate a collection of all
locations in the scene graph that it matches. Depending on the CEL statement this can potentially be
expensive as to evaluate it may have to open every location in the scene graph to check for a match.
Collecting is usually done as part of a baking process or to select things in the UI (Find and Select), but also
has to be done for light linking if you use an arbitrary CEL expression to specify the lights.

Building Your Scene | Collections and CEL

USER GUIDE
226

CEL in the User Interface
In the UI, a standard CEL Widget interface is provided for CEL expressions. For your convenience, this allows
you to build CEL expressions out of three different types of components (called statements):
• Paths – these are explicit lists of scene graph paths. If you drag and drop locations from the Scene Graph

tab onto the Add Statements area of the CEL widget you are automatically given a CEL expression that
based on those paths.

• Collections – a pre-defined named collection of scene graph locations. Essentially these are arbitrary sets
of locations that are handed off for use downstream in the pipeline. Collections can be created in a Katana
scene using the CollectionsCreate node, and can also be passed from one Katana project to another using
Look Files.

• Custom – these allow complex rule based expressions, such as using patterns with wildcards in the paths,
or 'value expressions' that specify values that attributes must have for matches.

CEL expressions can also be built out of combinations of these components using union, difference, and
intersection operations.

Guidelines for using CEL
Use CEL to Specify Light Lists in the LightLink Node.

There is only one node that does a collect operation while actually evaluating the Katana recipe: the
LightLink node.

LightLink allows you to use a CEL statement to determine which lights to link to, which allows a lot of
flexibility in selecting which lights are linked, but involves running a collection operation at runtime. How the
CEL statements are used to specify the lights (and where those lights are in the scene graph) should be set
up carefully to maximize efficiency and avoid having to evaluate too many scene graph locations. In general
it is most efficient to use a list of explicit paths for the light list. If you need to use more general CEL
expressions, such as those that use wild cards, it is best to make sure these only need to run to a limited
depth in the scene graph. The worst case is an expression with recursion that potentially needs every scene
graph location to be tested.

Building Your Scene | Collections and CEL

USER GUIDE
227

'Find and Select' Isn't a Good Test for Efficiency.

It's inadvisable to run a Find and Select to test the efficiency of a CEL statement that is only going to be
used for matching. For instance, the CEL statement //myGeoShape that only matches with locations called
myGeoShape is very fast to run as a match when evaluating any location, but takes a very long time to
collect because it has to expand the whole scene graph looking for locations with that name.

Make CEL Statements as Specific as Possible.

The expense is generally in running operations at nodes rather that evaluating if a location matches a CEL
expression, so it's good make sure that nodes only run on the locations really necessary.

For instance: it's most efficient if a CEL statement can be made to only run on the correct locations, based on
looking at the path name of the location. If the attribute values have to be tested, such as tests for the type
of location, these tests are more expensive, as it requires the attributes at that location to be calculated as
well.

Another typical case is using the CEL expression //*, which is a very fast expression to match but usually
means that a node runs at far more locations than it needs to.

Avoid Extensive Use of Deep Collections.

Collections brought in by a Look File are defined at the root location that the Look File is assigned to. If those
collections are only used in the hierarchy under the location they are defined at evaluation is efficient.
However, if you refer to that collection in other parts of the scene graph then there is a cost as the scene
graph has to be evaluated at the location the collection is defined.

A example where this can be a problem is if you've got collections defined at /root that reference a lot of
other collections defined deeper in the scene graph. This means that to just evaluate /root you need to
examine the scene graph to all those other locations as well.

Avoid Complex Rules in Collections at /root

Collections of other collections are useful and are efficient if all the collections are defined using explicit
paths. If these collections are created using more complex rules, in particular recursive rules, you can run into
efficiency problems.

Building Your Scene | Collections and CEL

USER GUIDE
228

Avoid Using '*' as the Final Token in a CEL Statement

There are optimizations in CEL to first compare the name of the current location against the last token in the
CEL statement. For this reason, it's advisable to have a specific last token in a CEL statement, instead of using
'*' as a wildcard. For instance, if you've got a rule to only run on geometry locations that end with the string
Shape it's more efficient to have a cell expression such as:

/root/world/geo//*Shape

rather than

/root/world/geo//*.

Paths versus Rules

CEL has a number of optimizations for dealing with explicit lists of paths. This means using paths are the best
way of working in many cases, and matching against paths is generally very efficient as long as the list of
paths isn't too long.

As a general rule it's more efficient to use explicit lists of paths than active rules for up to around 100 paths. If
you have explicit lists with many thousands of paths you can run into efficiency issues where it may be very
worthwhile using rules with wildcards instead.

Select and Collect operations are always more efficient with an explicit path list.

Use Differences Between CEL Statements Cautiously

Taking the difference between two CEL statements can be expensive. In particular if two CEL statements are
made up of paths when you take the difference it's no longer treated as a simple path list so won't use the
special optimizations for pure path lists. Single nodes with complex difference based CEL statements can
often be more efficiently replaced by a number of nodes with simpler CEL statements.

CEL in Parameters
Parameters that contain CEL expressions are set like any other string parameter only the value of the
parameter is evaluated to a CEL expression. For example create a CEL expression on a CollectionCreate node
that sets to the /root/geo location:

Building Your Scene | Collections and CEL

USER GUIDE
229

TIME = 0
root = NodegraphAPI.GetRootNode()
collection = NodegraphAPI.CreateNode('CollectionCreate',\

root)
c = collection.getParameter('CEL')
c.setValue("((/root/geo))", TIME)

For more on CEL, and collections using CEL, see Collections and CEL.

Working with Attributes
At its core, everything in Katana is about creating and manipulating attributes. These attributes, stored at
locations within the scene graph, represent the information a renderer needs to render a scene, such as
geometry data, transforms, or what material should be applied at a given location.

Although almost all nodes, in essence, manipulate attributes, Katana provides a number of special, general-
purpose nodes that give you free reign to create or manipulate the values of any attribute at one or more
locations. The most common are AttributeSet and OpScript.
• The AttributeSet node is used to create, override, or delete attributes at one or more locations.
• The OpScript node is a Lua-based interface to the Op API. The OpScript node also allows you to modify the

structure of the scene graph hierarchy, such as deleting locations or creating new child locations. For more
information about OpScript and the Op API, please refer to The Op API.

To learn how to manipulate attributes, refer to either:
• AttributeSet Nodes
• OpScript Nodes
• Working with Group Attributes

AttributeSet Nodes
Making Changes with the AttributeSet Node
To add an AttributeSet node to a recipe:
1. Create an AttributeSet node and connect it to the recipe at the point you want to make the change.

Building Your Scene | Working with Attributes

USER GUIDE
230

2. Select the AttributeSet node and press Alt+E.
The AttributeSet node becomes editable within the Parameters tab.

3. Select the assignment mode from the mode dropdown:
• paths - the locations influenced by this node are selectable by their path.
• CEL - the locations influenced by this node are selectable using CEL.

4. Assign the locations to influence with this node to either the paths or celSelection parameter
(depending on your selection in step 3).

5. Select what type of action this node is performing:
• Create/Override - adds a new attribute or overrides an existing one.
• Delete - if it exists, removes an attribute from the location.
• Force Default - forces the attribute back to its default.

6. Enter the name of the attribute to influence in attributeName.
You can enter a grouped attribute by separating the parts of the attribute with a . (period), for instance
geometry.point.P.

If the action parameter is Create/Override:
7. Select the type of the attribute using the attributeType dropdown.
8. With the groupInherit parameter, select whether you want the attribute changes to be inherited by any

scene graph children. For instance, a new attribute on /root/world/geo created with this option set to
Yes is inherited by all children of /root/world/geo.

9. Use the multisample parameter to select whether you want to enable multi-sampling.
10. Enter the new attribute value in the <type>Value parameter, for instance, stringValue for a string.

Tip: It is possible to middle-click and drag from an attribute in the Attributes tab to the Drop
Attributes Here hotspot in an AttributeSet node’s Parameters tab to automatically create a field
to set the dragged attribute.

Building Your Scene | Working with Attributes

USER GUIDE
231

Using Material Underlays with the AttributeSet Node
In addition to editing attributes with the AttributeSet node, as described above, you can use the node to
create material underlays. Attributes from an underlayAttrs group attribute that is part of a material group
attribute are copied to the top level of a location's attributes during the MaterialResolve step.

This only happens if matching attributes are not already set on the target location (the location that points at
the material using materialAssign). This allows, for example, custom renderer object settings to be specified
for locations, which can be overridden by any locally-set values.

To set a material underlay:
1. Add a PrimitiveCreate node and set its name to /root/world/geo/teapotYellow.

Set type to teapot and Z translate to -2.5, and Y rotation to 180.
2. Add another PrimitiveCreate node (or copy and paste the exisiting one) and set its name to

/root/world/geo/teapotPink.
Set type to teapot, Z translate to 2.5.

3. In the Node Graph, select both Primitive Create nodes and press M to merge.
4. Expand the Scene Graph to view the primitives. The image below shows the scene in the Hydra Viewer.

Building Your Scene | Working with Attributes

USER GUIDE
232

5. Add a yellow material node:
Add a Material node.
In the Parameters tab, change it’s name to Yellow.
Click Add Shader and pick dl > Surface to add a dlSurfaceShader. From the dropdown select
dl3DelightMaterial.
Change the Base Layer > Diffuse and Subsurface > Color value to 0.5, 0.5, 0.0.

6. Add a pink material node: Repeat step 5 but change the name to Pink and the color to 0.5, 0.0, 0.5.
7. Add a MaterialAssign node. Assign the yellow material to the yellow teapot:

Middle-mouse +drag the teapotYellow mesh item from the Scene Graph tab to the CEL field's Add
Statements button on the Parameters tab for the MaterialAssign node.
Middle-mouse+drag the Yellow material from the Scene Graph to the materialAssign field.

8. With a new MaterialAssign node repeat step 9, but assign the Pink material to the teapotPink mesh.
9. Your node graph should be connected as follows:

Building Your Scene | Working with Attributes

USER GUIDE
233

10. Add an AttributeSet node and connect it to the bottom of the graph. Middle-mouse+drag the Yellow
material from the Scene Graph on to the CEL path field and set the following parameters:
action: Create/Override
attributeName: material.underlayAttrs.viewer.default.drawOptions.color
attributeType: float
groupInherit: Yes
multisample: Yes
numberValue: 3 x 1, with 0: 0.5, 1: 0.5 and 2: 0.0.

Building Your Scene | Working with Attributes

USER GUIDE
234

11. Copy and paste the AtrributeSet node and connect it to the previous node. On this new node assign the
Pink material to the path and set the number values to 0.5, 0.0 and 0.5 respectively.

Note: If you inspect the materials in the Attributes tab, you will notice an attribute has been
created under a tab called underlayAttrs for both materials.

Inspecting both teapot mesh items will show their viewer.default.drawOptions attributes at the
default values.

12. Add a MaterialResolve node and connect it to the previous node. The underlay attributes are transferred
to the teapots and override their default Hydra view.

Building Your Scene | Working with Attributes

USER GUIDE
235

To deactivate the node and return to the default, highlight it and press D.
13. Copy and paste the second AttributeSet node, and connect the newly created node in between the

second AttributeSet node (for the pink material) and the MaterialResolve node.
14. In the new AttributeSet node, change the CEL field to point at the teapotPink location rather than the

pink material. In the attributeName field, change the value to viewer.default.drawOptions.color, and the
numberValue to 0.0, 0.5, 0.5.
You will now see the material underlay attribute is only affecting the yellow teapot at resolve time.

Here's the full node graph for reference with nodes renamed for clarity:

Building Your Scene | Working with Attributes

USER GUIDE
236

Building Your Scene | Working with Attributes

USER GUIDE
237

OpScript Nodes
The OpScript node allows you to use the Lua scripting language to manipulate attributes at a single location,
or at multiple locations. Technically, the OpScript node provides Lua bindings for the C++ Op API, so what
you can do with the Op API, you should also be able to do with the OpScript node. Lua is also multi-
threaded, which makes it very fast.

The OpScript node has many exciting features that make it very powerful:
• Overwrite, create, and delete attributes at any scene graph location.
• Accept multiple inputs.
• Create and delete child scene graph locations.
• Copy scene graph locations.
• Use Lua bindings for Op API C++ functions.

The OpScript node uses CEL (Collection Expression Language) to specify the locations where the script runs.
The OpScript node can be used to read attributes on any scene graph location, edit attributes at the
specified scene graph locations, create child locations, delete child locations, and copy scene graph
locations. When running on multiple locations, a script runs separately at each location, so targeting 100
locations means that your OpScript runs 100 times.

Since there are Lua bindings for the Op API, you may only need the Op API if you really need the speed and
efficiency of C++, meaning many powerful tools can be written with the OpScript node, and potentially
wrapped up inside a macro for other users. If you do need to use the Op API, then the Lua interface allows
for easier prototyping before fully committing to C++, which is especially useful for proof of concept.

Adding an OpScript
To add an OpScript node to a recipe:
1. Create an OpScript node and connect it to the recipe at the point you want to insert the Lua script.
2. Select the OpScript node and press Alt+E.

The OpScript node becomes editable within the Parameters tab.
3. Assign the scene graph locations (or target nodes) this Lua script is to run on to the CEL parameter (see

Assigning Locations to a CEL Parameter).
4. Select when to run the script using the executionMode dropdown:

• immediate - runs the script immediately.

Building Your Scene | Working with Attributes

USER GUIDE
238

• deferred - runs the script at a later node in the node graph, as specified by the applyWhen parameter.
5. If you chose immediate, the applyWhere dropdown is available for you to choose where the script is

run:
• at all locations - at all the locations in the node graph.
• at specific locations - at only the location specified by the location parameter. If this location doesn't

exist, it is created automatically.
• at locations matching CEL - at only those locations in the node graph that match the CEL statements.
If you chose deferred, the applyWhen dropdown is available for you to choose when the script is run, if
not immediately:
• during op resolve - the script and its arguments are added as attributes to be executed later by an

OpResolve node.
• during material resolve - the script and its arguments are added as attributes under the

material.scenegraphLocationModifers group attribute.
• during katana look file resolve - the script and its arguments are added as attributes under the

Scene GraphLocationModifers group attribute and are evaluated by a LookFileResolve node or by the
first implicit resolver if no LookFileResolve node is present.

Note: Each of the applyWhen options has additional parameters that are available, depending on
which you choose. See the Reference Guide section for more information.

6. If you chose immediate, set the inputBehavior dropdown. This controls how input ports on the node
are mapped onto the inputs of the underlying Op, and is only meaningful when the node has one or
more invalid input ports - a port that is not connected to an output port or is connected to an output
port that doesn't provide data.
If you chose deferred, set the modifierNameMode dropdown to either:
• node name - deferred OpScripts are added as group attributes within the "Ops" group, and the name

of the node is used for the sub-group. Since node names must be unique in project, the resulting
attribute name can change.

• specified - use a fixed name for the OpScript sub-group.
7. In certain instances, such as when executionMode is set to immediate, or when it is set to deferred,

during op resolve, the resolveIds parameter displays. Specify the resolveIds in the form of
"resolveName1", "resolveName2" and so on. This ensures the OpScript is resolved only by the op
resolvers that contain a matching resolve ID.

8. If you choose deferred, and set the applyWhen parameter to either during op resolve or during
katana look file resolve, you can set the recursiveEnable parameter. Enabling this parameter results in
the script being run at every location beneath the assigned locations. This is far more efficient than using
the equivalent recursive CEL statement.

Building Your Scene | Working with Attributes

https://learn.foundry.com/katana/Content/reference_guide.html

USER GUIDE
239

9. If you want to set the OpScript node to have multiple inputs, tick the Display as multi-input box. By
default, this box isn't ticked.

10. Finally, enter the Lua script in the script parameter.

Tip: To have an OpScript, running at multiple locations, use the same stable, random numbers at
each location, the math.randomseed() and math.random() functions can be used. OpScript's
math.randomseed() and math.random() implementations use re-entrant pseudo-random
number generation functions, and implement the default flavors available in Lua.

local seed = math.randomseed()

local randVal_01 = math.random(1, 10)

local randVal_02 = math.random(11, 20)

local randVal_03 = math.random(21, 30)

OpScript Tutorials
Please note that the following examples are located in the Help > Example Projects menu in Katana, or
within the katana install directory at $KATANA_HOME/demos/katana_files/opscript_tutorial.katana.

Creating Scene Graph Locations

Using CreateChild()

This example shows you how to create child locations using the OpScript node. By default, if you specify
Interface.CreateChild(‘childName’) inside your OpScript without specifying the opType parameter, your
child location inherits the opType used by the parent. So, in this case, it recursively uses this opType,
OpScriptLua, and creates an infinite number of child locations.

Note: Please refer to OpScript for more information on any of the following functions, or for
information on exposed functions for the OpScript.

There are a few solutions to this: check if we match the CEL, create a hierarchy based on an if-else statement,
or use a StaticSceneCreate op to create a hierarchy.

Building Your Scene | Working with Attributes

USER GUIDE
240

Check If We Match the CEL

A simple way to get around this is to use the following command:

if Interface.AtRoot() then
 Interface.CreateChild("child_a")
end

In the OpScript node, set the CEL statement to /root/world by previously creating a /root/world location
using LocationCreate. Also make sure that the applyWhere parameter is set to at locations matching CEL.

Create a Hierarchy Based on if-else Statement

We create a hierarchy by checking which location we are currently at and executing the commands
associated to that if statement. When this script is run for the first time, it creates a child location at /root,
which is /root/world. Then, when the OpScript is executed at the child location, it creates /root/world/geo.
This continues until the last condition is met. In this way, we avoid infinite recursion. We’ve set the
applyWhere parameter to at all locations too, so that we don’t need to worry about specifying /root.

path = Interface.getOutputLocationPath()

if path == "/root" then
 Interface.CreateChild("world")
elseif path == "/root/world" then
 Interface.CreateChild("parent")
elseif path == "/root/world/parent" then
 Interface.CreateChild("child_a")
elseif path == "/root/world/parent/child_a" then
 Interface.SetAttr("test", IntAttribute(123))
end

Use a StaticSceneCreate Op to Create a Hierarchy

We can use the StaticSceneCreate op to create a hierarchy without the use of if-else statements using the
OpArgsBuilder.StaticSceneCreate() function. You can input the following directly into an OpScript node, or
refer to the example OpScript Tutorial file. Again, we’ve set the applyWhere parameter to be run at all
locations.

sscb = OpArgsBuilders.StaticSceneCreate(true)
sscb:createEmptyLocation("/root/world/parent/child_a", "group") --create a

Building Your Scene | Working with Attributes

USER GUIDE
241

scenegraph location with a type
sscb:setAttrAtLocation("/root/world/parent/child_a", "test_id", IntAttribute
(123)) --set the attribute
Interface.ExecOp("StaticSceneCreate", sscb:build()) --execute the Op

Deleting Scene Graph Locations
There are three methods available to remove scene graph locations: deleteChild(), deleteChildren() and
deleteSelf(). By allowing you to remove your own scene graph locations, you can re-implement your own
Prune node, for instance. This tutorial looks at each of these methods, but please refer to the OpScript
Tutorial Example Projects for context. You can comment or uncomment the relevant commands.

Delete the Child by Name

The OpScript node allows you to delete newly-created children and incoming child locations, like so:
Interface.DeleteChild("child_a")

Note that child_a is the immediate child of the matching CEL. For example, if your CEL statement looked like
this:
/root/world/geo/parent

and the children that exist here are

/root/world/geo/parent/child_a and /root/world/geo/parent/child_a/grandchild_a

the DeleteChild() function cannot delete grandchild_a.

Delete All Children

Deleting all children under which the OpScript is being cooked at is straightforward. This also deletes all
newly-created children and incoming ones:
Interface.DeleteChildren()

Delete Self

You are also able to delete the current output location using Interface.DeleteSelf(), however, all calls to
DeleteSelf() keep the location in its parent’s potential children list. So, it’s advisable to use DeleteChild()
instead, if possible.

Building Your Scene | Working with Attributes

USER GUIDE
242

Copying Scene Graph Locations and Attributes
Since the attributes are being copied over along with the scene graph locations, we can use this to our
advantage. As the OpScript node supports multiple inputs, you can effectively recreate a custom Merge or
Switch node, again, increasing the potential of the OpScript node.

Using the same function as above, look at how you can copy from one input to another. Please refer to the
OpScript Tutorials example file for context.

We have two LocationCreate nodes and an AttributeSet node corresponding to each LocationCreate node.
The two node graph branches are then connected to separate input ports of the OpScript node. The
CopyLocationToChild() function that we used in the previous example has two extra arguments that we
haven’t explicitly specified; they are: the input index and the order of where you want to place your new
hierarchy.

if Interface.AtRoot() then
 Interface.CopyLocationToChild("target_child_a","/root/world/another_
parent/another_child_a", 1, "child_a")
 -- Interface.CopyLocationToChild("target_child_
a","/root/world/parent/child_a", 0, "child_a")
end

This script copies over the name attribute from the second input of the OpScript to the target_child_a
location. The name changes depending on which line you comment/uncomment.

Creating Scene Graph Locations

Using CreateChild()

This example shows you how to create child locations using the OpScript node. By default, if you specify
Interface.CreateChild(‘childName’) inside your OpScript without specifying the opType parameter, your
child location inherits the opType used by the parent. So, in this case, it recursively uses this opType,
OpScriptLua, and creates an infinite number of child locations.

Note: Please refer to OpScript for more information on any of the following functions, or for
information on exposed functions for the OpScript.

There are a few solutions to this: check if we match the CEL, create a hierarchy based on an if-else statement,
or use a StaticSceneCreate op to create a hierarchy.

Building Your Scene | Working with Attributes

USER GUIDE
243

Check If We Match the CEL

A simple way to get around this is to use the following command:

if Interface.AtRoot() then
 Interface.CreateChild("child_a")
end

In the OpScript node, set the CEL statement to /root/world by previously creating a /root/world location
using LocationCreate. Also make sure that the applyWhere parameter is set to at locations matching CEL.

Create a Hierarchy Based on if-else Statement

We create a hierarchy by checking which location we are currently at and executing the commands
associated to that if statement. When this script is run for the first time, it creates a child location at /root,
which is /root/world. Then, when the OpScript is executed at the child location, it creates /root/world/geo.
This continues until the last condition is met. In this way, we avoid infinite recursion. We’ve set the
applyWhere parameter to at all locations too, so that we don’t need to worry about specifying /root.

path = Interface.getOutputLocationPath()

if path == "/root" then
 Interface.CreateChild("world")
elseif path == "/root/world" then
 Interface.CreateChild("parent")
elseif path == "/root/world/parent" then
 Interface.CreateChild("child_a")
elseif path == "/root/world/parent/child_a" then
 Interface.SetAttr("test", IntAttribute(123))
end

Use a StaticSceneCreate Op to Create a Hierarchy

We can use the StaticSceneCreate op to create a hierarchy without the use of if-else statements using the
OpArgsBuilder.StaticSceneCreate() function. You can input the following directly into an OpScript node, or
refer to the example OpScript Tutorial file. Again, we’ve set the applyWhere parameter to be run at all
locations.

sscb = OpArgsBuilders.StaticSceneCreate(true)
sscb:createEmptyLocation("/root/world/parent/child_a", "group") --create a

Building Your Scene | Working with Attributes

USER GUIDE
244

scenegraph location with a type
sscb:setAttrAtLocation("/root/world/parent/child_a", "test_id", IntAttribute
(123)) --set the attribute
Interface.ExecOp("StaticSceneCreate", sscb:build()) --execute the Op

Deleting Scene Graph Locations

There are three methods available to remove scene graph locations: deleteChild(), deleteChildren() and
deleteSelf(). By allowing you to remove your own scene graph locations, you can re-implement your own
Prune node, for instance. This tutorial looks at each of these methods, but please refer to the OpScript
Tutorial Example Projects for context. You can comment or uncomment the relevant commands.

Delete the Child by Name

The OpScript node allows you to delete newly-created children and incoming child locations, like so:
Interface.DeleteChild("child_a")

Note that child_a is the immediate child of the matching CEL. For example, if your CEL statement looked like
this:
/root/world/geo/parent

and the children that exist here are

/root/world/geo/parent/child_a and /root/world/geo/parent/child_a/grandchild_a

the DeleteChild() function cannot delete grandchild_a.

Delete All Children

Deleting all children under which the OpScript is being cooked at is straightforward. This also deletes all
newly-created children and incoming ones:
Interface.DeleteChildren()

Delete Self

You are also able to delete the current output location using Interface.DeleteSelf(), however, all calls to
DeleteSelf() keep the location in its parent’s potential children list. So, it’s advisable to use DeleteChild()
instead, if possible.

Copying Scene Graph Locations and Attributes

Building Your Scene | Working with Attributes

USER GUIDE
245

Another useful feature of the OpScript node is the ability to copy scene graph locations. For instance,
allowing you to re-implement the HierarchyCopy node, if you wish. You can achieve this using
Interface.CopyLocationToChild() function. Please refer to the OpScript Tutorial Example Projects and use
the following code in conjunction for understanding the process.

Copying Scene Graph Hierarchies

These tutorials have shown how you can copy hierarchies very easily using the CopyLocationToChild()
function. Using the following piece of Lua code, we can copy the /root/world/geo/parent_a hierarchy to
the locations matching the CEL statement provided, in this case, /root/world/geo. The result is another
hierarchy at /geo with /root/world/geo/parent_b/child_a. The resultant hierarchy has all the attributes
copied over too.

if Interface.AtRoot() then
 Interface.CopyLocationToChild("parent_b", "/root/world/geo/parent_a")
end

Copying Attributes Across Different Inputs

Since the attributes are being copied over along with the scene graph locations, we can use this to our
advantage. As the OpScript node supports multiple inputs, you can effectively recreate a custom Merge or
Switch node, again, increasing the potential of the OpScript node.

Using the same function as above, look at how you can copy from one input to another. Please refer to the
OpScript Tutorials example file for context.

We have two LocationCreate nodes and an AttributeSet node corresponding to each LocationCreate node.
The two node graph branches are then connected to separate input ports of the OpScript node. The
CopyLocationToChild() function that we used in the previous example has two extra arguments that we
haven’t explicitly specified; they are: the input index and the order of where you want to place your new
hierarchy.

if Interface.AtRoot() then
 Interface.CopyLocationToChild("target_child_a","/root/world/another_
parent/another_child_a", 1, "child_a")
 -- Interface.CopyLocationToChild("target_child_
a","/root/world/parent/child_a", 0, "child_a")
end

This script copies over the name attribute from the second input of the OpScript to the target_child_a
location. The name changes depending on which line you comment/uncomment.

Building Your Scene | Working with Attributes

USER GUIDE
246

Working with Group Attributes

GroupAttribute instances are generally created indirectly using the GroupBuilder helper class.

To create a new group attribute, first instantiate a GroupBuilder. You may then mutate the builder using
various operations, for example adding (name, attribute) pairs to it using the set() method, or deleting an
existing attribute by passing its name to del(). When done, retrieve the newly constructed GroupAttribute
with the GroupBuilder’s build() method.

It's also possible to update a GroupBuilder with the contents of an existing group attribute using the
update() and deepUpdate() methods. The update() method performs a shallow merge, where existing
attributes are overwritten if they share the same name as the new attributes. A common pattern is to call
update() on an empty builder to pre-populate it with the contents of an existing group attribute. The
deepUpdate() method is the recursive version of update(), effectively overlaying the contents of the
incoming groups atop the existing groups of the builder.

As a convenience, GroupBuilder supports creating arbitrarily nested attribute structures by passing a dot-
delimited path to its set() and del() methods. (This implies that the . (period) character is not a valid attribute
name!)

Note: Unlike the types mentioned so far, GroupBuilder is not itself an Attribute.

The code snippets listed below show the creation of a group attribute with the following structure:

{
 "my": {
 "nested": {
 "attribute": IntAttribute(2)
 }
 },
 "myTopLevelAttribute": StringAttribute("taco"),
 "myOtherTopLevelAttribute": FloatAttribute(4.0f)
 }

C++

 GroupBuilder gb;
 gb.set("my.nested.attribute", IntAttribute(2));
 gb.set("myTopLevelAttribute", StringAttribute("taco"));
 gb.set("myOtherTopLevelAttribute", FloatAttribute(4.0f));

Building Your Scene | Working with Attributes

USER GUIDE
247

 GroupAttribute groupAttribute = gb.build();
 // |groupAttribute| now has the structure listed above; |gb| is empty.

Python

 gb = GroupBuilder()
 gb.set("my.nested.attribute", IntAttribute(2))
 gb.set("myTopLevelAttribute", StringAttribute("taco"))
 gb.set("myOtherTopLevelAttribute", FloatAttribute(4.0))

 groupAttribute = gb.build()
 # |groupAttribute| now has the structure listed above; |gb| is empty.

Lua (OpScript)

 local gb = GroupBuilder()
 gb:set("my.nested.attribute", IntAttribute(2))
 gb:set("myTopLevelAttribute", StringAttribute("taco"))
 gb:set("myOtherTopLevelAttribute", FloatAttribute(4.0))

 local groupAttribute = gb:build()
 -- |groupAttribute| now has the structure listed above; |gb| is empty.

Notes

There is no way to inspect the contents of the builder while you are mutating it. Instead, you must call build
() and inspect the generated GroupAttribute. Note that, by default, calling build() clears the contents of the
builder, and to override this behavior you must pass the constant GroupBuilder::BuildAndRetain (C++),
GroupBuilderBuildAndRetain (Python), or GroupBuilder.BuilderBuildMode.BuildAndRetain (Lua) to
build().

Note on Backwards Compatibility

Previous versions of Katana would retain the contents of the builder when calling build(). Customers with
existing C++ plug-ins they wish to use in Katana 2.0v1, and after, are advised to audit their uses of
GroupBuilder::build() to ensure the new semantics do not cause unintended side effects.

Building Your Scene | Working with Attributes

USER GUIDE
248

Group Inheritance and the groupInherit Flag

Group attributes have a special flag called groupInherit. Setting this flag to True signals to Katana that all
attributes contained in the group should be inherited by child locations.

By default, group attributes created by GroupBuilder have their groupInherit flag set to true. To disable this,
call setGroupInherit(false) (C++, Lua) or setGroupInherit(False) (Python) on the builder. This groupInherit
flag on the builder is "sticky": setGroupInherit() may only be called once per builder, and subsequent calls
have no effect.

As the name suggests, group inheritance is a property of the group and not the data attributes contained
within it. The use of NullAttribute in combination with group inheritance allows for fine-grained control
over which attributes are inherited by child locations. Specifically, Katana interprets a null attribute in a group
as a signal to ignore inherited values for the attribute with the given name, forcing the default value if
available. (If no default value is available the attribute is simply deleted.)

Inheritance Rules for Attributes

By default, attributes are inherited from parent locations. However, attributes can be overwritten at specified
locations where the values differ from ones defined higher up in the hierarchy, as used for Light Linking.

Some attributes are not inherited, for instance the globalStatements of a renderer defined at /root or the
globals defined at /root/world. Another example is the xform attribute, where it would not make sense to
inherit a transform defined for a group to all its children and thus perform the operation multiple times.

Setting Group Inheritance using the API

To prevent an attribute from being inherited, use the API function setGroupInherit() to disable group
inheritance. For example:

FnKat::GroupBuilder gb;
gb.setGroupInherit(false);
gb.build();

Building Your Scene | Working with Attributes

USER GUIDE

Viewing Your Scene
The Viewer tab provides one or more 3D windows into the scene described by the scene graph. Only
locations that are exposed within the Scene Graph tab are represented in the Viewer - the exception being

pinned locations.

OSG Viewer

Our original, Open Scene Graph powered viewer with
an extensive feature set.

Hydra Viewer

Our latest viewer, with massive performance
increases and new features.

You can interactively modify parameters, on some nodes contributing to a scene graph location, using
Manipulators within the Viewer. The manipulators available vary depending on the scene graph location
selected, and the nodes that created it.

Katana does not assume a given scene scale. There are no physics solvers, like those in Maya, that need to
know what real world measurement a unit represents. If you're using a shader library that has real world
units for shade parameters, such as emissive lights with power per unit area, that's handled by the shader
implementation rather than Katana.

The unit of measure used is up to you, because Katana equates any value as being equal to one unit in 3D
space. The image shows a simple scene containing an object and a camera. If the large white square in the
Viewer represents one unit of measure, so the smaller squares represent one tenth of that unit. So, if you
measured on set in meters, one small square could be equal to a meter, centimeter, or millimeter.

249

USER GUIDE
250

Changing the Layout
The viewers' tabs can be split into multiple tabs allowing multiple views of the same scene. Each tab has its
own settings for shading, and lighting modes. To split the viewer tab:
• In the OSG Viewer, select Layout or> [viewer configuration].
• In the Hydra Viewer, select View or> [viewer configuration].

Viewer Configuration Example

• Single Pane - a single tab takes up the whole Viewer. This is the
default.

Viewing Your Scene | Changing the Layout

USER GUIDE
251

Viewer Configuration Example

• Two Panes Side-by-Side - this displays two tabs split vertically,
sitting side-by-side.

• Two Panes Stacked - this displays two tabs split horizontally, one
above the other.

• Three Panes Split Top - this displays three tabs: one large on the
bottom, and two more split vertically above.

Viewing Your Scene | Changing the Layout

USER GUIDE
252

Viewer Configuration Example

• Three Panes Split Left - this displays three tabs: one large on the
right, and two more split horizontally on the left.

• Three Panes Split Bottom - this displays three tabs: one large on
the top, and two more split vertically below.

• Three Panes Split Right - this displays three tabs: one large on
the left, and two more split horizontally on the right.

Viewing Your Scene | Changing the Layout

USER GUIDE
253

Viewer Configuration Example

• Four Panes - this displays four tabs.

You can change each tab to have a different view of the scene graph data. The current view is either an
object within the scene - such as a camera or light - or a Viewer camera. A Viewer camera is not a part of
the scene graph and cannot be used outside the Viewer. Four Viewer cameras are created by default
(persp, top, front, and side).

Selecting Within the Viewer
You can use standard selection behavior within viewers.

Action Behavior

Click Selects the first object below the mouse.

Drag Selects all objects within or touched by the marquee.

Shift+click Selects an object if it is not selected, deselects it if it is.

Shift+drag Selects any object within the marquee that is not selected, deselects it
if it is.

Ctrl+click Deselects the first object below the mouse.

Ctrl+drag Deselects everything within the marquee.

Viewing Your Scene | SelectingWithin the Viewer

USER GUIDE
254

Using Flush Caches
Katana stores scene graph information in a series of caches, including caches for resolved shaders and lights.

Selecting Util > Flush Caches, or clicking on the Flush Caches button forces Katana to step through the
scene graph, resolving shaders and lights. This in turn clears and update the Viewer cache.

Using the OSG Viewer
The Viewer tab provides one or more 3D windows into the scene described by the scene graph. Only
locations that are exposed within the Scene Graph tab are represented in the Viewer - the exception being
pinned locations. For more on pinning a location see Changing What is Shown in the Viewer.

You can interactively modify parameters, on some nodes contributing to a scene graph location, using
Manipulators within the Viewer. The manipulators available vary depending on the scene graph location
selected, and the nodes that created it. For more on this see Using Manipulators. It is also possible for
additional manipulators to be implemented by your studio using the Viewer Manipulator API. Consult the
developer documentation and example code for further details.

In Shaded (raw) and Shaded (filmlook) modes the Viewer uses OpenGL lights and shaders, which are
distinct from the lights and shaders used for final rendering. The OpenGL lights and shaders are added to
existing light and material nodes. For more on this see Assigning a Viewer Material Shader, and Assigning a
Viewer Light Shader.

Changing the Overall Viewer
Behavior
To change the overall shading model, select Display > [shading model]:

Viewing Your Scene | Using Flush Caches

USER GUIDE
255

Viewer Behavior Example

• Points - this displays the current 3D scene with each vertex (or
control point for a NURBS patch) as a point.

• Wireframe (or press 4) - this displays the current 3D scene with
each edge (or surface curve for a NURBS patch) as a line.

• Simple Shaded (or press 6) - this displays the current 3D scene
with a very simple shader, ignoring scene lights and shadows.

• Shaded (raw)- this displays the current 3D scene with each object
using its Viewer shader (or the default if none is assigned).

Adding a Viewer shader is covered in Managing Color

• Shaded (filmlook) (or press 5) - this is identical to the Shaded
(raw) shading model but applies an adjustment designed to
approximate the filmlook OpenColorIO LUT. For more
information on OpenColorIO within Katana see Managing Color.

Note: As Shaded (raw) and Shaded (filmlook) use OpenGL shaders, and not the shaders used
for the final render the Viewer can display a drastically different look to your final render
depending on how closely the OpenGL shaders matches the production shaders.

Viewing Your Scene | Using the OSG Viewer

USER GUIDE
256

Assigning a Viewer Material Shader
The Viewer is OpenGL based, so for materials to display in the Viewer, they must have an OpenGL Viewer
shader. It is this Viewer shader, not a renderer's shader that the Viewer shows when in Shaded (raw) or
Shaded (filmlook) modes.

For example, create a primitive, assign a 3Delight shader, and observe the Viewer output in Shaded (raw)
mode.
1. Create a primitive using a Primitive Create node.
2. Create a 3Delight material using a Material node.
3. Change the Diffuse Color in the Base Layer section.
4. Assign the material to the primitive using a MaterialAssign node.
5. Add a Spotlight using a GafferThree node, then position it.
6. Change the Viewer to Options > Shaded (raw) mode.

Without a Viewer shader assigned, the primitive in the Viewer defaults to a gray Lambert.

Add a Viewer shader to your material, and observe the Viewer output in Shaded (raw) mode.
1. Open the recipe described above.
2. Edit the parameters of the Material node.
3. Click Add shader, and select Surface from the dropdown list.
4. Select KatanaPhong as the Viewer shader type.
5. Edit the diffuse color of the KatanaPhong shader.
6. Change the viewer to Options > Shaded (raw) mode.

The viewer displays the Viewer shader added to the material node.

Viewing Your Scene | Using the OSG Viewer

USER GUIDE
257

Note: To have Viewer shaders mirror production shaders, it’s advisable to link by expression
common parameters, such as diffuse and specular color, or texture file path.

Assigning a Viewer Light Shader
As supplied, the Katana Viewer supports a single type of OpenGL spotlight, which corresponds to the Katana
Spotlight final render light. For lights of types other than Katana Spotlight to display in the Viewer, they
must have a Viewer light shader assigned.

It is this Viewer light shader, not a renderer's shader, that the Viewer displays when in Shaded (raw) or
Shaded (filmlook) modes. For example, create a primitive, and assign it a material that also has a Viewer
material shader. Create a light, then observe the Viewer output in Shaded (raw) mode.
1. Open the recipe created in Assigning a Viewer Material Shader.
2. Select the GafferThree node, then the light you created earlier, and go to its Material tab.
3. Click Add Shader and select light from the dropdown menu.
4. Select one of the following lights as the shader type: KatanaBasicPointlight, KatanaBasicSpotlight, or

KatanaSpotlight.
5. Change the Viewer to Options > Shaded (raw) mode.

The Viewer shows the Viewer light, and changes to the Viewer light update in the Viewer.

Viewing Your Scene | Using the OSG Viewer

USER GUIDE
258

Displaying Textures in the Viewer
If the texture maps used in your renderer's shaders are in the form of .tx or .tex files, you can show these in
the Viewer, provided they have the file suffix .tx, rather than .tex. In addition, the Viewer can render RGB and
RGBA image formats, such as .tif, .png, and .jpg. For example, create a primitive, assign it a Viewer shader
material, and map the Texture parameter of the Viewer shader material to an image file.
1. Open the recipe created in Assigning a Viewer Material Shader.
2. Edit the parameters of the Material node.
3. Expand the parameters of the viewerSurfaceShader of type KatanaPhong you added previously.
4. Expand the Texture parameter field.
5. Right-click on filename and select Wide editor.
6. Type in the path to your texture file.

7. Select Util > Flush Caches, or click on the Flush Caches button .

Observe the results in the Viewer.

Note: For you to apply texture color maps, your Viewer Surface shader must be either of the
supplied KatanaPhong, or texture types, or a custom Viewer shader that supports this feature.

Changing Specific Viewer Behavior
Lights and Shadows
To change the lighting used for the Shaded (raw & filmlook) shading models:
• Select Display > Lighting > Off - this removes all lights from the Viewer.
• Select Display > Lighting > Selected Lights (or press 8) - all selected lights contribute to the lighting in

the Viewer.
• Select Display > Lighting > All Lights (or press 7) - all lights within the scene contribute to the lighting in

the Viewer.

To change whether shadows are used for the Shaded (raw & filmlook) shading models:
• Select Display > Shadows > Off - no shadows from lights are used in the Viewer.

Viewing Your Scene | Using the OSG Viewer

USER GUIDE
259

• Select Display > Shadows > Selected Lights - all selected lights create shadows for the lighting in the
Viewer.

• Select Display > Shadows > All Lights - all lights create shadows for the lighting in the Viewer.

Multi-sample Anti-aliasing
Multi-sampling, also known as multi-sample anti-aliasing (MSAA), is one method for achieving full-screen
anti-aliasing (FSAA). With multi-sampling, each pixel at the edge of a polygon is sampled multiple times. For
each sample-pass, a slight offset is applied to all screen coordinates. This offset is smaller than the actual size
of the pixels. By averaging all these samples, the result is a smoother transition of the colors at the edges.
Unlike super-sampling (SSAA), which can result in the same pixel being shaded multiple times per pixel,
multi-sampling runs the fragment program just once per pixel rasterized. However with MSAA multiple
depth/stencil comparisons are performed per pixel, one for each of the sub-samples, which gives you sub-
pixel spatial precision on your geometry and nice, smoothed edges on your polygons.

The OpenGL driver for the graphics card returns a value for GL_MAX_SAMPLES. This value indicates the
maximum supported number of samples for multi-sampling you can have.

To change the multi-sample anti-aliasing:
• Select Display > Anti-Aliasing > Off - multi-sample anti-aliasing is not applied.
• Select Display > Anti-Aliasing > Quarter - a quarter of the maximum supported number of samples are

applied.
• Select Display > Anti-Aliasing > Half - half the value of the maximum supported number of samples are

applied.
• Select Display > Anti-Aliasing > Full - the full value of the maximum supported number of samples are

applied.

Note: Full-quality MSAA may have a negative impact on real-time performance on lower-end
machines.

Tip: Visit http://opengl.gpuinfo.org/ to search the value for your graphics card.

Anti-Aliasing Settings
To change the anti-aliasing for lines and points:
• Select Display > Smoothing > Off - anti-aliasing is not applied to either points or lines.
• Select Display > Smoothing > Points - toggles point anti-aliasing in the Viewer.

Viewing Your Scene | Using the OSG Viewer

http://opengl.gpuinfo.org/

USER GUIDE
260

• Select Display > Smoothing > Lines - toggles line anti-aliasing in the Viewer.

Proxies
To change how proxies are displayed:
• Select Display > Proxies > Bounding Box (or press Ctrl+B) - only proxy bounding boxes are displayed.
• Select Display > Proxies > Geometry (or press Ctrl+G) - only proxy geometry is displayed.
• Select Display > Proxies > Both (or press Ctrl+Shift+G) - both proxy geometry and proxy bounding

boxes are displayed.

Note: If no proxies have been associated with the geometry, bounding boxes are not
automatically calculated.

Selected Locations
By default the Viewer tab highlights (with a white wireframe) the location(s) that are currently selected.

To change the way Katana displays selected locations, select Display > ... while selected > ...

Note: Any display changes made only affect locations while they are selected.

Dragging Behavior
For some scenes with complicated geometry or lighting it may make sense to lower the display quality while
dragging geometry or lights around the scene.

To change the way Katana displays the scene while dragging, select Display > ... while dragging > ...

Note: Any settings within this menu override the default display behavior while something within
the viewer is being dragged.

Viewing Your Scene | Using the OSG Viewer

USER GUIDE
261

Background Color
The background color for the tab can be changed to make the scene easier to read, to reduce eye fatigue, or
to better match the background color when rendered.

To change the background color, select Display > Background Color > ... :
• Black (or press T)
• Gray (or press Alt+T)
• White (or press Shift+T)

Setting Different Display Properties
for Some Locations
You can override the currently selected display method for a number of locations within the Viewer tab
using the ViewerObjectSettings node. To change how one or more locations are displayed:
1. Add a ViewerObjectSettings node to the recipe at some point before the current view node.
2. Select the ViewerObjectSettings node and press Alt+E.

The ViewerObjectSettings node becomes editable within the Parameters tab.
3. Assign the scene graph geometry locations of the objects to influence to the CEL parameter. See

Assigning Locations to a CEL Parameter for more on using CEL parameter fields.
4. Set any changes to how the locations should be displayed using the node’s parameters. The following

display options can be set:
(in the drawOptions parameter grouping)
• hide - when set to Yes, the selected locations are hidden (as are their children).
• fill - changes how the location is displayed, as points, as a wireframe, as a solid, or to use the

Viewer’s default render type (inherit).
• light - changes the lighting model to either the simple shaded model (default) or the current viewer

shader (shaded). When set to shaded, the default viewer shader is used if none is currently assigned.
Changing an object or lights viewer shader is done in the same way as assigning any other shader. See
Material Basics for more information.

• smoothing - changes whether locations have aliasing. You can have aliasing on points, lines, or both
(or it can be turned off).

Viewing Your Scene | Using the OSG Viewer

USER GUIDE
262

• windingOrder - sets whether the location should be drawn with a clockwise or counterclockwise
winding order. The correct value depends on how the imported geometry was exported from its
original package.

• pointSize - when displaying the location using the points display type, this option sets the size of the
points.

For example, the following image shows two objects, both of which have the same PRMan and Viewer
Shader material applied. The Viewer is in Shaded (raw) mode, so each object is lit, and textured.

The next image shows the same scene, with the addition of a ViewerObjectSettings node. The CEL in the
node points to the pony, and the drawOptions parameters fill setting is set to Wireframe. The Viewer’s
draw mode for the pony object is overridden.

(in the annotation parameter grouping)
• text - displays this text with the location.
• color - the background color of the annotation text.
• pickable - when set to No, you can no longer select the object in the Viewer.

Viewing Your Scene | Using the OSG Viewer

USER GUIDE
263

For example, the following image shows two objects, both of which have the same PRMan and Viewer
Shader material applied. There is a ViewerObjectSettings node overriding the Viewer mode for the pony, and
showing a label with the contents of the text field in the annotation parameters. The background color of
the label is taken from the color field in the annotation parameters.

Overriding the Display Within a Specific Tab

You can change the shading settings in a specific tab to reduce or improve the quality. This is useful when
positioning a light in one tab while viewing the effect in another.

To change a Viewer tab’s display, use the Options menu in the bottom-left of the tab. Each menu option
corresponds to a similar one under the Display menu and acts as an override. To remove any override use
No Change.

Stepping Through the Selection
History
Katana tracks what is selected in the scene graph. You can step backward and forward through this selection
history.

To step backward through the selection history, select Selection > History Backward (or press Backspace).

To step forward through the selection history, select Selection > History Forward (or press
Shift+Backspace).

Viewing Your Scene | Using the OSG Viewer

USER GUIDE
264

Changing the View Position
You can change which object you are viewing through and that object’s position and orientation. This makes
light and camera positioning easy. To change the view’s current position and orientation:

Shortcut Action

Alt+left-click and drag Tumbles the view around its center of interest.

Alt+middle-click and drag Tracks the view.

Alt+right-click and drag Dollies the view forward (drag right) and back (drag left).

Note: Looking through a location with no xform attribute does not allow you to move the object
within the Viewport. To enable transformation of a scene graph location, add a Transform3D node
and assign the location to the node’s path parameter.

Note: In many Linux windows managers, the Alt key is used by default as a mouse modifier key.
This can cause problems in 3D applications where Alt is used for camera navigation in 3D
environments.

You can use key mapping to assign the mouse modifier to another key, such as the (Super or
Meta) key, but the method changes depending on which flavor of Linux you're using. Please refer
to the documentation on key mapping for your particular Linux distribution for more information.

Choosing a Light or Camera to Look
Through
The view from a viewport comes from either a light or a camera. You can change the view to a different light
or camera to make placement easier or to help with composition. To set this:
1. Click the text at the bottom of the Viewer (such as perspShape).

This brings up a list of available lights and cameras.

Viewing Your Scene | Using the OSG Viewer

USER GUIDE
265

2. Filter the list to find the camera or light you want. To filter the list you can:
• Uncheck the Cameras checkbox to remove cameras from the list.
• Uncheck the Lights checkbox to remove lights from the list.
• Type text into the Filter field to only display items that contain the text.

3. Select the required light or camera from the list.

Alternatively, you can also:
1. Click the text at the bottom of the Viewport (such as perspShape).

This brings up a list of lights and cameras.
2. Click New persp view to look through a new perspective camera.

The camera and lights displayed in the filter list are populated in four ways:
• Cameras from the globals.cameraList at the /root/world location.
• Lights from the lightList attribute at the /root/world location.
• The default four cameras (persp, top, front and side) along with any new cameras created with the

New- persp view button in the filter list.
• The current render camera (such as set with the RenderSettings node).

Note: Cameras with a scene graph location can be identified by the icon by their name in the
filter list.

Selecting the View from the Camera List

1. Click to bring up the camera list.

2. Type text into the Filter field to only display cameras that contain the text.
3. Select the camera to look through from the list.

Alternatively, you can also:

1. Click to bring up the camera list.

2. Click New persp view to look through a new perspective camera.

Selecting the View from the Light List

1. Click to bring up the light list.

2. Type text into the Filter field to only display lights that contain the text.

Viewing Your Scene | Using the OSG Viewer

USER GUIDE
266

3. Select the light to look through from the list.

Selecting the View from a Scene Graph Location
1. Select the scene graph location to look through.

2. Click .

Tip: Text entered into the Filter field of the view selection dialogs may contain some basic regular
expression patterns, such as ranges [a-z].

Tip: If you want to look through a particular object, you can select it in the Viewer and click , or
press V when the object is selected.

Looking Around the Viewport by
Offsetting and Overscanning
Looking around the Viewport without actually moving the camera is especially useful when a camera has
been brought in from another package - representing a camera track for instance - and you don’t want to
change its position or orientation.

To look around inside the Viewport:

1. Click to bring up the pan/zoom toolbar.

2. To make changes to the current view:
• Type in the hOff field to pan left (negative value) or right (positive value).
• Type in the vOff field to pan up (positive value) or down (negative value).
• Type in the overscan field to zoom in (value between zero and one) or out (value above one).

3. Click Reset to restore defaults.

Tip: All three text fields can be scrubbed by dragging on their names.

Viewing Your Scene | Using the OSG Viewer

USER GUIDE
267

While you have the toolbar up the Pan-zoom active warning text is displayed in the top-left corner of the
Viewport. When hOff, vOff, or overscan values change from their defaults, Katana displays a warning icon

on the left of the toolbar.

Changing What is Displayed Within
the Viewport
Customizing the Viewer or individual viewports to only display the information you need can help speed up
your workflow.

Hiding and Unhiding Objects Within the Scene
Objects within the Viewer can be hidden from view. To do this:
1. Select the object(s) within the Viewer (or select the locations within the Scene Graph tab).
2. Select Selection > Hide (or press H).

Elements are hidden is displayed in all viewports when one or more objects are hidden. If you want to make
all hidden objects visible again, select Selection > Unhide All (or press U).

Changing the Subdivision Level of a Subdivision Surface
Subdivision surfaces (Subds) are a form of polymesh that allows greater detail to be defined in certain areas
of a mesh while keeping the rest of the mesh at a rough lower level.

To change the displayed level of a subdivision surface:
1. Select the object(s) you want to change.
2. Select Selection > Subd Level ... (or press 0, 1, 2, or 3).

Note: Use higher levels of subdivision with caution as they can be expensive to calculate.

Viewing Your Scene | Using the OSG Viewer

USER GUIDE
268

Toggling Grid Display
Katana displays a grid to help you get a sense of scale, the origin’s location, and the orientation of the XZ
plane.

To toggle displaying the grid, select Display > Grid (or press G).

Using Manipulators
Manipulators provide a visual way for you to edit parameters of applicable nodes in the node graph that
contribute to the selected scene graph location. Each manipulator is only available for locations created by
nodes that have a parameters corresponding to that manipulator. For example, if you select a location in the
scene graph, you can only move it with a translation manipulator in the Viewer if the nodes that create it
have parameters that map to an interactive transform, such as a light created by a GafferThree or LightCreate
node, a primitive created by a PrimitiveCreate node, or a mesh with a Transform3D node targeted to its
scene graph location.

Toggling Manipulator Display

Manipulator Description Example

No
Manipulator

No Transform
Manipulator

Select Manipulators > No Manipulator to remove enabled manipulators
of any kind.

Selected Manipulators > No Transform Manipulator, or press Q, to
remove any enabled transform manipulators.

Viewing Your Scene | Using the OSG Viewer

USER GUIDE
269

Manipulator Description Example

Translate

Translate
(world)

Select Manipulators > Translate (or press W) to toggle the local space
translate manipulator on or off.

Select Manipulators > Translate (world) (or press S) to toggle the world
space translate manipulator on or off.

Rotate

Rotate (world)

Select Manipulators > Rotate, or press E, to toggle the local space
rotation manipulator on or off.

Select Manipulators > Rotate (world), or press D, to toggle the world
space rotation manipulator on or off.

Scale Select Manipulators > Scale, or press R, to toggle the scale manipulator
on or off.

No Tool
Manipulator

Select Manipulators > Measurement Tool to remove the measurement
tool manipulator from the viewer.

Viewing Your Scene | Using the OSG Viewer

USER GUIDE
270

Manipulator Description Example

Measurement
Tool

Select Manipulators > Measurement Tool, or press Tab, to display a
measurement manipulator in the viewer.

This tool isn't linked to your selected object, but can be used to measure
the placement of the object when transforming.

To remove the measurement tool, you can select No Tool Manipulator or
No Manipulator from the dropdown menu, however, selecting No
Manipulator also clears all other manipulators displayed in the viewer.

Pin
Manipulator

Select Manipulators > Pin [manipulator type], or press P, to pin the
manipulator in the viewer so that its geometry and handles can still be
drawn and made available when choosing a different manipulator from
the same group. For example, this allows you to keep the geometry of a
Cone Angle manipulator for a spot light visible, while modifying the light's
properties with the Decay Regions manipulator.

The Pin [manipulator type] label changes depending on what
manipulator is selected. If no manipulator is selected, the labels displays as
Pin Manipulator in the dropdown menu.

Increase Size Select Manipulators > Increase Size, or press = (equal sign), to increase
the size of the manipulator in relation to the selected object.

Viewing Your Scene | Using the OSG Viewer

USER GUIDE
271

Manipulator Description Example

Decrease Size Select Manipulators > Decrease Size, or press - (minus sign), to decrease
the size of the manipulator in relation to the selected object.

Selected Object: Light

The following manipulator options are only available if the selected object in the viewer is a light.

There are also light-specific options in the manipulators dropdown menu, however these are largely
renderer-specific and are not defined by Katana.

Please consult your renderer's documentation for information regarding these options.

Center of
Interest

Select Manipulators > Center of Interest, or press W, to toggle the
center of interest manipulator.

This allows you to adjust where the center of interest lies before
transforming a light based on the center of interest, or COI.

Translate
Around COI

Select Manipulators > Translate Around COI, or press S or Tab, to
toggle the translate around center of interest manipulator on or off.

Viewing Your Scene | Using the OSG Viewer

USER GUIDE
272

Manipulator Description Example

Rotate Around
COI

Rotate Around
COI (world)

Select Manipulators > Rotate Around COI, or press E or Tab, to toggle
the local rotate around center of interest manipulator on or off.

Select Manipulators > Rotate Around COI (world), or press E or Tab, to
toggle the world rotate around center of interest manipulator on or off.

Note: Selecting Rotate Around COI sets the rotate Manipulator
to the position of the center of interest of the selected object,
oriented to the local space of the selected object.

Toggling Annotation Display

Some manipulators have Annotations to display parameter values. You can turn these Annotations off.

To toggle displaying Annotations for manipulators, select Display > Annotations (or press Shift+~).

For example, selecting a light of type KatanaSpotlight, then selecting Manipulators > Barn Door shows
the interactive Manipulators for the lights barn door parameters, along with Annotations showing the barn
door parameter names, and their values.

If you select Display > Annotations (or press Shift+~), the Annotations are removed, but the Manipulator
remains.

Viewing Your Scene | Using the OSG Viewer

USER GUIDE
273

Toggling the Heads Up Display
(HUD)
Within Katana each Viewer tab has its own axis orientation guide in the bottom-left corner. The default
perspective camera (and any other perspective cameras made with the New persp view button) has a
manipulator in the top-right corner to change the cameras position to a view axis, or three quarter view,
centered on the current selection. You can hide these features.

To toggle the display of the Heads Up Display (HUD), select Display > HUD.

Displaying Normal Information
Within the Viewer
Katana gives you the ability to display object normals. To toggle normal display within the Viewer select
Display > Normals (or press N).

To change the normals display length:
• select Draw Normals > Scale ... , or
• enter the required normal size in viewerSettings.normalsDisplayScale in the Project Settings tab.

Viewing Your Scene | Using the OSG Viewer

USER GUIDE
274

Transforming an Object in the
Viewer
Using translation Manipulators you can move, rotate, and scale objects within the Viewer. With the Quick
Editor you can change the translation Manipulator’s coordinate systems, plane axis, and whether the
Manipulator snaps. You can also manually type values for any parameters represented by the Manipulator.
To display the Quick Editor, make sure you have nothing selected, select the menu option Layout > Show
Quick Editor (or press the A key). Then select an object, and a Manipulator to modify that Manipulator’s
settings.

For example, activate Snap on the Translate Manipulator, and snap one primitive onto another.
1. Create a Primitive using a Primitive Create node.
2. Add another Primitive, using a Primitive Create node.
3. Create a Merge node, and connect each Primitive to it.
4. Move one Primitive away from the other.
5. Select Layout > Show Quick Editor (or press the A key).
6. Select the Primitive you want to snap onto the other.
7. Select Manipulators > Translate (or press W).
8. Expand the Translate Options group, and change the Snap option to Centroid.
9. Drag one Primitive over the other, and it Snaps to the Centroid of the second Primitive.

Viewing Your Scene | Using the OSG Viewer

USER GUIDE
275

Note: Depending on your screen resolution, you may need to expand the size of the Quick Editor
to see all of the available options. To expand the Quick Editor window, left-click and drag on its
border.

To translate an object in its local coordinate system:
1. Select the object to translate.
2. Select Manipulators > Translate (or press W).

To translate an object in the world coordinate system:
1. Select the object to translate.
2. Select Manipulators > Translate (world) (or press S).

To rotate an object in its local coordinate system:
1. Select the object to rotate.
2. Select Manipulators > Rotate (or press E).

To rotate an object in the world coordinate system:
1. Select the object to rotate.
2. Select Manipulators > Rotate (world) (or press D).

Note: Pressing D a second time makes the rotate (world) manipulators appear around the Center
of Interest (COI).

Viewing Your Scene | Using the OSG Viewer

USER GUIDE
276

To scale an object:
1. Select the object to scale.
2. Select Manipulators > Scale (or press R).

To remove all transform manipulators, select Manipulators > No Transform Manipulator (or press Q).

Manipulating a Light Source
In addition to the translation and rotation Manipulators covered in Using Manipulators. Katana offers
Manipulators to interactively adjust light parameters. Some parameters easily changed with a Manipulator
are: barn doors, the cone angle, decay regions, and its Gobo. The light itself must have the required
parameters in order to use the manipulator, for instance you cannot use the barn door manipulator on a
light, which does not support barn doors (the menu option would not be displayed).

Note: Custom lights need to both support the function represented for a Manipulator to show,
and have matching parameter names.

Manipulating the Barn Doors for a Light
1. Select the light to manipulate.
2. Select Manipulators > Barn Door.
3. Move one or more of the nine square manipulators to the desired position.

Viewing Your Scene | Using the OSG Viewer

USER GUIDE
277

Note: Each parameter is defined by a value between 0 and 1.

Changing a Light’s Center of Interest
1. Select the light to manipulate.
2. Select Manipulators > Center of Interest.
3. Move the circular manipulator to where you wish the light to point.

Changing a Light’s Cone Angle
1. Select the light to manipulate.
2. Select Manipulators > Cone Angle.
3. Move the two manipulators to change the inner and outer cone angles.

Viewing Your Scene | Using the OSG Viewer

USER GUIDE
278

Changing a Light’s Decay Regions
1. Select the light to manipulate.
2. Select Manipulators > Decay Regions.
3. Move the four manipulators to change the distance of the decay regions from the light source.

Scaling and Positioning a Lights Gobo
1. Select the light to manipulate.

Viewing Your Scene | Using the OSG Viewer

USER GUIDE
279

2. Select Manipulators > Slide Map.
3. Move the Gobo with the translate manipulators.
4. Scale the Gobo with the scale manipulators.

Rotating the Light Around Its Center of Interest
1. Select the light to manipulate.
2. Select Manipulators > Rotate Around COI.
3. Use the rotate manipulator to move the light around the center of interest.

Moving the Light While Keeping it Pointed at Its Center of Interest
1. Select the light to manipulate.
2. Select Manipulators > Translate Around COI.
3. Move the light with the translate manipulator.

The light remains pointed towards its center of interest.

Positioning a Light so Its Specular Highlight is at a Specific Point

Use Manipulators > Place Specular to position a selected light at the Center of Interest (COI) distance from
a selected point on a surface, with the light’s Z axis aligned with the surface Normal at that point. For
example, create a primitive sphere, and a spotlight, then use Place Specular to position and orient the light.

Viewing Your Scene | Using the OSG Viewer

USER GUIDE
280

1. Create a Primitive using a PrimitiveCreate node, and leave the type as the default Sphere.
2. Create a GafferThree node and add a light of type KatanaSpotlight.

See Creating a Light Using the GafferThree Node for information on how to add lights to your scene
using a GafferThree node.

3. Edit the centerOfInterest parameter of your light, to a distance of your choice.

4. Create a Merge node and connect the Primitive and GafferThree nodes to it.
5. Expand the scene graph at the Merge node and view your Katana Spotlight, and Primitive in the Viewer.

See Viewing the Scene Graph for information on viewing the scene graph.

6. Select your light in the Scene Graph tab, or by clicking on its icon in the Viewer tab.

Viewing Your Scene | Using the OSG Viewer

USER GUIDE
281

7. In the Viewer tab, select Manipulators > Place Specular.
8. Click on the surface of the sphere, where you want the specular highlight to display.

Katana moves the selected light to a point coincident with the chosen point on the surface, aligned with
its Z axis parallel to the surface Normal, and translated the COI distance along Z.

9. If you set the Viewer to look through your camera, you’ll see that - with Place Specular active - you can
click on the sphere in the Viewer where you want the specular highlight to appear, then render, and the
light position and orientation adjust accordingly.

See Choosing a Light or Camera to Look Through for information on how to set the Viewer’s look through
object.

Tip: To move forward through the light manipulator list, press the Tab key. To move backward
through the list, press Shift+Tab. To have no light manipulator, press Shift+Q.

Using Stereo Cameras in the OSG
Viewer
When designing scenes for stereo displays, you may need to preview each side of the view (left eye/right
eye) to make appropriate adjustments. To support this, the OSG Viewer has stereo mode controls. These
allow you to assign a left and right camera in addition to the main camera. You can then switch the viewpoint
between your main, left, and right cameras.

Viewing Your Scene | Using the OSG Viewer

USER GUIDE
282

Note: To use stereo mode you must have a rig with the left and right cameras in place. For
example, you can add and name cameras using CameraCreate nodes, or you can import a pre-
configured rig.

The OSG viewer also provides a stereo option to view your scene stereoscopically as an anaglyph. The scene
is represented as two separate images (red and cyan), which are seen as a single 3D image when viewed with
3D glasses.

Using the Stereo Controls
1. Click the stereo controls toggle to reveal the controls.

2. The selector on the left (labeled 'Selector' in the diagram above) lets you choose the view camera. The
selector has three options: Main, Left, Right, and Stereo.
Left and Right correspond to the two cameras that are selected in the left and right camera dropdowns
(to the right of the camera selector). Click on these dropdowns to change the left and/or right camera
selection.
The Main camera corresponds to the one shown in the camera selector (labeled 'Main camera' in the
diagram) at the bottom of the viewer.

3. You can see an anaglyph of the scene by selecting Stereo. This draws a stereoscopic 3D version of the
scene using red and cyan images for viewing through compatible glasses.

Viewing Your Scene | Using the OSG Viewer

USER GUIDE
283

Using the Hydra Viewer
Katana's Hydra Viewer presents a fast and flexible way of previewing locations in the scene graph. There are
several features unique to the Hydra Viewer, including:

l Performance Improvements - The Hydra Viewer is several order of magnitudes faster than the
OSG Viewer when drawing geometry.

l Center of Interest - A fully controllable point of origin for light and camera transforms.
l Group transforms -Select groups of objects and apply transforms using a single manipulator.
l Geometry subdivision - Draw geometry to three levels of subdivision.

The Viewer (Hydra) tab provides one or more 3D windows into the scene described by the scene graph.
Only locations that are exposed within the Scene Graph tab are represented in the Viewer - the exception
being pinned locations.

You can interactively modify parameters, on some nodes contributing to a scene graph location, using
Manipulators within the Hydra Viewer. The manipulators available vary depending on the scene graph
location selected, and the nodes that created it.

To access the Hydra Viewer, navigate to Tabs > Viewer (Hydra).

Viewing Your Scene | Using the Hydra Viewer

USER GUIDE
284

The Viewer (Hydra) incorporates Lighting Tools, an enhanced lighting environment for artists. For full
information about Lighting Tools workflows, see Lighting Tools.

Changing the View Position
You can change which camera or light you are viewing through and their position and orientation. This
makes light and camera positioning easy. To change the view’s current position and orientation:

Shortcut Action

Alt+left-click and drag Tumbles the view around its center of interest.

Alt+middle-click and drag Pans the view.

Alt+right-click and drag Dollies the view forward (drag right) and back (drag left).

Note: Looking through a location with no xform attribute does not allow you to move the object
within the Viewport. To enable transformation of a scene graph location, add a Transform3D node
and assign the location to the node’s path parameter.

Note: In many Linux windows managers, the Alt key is used by default as a mouse modifier key.
This can cause problems in 3D applications where Alt is used for camera navigation in 3D
environments.

You can use key mapping to assign the mouse modifier to another key, such as the (Super or
Meta) key, but the method changes depending on which flavor of Linux you're using. Please refer
to the documentation on key mapping for your particular Linux distribution for more information.

Changing What You Look Through
The view from a viewport comes from either a light or a camera. You can change the view to a different light
or camera to make placement easier or to help with composition. To set this:
1. Click the text at the bottom of the Viewer (Hydra) tab (such as persp).

This brings up a list of available lights and cameras.

Viewing Your Scene | Using the Hydra Viewer

USER GUIDE
285

Note: The default cameras are persp, side, front, and top.

2. Filter the list to find the camera or light you want. To filter the list you can:
• Uncheck the Cameras checkbox to remove cameras from the list.

Cameras with a scene graph location can be identified by the icon in the filter list.

• Uncheck the Lights checkbox to remove lights from the list.

Lights with a scene graph location can be identified by the icon in the filter list.

• Type text into the Filter field to only display items that contain the text.
Text entered into the Filter field of the view selection dialogs may contain some basic regular
expression patterns, such as ranges [a-z].

3. Select the required light or camera from the list.

Viewing Your Scene | Using the Hydra Viewer

USER GUIDE
286

Note: The camera and lights displayed in the filter list are populated in four ways:
• Cameras from the globals.cameraList at the /root/world location.
• Lights from the lightList attribute at the /root/world location.
• The default four cameras (persp, side, front and top).
• The current render camera (such as set with the RenderSettings node).

Pan and Zoom
The Horizontal/Vertical Offset (pan) and Zoom controls allow you to adjust the Viewport position without
actually moving the camera. This is useful when a camera has been loaded from another package (such as
when representing a camera track) and you don’t want to change its position or orientation.

Note: The render window bounding box (the view from the render camera) is shown in the
viewport using a green dotted box.

To pan and zoom the selected camera in the Hydra Viewer:

Viewing Your Scene | Using the Hydra Viewer

USER GUIDE
287

1. Click to bring up the pan/zoom controls.

2. To make changes to the current view:
• enter a parameter value to jump to that position, or
• click-and-hold on the parameter label and slide (scrub) the mouse left or right.

Parameters include:
• Horizontal Offset - pan left (negative value) or right (positive value).
• Vertical Offset - pan up (positive value) or down (negative value).
• Zoom - Zoom in (1 and above) or out (0 to 1).

Tip: All three text fields can be scrubbed by dragging on their names.

3. Click Reset to restore defaults.

If offset and zoom values are non-zero, Katana displays a warning icon on the left of the toolbar to
indicate that a transform is active.

Selecting Objects and Faces

Video: Watch this short video to learn how to select faces and objects in the Hydra Viewer.

Selecting Faces
To select faces on your geometry:
1. In the Viewport, click an object.

2. Click the Select Faces button to enable the Face Selection mode .

Your object displays in a blue color showing that the Face Selection mode is enabled.

Viewing Your Scene | Using the Hydra Viewer

https://www.youtube.com/watch?v=vNze1s67HXs

USER GUIDE
288

3. Select faces on your object using the marquee tool.
Your object displays the selected faces in an orange color.

4. Hold Ctrl + Shift to select additional faces.

5. Hold Shift and then click and drag on selected faces to invert the selection.

Deselecting Faces
To deselect faces you can either:
• Deselect some faces by holding Ctrl and dragging your cursor over the selected faces.

OR
• Click in the Viewport to undo your face selection all together.

Selecting Objects
To select an object:

Click the Select Objects button to enable the Object Selection mode and click an object in the
Viewport.

Viewing Your Scene | Using the Hydra Viewer

USER GUIDE
289

To select multiple objects:

1. Click the Select Objects button to enable the Object Selection mode .

2. In the Viewport, hold Shift and select objects in the Viewport.

Note: Click in the Viewport to deselect object(s).

Using Manipulators in the Hydra
Viewer
Katana's Hydra Viewer lets you change the size and position of objects and viewpoints, as defined in the
scene graph.

A manipulator is only available for locations (created by nodes) that have compatible parameters. For
example, if you select a location in the scene graph, you can only move it with a translation manipulator if
the nodes that create it have parameters that map to an interactive transform, including:
• a light created by a GafferThree or LightCreate node,
• a primitive created by a PrimitiveCreate node, and
• a mesh with a Transform3D node targeted to its scene graph location.

Activating Manipulators
You can activate a manipulator using the Manipulators menu, keyboard shortcuts, or the button panel on
the left of the Viewer (Hydra) tab.

Viewing Your Scene | Using the Hydra Viewer

USER GUIDE
290

Click and drag the manipulator to use it.

Translate, Rotate, Scale

Translate - click the translate button or select Manipulators > Translate or
press W

Rotate - click the rotate button or select Manipulators > Rotate or press E

Scale - click the scale button or select Manipulators > Scale or press R

Viewing Your Scene | Using the Hydra Viewer

USER GUIDE
291

To deactivate a manipulator, select Manipulators > No Manipulator or press Q.

Transforming Multiple Objects
The Hydra Viewer allows you to move multiple objects simultaneously. Simply select multiple objects and
transform one of the objects. The other selected objects will follow the movement.

The Center of Interest (COI)
The Center of Interest provides an origin around which to transform a light or camera. This makes it easy to
direct a camera or light towards a particular object or region by moving the COI.

Video: Watch this video to learn more about using the Center of Interest.

Activate the Center of Interest by pressing the Center of Interest button, using Manipulators > Center of
Interest, or pressing T.

Transforming a Single Object Around the COI
1. Select an object in the Viewer or its location in the scene graph.
2. Click on the COI button or press T.

Viewing Your Scene | Using the Hydra Viewer

https://www.youtube.com/watch?v=QKBBM4BrBlg

USER GUIDE
292

s

3. Translate or rotate the COI by interacting with the manipulators. The selected object will move relative to
the position of the COI.

Transforming Multiple Objects
You can select multiple objects to move using a single COI. When you move the COI each object's own
COI will be moved relative to the movements of the COI that you are controlling. When selecting multiple
objects, the last objected selected will show its COI manipulator.
1. In the Scene Graph, Ctrl and click the objects that you wish to transform. The last object clicked is the

one that shows its COI manipulator.
2. Manipulate the COI as needed. The objects will follow.

Object and World Space
You can translate or rotate an object in either object space or world space. Object space is described in
relation to the local coordinate system of the object. World space is fixed, common to all objects, and
described by the co-ordinate system around the origin of the world in which the objects are located.

Video: Watch this video to learn more about using Object and World space in Katana's Hydra
viewer.

In the Hydra Viewer you can toggle between the spaces using the buttons at the top of the viewer or using
the S key.

Viewing Your Scene | Using the Hydra Viewer

https://www.youtube.com/watch?v=AIZubHtgRCo

USER GUIDE
293

Object Space

Translation and rotation occurs relative to the local
coordinate system.

World Space

Translation and rotation occurs relative to the world
coordinate system.

Manipulator Preferences
In Katana's main menu, open Edit > Preferences and select hydraViewer. There are two parameters for
adjusting manipulator settings:
• manipulationFreezePeriod - The Hydra Viewer delays the processing of interactive upd ates for a short

period of time. This allows updates to be processed in batches, and increases responsiveness. This setting
determines the length of this delay in milliseconds.

• scale - Adjust the size of the manipulators.

Geometry Display Options
To change the overall shading model, select View > [shading model]:

Viewing Your Scene | Using the Hydra Viewer

USER GUIDE
294

Viewer Behavior Example

• Points - this displays the current 3D scene with each vertex (or
control point for a NURBS patch) as a point.

• Wireframe - this displays the current 3D scene with each edge (or
surface curve for a NURBS patch) as a line.

Viewing Your Scene | Using the Hydra Viewer

USER GUIDE
295

Viewer Behavior Example

• Solid - this displays the current 3D scene with a very simple
shader, ignoring scene lights and shadows.

• Flat Shaded - this displays the faceted mesh. Each poly is shaded
the same for its normal, whereas Solid averages out the values
between neighboring polygons to draw a smooth transition.

The Monitor Layer in the Hydra
Viewer
The Monitor Layer is a new feature of Katana 3.5 which allows you to toggle a render view directly in the
Hydra Viewer, overlaying the geometry. This feature is especially useful when working with live renders, as
your render overlay will be constantly updated as you make changes to the scene or as you zoom, pan and

Viewing Your Scene | Using the Hydra Viewer

USER GUIDE
296

rotate within the viewer. This allows for more precision while you are working, as you don't need to switch
back and forth between the Monitor tab and the Hydra Viewer tab.

Monitor Layer Turned On

Monitor Layer Turned Off

While the Monitor Layer is turned on, you can still make selections within the viewer and the selection
feedback is integrated with the rendered image.

Viewing Your Scene | Using the Hydra Viewer

USER GUIDE
297

The Monitor Layer creates a smoother workflow for artists, as you can maximize the Hydra Viewer tab and
have a more focused UI, giving full editing control.

Using the Monitor Layer in the Hydra Viewer

To turn on the Monitor Layer in the Hydra Viewer tab, click the Monitor Layer button , or press ` on the
keyboard.

Note: You must have started a render for the overlay to appear. For more information about
rendering, see Performing a Render.

Once turned on, the following additional controls are shown in the Hydra Viewer tab:

l Monitor Layer button - Use this button to toggle the Monitor Layer on and off. When on the button

will appear yellow , and when off the button will appear gray .
l AOV selection button - Use this dropdown to select which AOV to display in the Monitor Layer.

Note: You can cycle through the AOVs in the Monitor Layer using Shift+Page Down to
move through the list from first to last, and Shift+Page Up to move from last to first. You
can also use Shift+Home to toggle between the default AOV and a previously selected
AOV.

l Color Space selection button - Use this dropdown to select which color space you would like to view
your render in.

l View Transform toggle button - Use this button to toggle on and off the view transform to the
selected Color Space.

Viewing Your Scene | Using the Hydra Viewer

USER GUIDE
298

l Image-Based Selection button - Use this button to toggle Image-Based Selection mode. For more
information, see Image-Based Selection in the Monitor Layer.

l Region of Interest - Use this to set a region of interest to render. For more information, see
Rendering a Region of Interest (ROI).

Image-Based Selection in the
Monitor Layer
Scenes rendered in Katana include scene graph location information for each pixel in the rendered image.
Image-Based Selection allows you to access this information when viewing a render from the Monitor Layer
within the Hydra Viewer.

Note: Information for Image-Based Selection is generated by default when rendering in Katana.
You can turn this off by going to:
Edit > Preferences > monitor and disabling renderIDPass.

This can be very useful especially when working with existing renders stored in the Catalog tab. While
working in the Node Graph, you may want to access an object's scene graph location to construct CEL
statements, without having to load any heavy geometry.

How to Use Image-Based Selection
Image-Based Selection is activated from the Hydra Viewer tab and is only available when the Monitor Layer
is enabled and a render is loaded.

1. Click the Monitor Layer button , or press ` (backtick) on the keyboard to activate the Monitor
Layer.

Viewing Your Scene | Using the Hydra Viewer

USER GUIDE
299

The following additional controls are shown in the Hydra Viewer tab:

Note: For more information about the Monitor Layer, see The Monitor Layer in the Hydra
Viewer.

2. Click the Image-Based Selection button or press I on the keyboard to activate Image-Based
Selection. You can also press and hold the I key to temporarily activate Image-Based Selection.

Viewing Your Scene | Using the Hydra Viewer

USER GUIDE
300

You can now interact with the image and you can no longer select geometry. The geometry does not
need to be loaded in the scene for you to make a selection using Image-Based Selection mode.

The hover selection is drawn with a yellow outline.

Note: The color used for highlighting the target selection can be customized by going to:
Edit > Preferences > viewerHydra > monitorLayer > highlightColor

3. Left-click to make a selection. For more selection controls, see the Selection Methods section of this
topic.

Viewing Your Scene | Using the Hydra Viewer

USER GUIDE
301

The selection is drawn with a yellow outline and diagonal hatching.

Note: The color used for highlighting the target selection can be customized by going to:
Edit > Preferences > viewerHydra > monitorLayer > selectionColor

The scene graph location is selected in the Scene Graph if the selected geometry is loaded in the
scene.

Note: If the selected geometry is not loaded in the scene, you can press Ctrl + E over the
Hydra Viewer to expand the locations in the Scene Graph.

Viewing Your Scene | Using the Hydra Viewer

USER GUIDE
302

This scene graph selection can be used in CEL widgets through Add Statements > Append Scene
Graph Selection / Replace with Scene Graph Selection.

Note: The geometry does not have to be loaded in the scene to use the Append Scene
Graph Selection and Replace with Scene Graph Selection options.

Viewing Your Scene | Using the Hydra Viewer

USER GUIDE
303

Single scene graph location from selection

Note: For more information, refer to the CEL Reference document found on the
documentation HTML page (accessed through Help > Documentation) or the Scene Graph
Location Widget Type section of the Common Parameter Widgets topic.

Selection Methods
When Image-Based Selection is active, selections can be made in a variety of ways:

l Left-Click - Single selection.
l Left-Click + drag - Marquee selection.

Viewing Your Scene | Using the Hydra Viewer

USER GUIDE
304

l Shift + Left-Click / Shift + Left-Click + drag - Toggle selections.
This inverts your selection.

l Ctrl+ Left-Click / Ctrl+ Left-Click + drag - Remove selections.

l Ctrl+Shift + Left-Click / Ctrl+Shift + Left-Click + drag - Append selections.

This adds to your selection.

Viewing Your Scene | Using the Hydra Viewer

USER GUIDE
305

l Click on an empty area to deselect everything.

Multiple scene graph location selections can be used in CEL widgets in the same way, through Add
Statements > Append Scene Graph Selection / Replace with Scene Graph Selection.

Viewing Your Scene | Using the Hydra Viewer

USER GUIDE
306

Multiple selections in Scene Graph

Multiple scene graph locations in CEL widget

Viewing Your Scene | Using the Hydra Viewer

USER GUIDE
307

Snapping
Snapping in the Hydra Viewer is a new feature of Katana 3.6, allowing you to snap an object's Translate or
Center of Interest manipulator to a target location's individual Vertices, Edges, Faces, Center or Object.
Snapping can be turned on and off using the Snapping tool button, or by pressing the V key. Snapping can
also be turned on temporarily by holding the V key.

When Snapping is turned on the button appears yellow , and when turned off the button appears gray

.

Note: The symbol on the button changes depending on the chosen Snapping mode.

When Snapping is activated, this is also indicated on the manipulator handle.

Viewing Your Scene | Using the Hydra Viewer

USER GUIDE
308

Default handle Handle with Snapping on

While the object's manipulator snaps to the given position, the onscreen mouse position is indicated by a
cross and square brackets, known as the hit area.

Mouse position

Note: Specify the size of the hit area by going to:
Edit > Preferences > viewerHydra > snapping

The type of snapping can be selected from the dropdown menu. You can use Shift + V to cycle through the
available Snapping mode options.

Viewing Your Scene | Using the Hydra Viewer

USER GUIDE
309

Snapping Modes

Symbol Mode Description

Vertex Snap to individual vertices.

The target vertex is outlined and highlighted, in addition to the
target mesh's snapping wireframe.

Note: Only vertices of front-facing faces are considered.

Viewing Your Scene | Using the Hydra Viewer

USER GUIDE
310

Symbol Mode Description

Edge - Center Snap to the center of an edge.

The target edge is highlighted in addition to the target mesh's
snapping wireframe.

Edge - Slide Along Snap to, and slide along an edge.

The target edge is highlighted in addition to the target mesh's
snapping wireframe.

Viewing Your Scene | Using the Hydra Viewer

USER GUIDE
311

Symbol Mode Description

Face - Center Snap to the center of target face.

The target face is highlighted in addition to the target mesh's
snapping wireframe.

Face - Center - Oriented
to Normal

Snap to the center of a given face and orient the transformed
mesh's rotation to point along the normal of the target face.

The normal is indicated by a white arrow with a dashed line.

The target face is highlighted in addition to the target mesh's
snapping wireframe.

Viewing Your Scene | Using the Hydra Viewer

USER GUIDE
312

Symbol Mode Description

Note: In Oriented to Normal modes, the OrientAxis and
UpAxis can be specified at:
Edit > Preferences > viewerHydra > snapping

Object Surface Snap to the closest point on an object's surface.

The target mesh is drawn with an outline, in addition to the target
mesh's snapping wireframe being drawn.

Viewing Your Scene | Using the Hydra Viewer

USER GUIDE
313

Symbol Mode Description

Object Surface -
Oriented to Normal

Snap to the closest point on an object's surface and orient the
transformed mesh's rotation to point along the normal of the
closest face.

The normal is indicated by a white arrow with a dashed line.

The target mesh is drawn with an outline, in addition to the target
mesh's snapping wireframe being drawn.

Note: In Oriented to Normal modes, the OrientAxis and
UpAxis can be specified at:
Edit > Preferences > viewerHydra > snapping

Object - Center Snap to the center of an object, defined by a bounding box
automatically generated by the extents of the geometry.

The center is highlighted with a crosshair icon.

The target mesh's wireframe is highlighted.

Viewing Your Scene | Using the Hydra Viewer

USER GUIDE
314

Symbol Mode Description

Object Origin Snap to the origin of an object.

The origin is highlighted with a cross-hair icon.

The target mesh's wireframe is highlighted.

Lights, Cameras, and
Locators

Snap to the center of any light, camera, or locator in your scene.
Geometry in the scene is be ignored by this mode.

The center is highlighted with a cross-hair icon.

Viewing Your Scene | Using the Hydra Viewer

USER GUIDE
315

Symbol Mode Description

Note: The color used for drawing the target mesh's snapping wireframe can be customized by
going to:
Edit > Preferences > viewerHydra > snapping > wireframeColor

Using Stereo Cameras in the Hydra
Viewer
When designing scenes for stereo displays, you may need to preview each side of the view (left eye/right
eye) to make appropriate adjustments. To support this, the Hydra Viewer has stereo mode controls. These
allow you to assign a left and right camera in addition to the main camera. You can then switch the viewpoint
between your main, left, and right cameras.

Note: To use stereo mode you must have a rig with the left and right cameras in place. For
example, you can add and name cameras using CameraCreate nodes, or you can import a pre-
configured rig.

Viewing Your Scene | Using the Hydra Viewer

USER GUIDE
316

Using the Stereo Controls
1. Click the stereo controls toggle to reveal the controls.

2. The selector on the left (labeled 'Selector' in the diagram above) chooses the view camera. The selector
has three options: Main, Left, and Right.
Left and Right correspond to the two cameras that are selected in the left and right camera dropdowns
to the right of the camera selector. Click on these dropdowns to change the left and/or right camera
selection.
The Main camera corresponds to the one shown in the camera selector (labeled 'Main camera' in the
diagram) at the bottom-left of the viewer.

Subdivision and Anti-Aliasing in the
Hydra Viewer

Subdivision
The Hydra Viewer provides three levels of subdivsion (0, 1, 2) for the geometry on display.

Using Subdivision in the Hydra Viewer
1. Select the geometry using the scene graph or viewer.

Viewing Your Scene | Using the Hydra Viewer

USER GUIDE
317

2. In the Viewer (Hydra) tab, Open Edit > Set Subdivision Level
3. Select the subdivision level.
4. Alternatively use the shortcut keys 0, 1, and 2 to set the subdivision level.
5. You can also check the active subdivision level by selecting an object and opening the menu.

Cubes at various levels of subdivision.

Anti-Aliasing in the Hydra Viewer
The Hydra Viewer offers four levels of Multi-Sample Antialsing. For more information see Specific Viewer
Behavior.

The OpenGL driver for the graphics card returns a value for GL_MAX_SAMPLES. This value indicates the
maximum supported number of samples for multi-sampling you can have.

To adjust the MSAA, select Edit > Preferences and click hydraViewer, adjust the antiAliasing setting:
• Full - the full value of the maximum number of supported samples.
• Medium - half the value of the maximum number of supported number of samples.
• Low - quarter of the value of maximum number of samples
• Off - MSAA is disabled.

Note: When you open a new Viewer (Hydra) tab, the number of samples in use for MSAA is
reported on the Katana console.

Viewing Your Scene | Using the Hydra Viewer

USER GUIDE
318

Live Rendering with the Hydra
Viewer
The Hydra Viewer features a Monitor Layer, enabling you to view a render over the top of your scene
displayed in the Hydra Viewer.

For a full overview of this feature, please refer to theThe Monitor Layer topic.

Note: For background information, see the following pages:
Using the Monitor Layer and Monitor Tab
Controlling Live Rendering
Controlling Live Rendering in the Scene Graph

Live Render from Viewer Camera
Once a Live Render has been started, you can use the Live Render from Viewer Camera button to
change the active Hydra Viewer camera to the camera that is being used in the live render. This means that
the camera defined in the RenderSettings node when can be overridden to the active Hydra Viewer camera.

Note: The Live Render from Viewer Camera button changes the render camera but does
not start a live render, there must already be an active live render for this button to have an effect.

When starting a Live Render, only the camera is added to the Live Render Working Set which means that
only changes made to the camera trigger updates to the Live Render. If you want the Live Render to update
after adjustments to other locations, these locations must be added to the Live Render Updates Working Set

by checking the appropriate box in the Live Render Updates working set of the scene graph.
For more information, see Controlling Live Rendering in the Scene Graph.

Viewing Your Scene | Using the Hydra Viewer

USER GUIDE
319

Render Delegates in the Hydra
Viewer
Render Delegates are a way to preview lighting, materials, and assets within the Hydra Viewer in the context
of your renderer. Delegates allow you to get a richer preview of your work, without the need to set a render,
and are fully customizable meaning you have control over the look and optimization of your delegate.

GL Render Delegate (default) AVP Render Delegate

Katana currently ships with the Advanced Viewport (AVP) as an out-of-the-box GL delegate and can be
accessed under the Render Delegate section of the Viewer tab.

Viewing Your Scene | Using the Hydra Viewer

USER GUIDE
320

Third-party render vendors that support Hydra Delegates can also be used within Katana, but their plugins
will need to be loaded into Katana before they can be used.

Note: For more information about loading plugins into Katana, and creating a launcher script,
refer to these Support articles:
Linux: Creating a Katana Launcher Script for Linux
Windows: Creating a Katana Launcher Script for Windows

When using delegates belonging to third-party render vendors, if their shader is present in your project, the
delegate automatically defaults to the corresponding shader. For example, a Renderman delegate
automatically defaults to using a PxrSurface if it is present in your scene, regardless of any other vendor
shaders that may be present. However, render delegates do still support basic materials and default lighting,
so renderer-specific shaders are not a necessity.

Viewing Your Scene | Using the Hydra Viewer

https://support.foundry.com/hc/en-us/articles/115000107050-Q100272-Creating-a-Katana-launcher-script-for-Linux
https://support.foundry.com/hc/en-us/articles/207354710-Q100242-Creating-a-Katana-launcher-script-for-Windows

USER GUIDE
321

Viewing USD Purposes
Within delegates, USD files with purposes set up can have their purposes enabled or disabled within the
viewer. This allows you to pick and choose what you can and can’t see in the viewer and is useful for
optimization.

Purposes can be enabled and disabled by navigating to Display > Purposes and toggling the tick box next
to the name of each purpose.

Enabling or disabling purposes are useful for scene optimization. Certain purposes like Render tend to
contain higher resolution assets and are heavier on processing as a result. Because of this, disabling Render
purposes and enabling something like Proxy or Guide allows you to work on a scene without having to
sacrifice performance.

Viewing Your Scene | Using the Hydra Viewer

USER GUIDE
322

All purpose Only Render purpose Only Proxy purpose Only Geometry purpose

Note: For more information on USD Purposes, see USD Terms and Concepts: Purpose.

Customizing Your Delegate
Delegates can be customized by accessing the Render Delegate Settings window, available in the Display
tab. The settings available in the Render Delegate Settings window will be dependant on the delegate set
to that renderer. For example, when set to GL, the settings will ve specific to the GL delegate, while settings
specific to AVP will be available when AVP is set.

Viewing Your Scene | Using the Hydra Viewer

https://graphics.pixar.com/usd/release/glossary.html#usdglossary-purpose

USER GUIDE
323

Delegate Settings for AVP and GL

Within the settings window, you can adjust the quality of the render in the viewer, as well as enable or
disable reflections, shadows, and ambient occlusion.

Delegates can also be paused or stopped at any time. The stop/pause setting can be enabled or disabled by
toggling Display > Render Delegates Toolbar.

Render delegates will only support stop or pause, but not both. Depending on the delegate, Katana will
dynamically call the option that is supported and make it available to you, while the unsupported option is
disabled. However, as stop/pause is not supported by GL rendering, these options will not be available when
using the AVP or GL delegates.

Viewing Your Scene | Using the Hydra Viewer

USER GUIDE
324

Being able to pause and stop your delegate is useful, as it allows you to continue to work on heavy scenes
without having to sacrifice performance. Once edits are made, you can unpause the delegate and any
changes will be reflected in the viewer.

You are also able to modify how selected elements are highlighted within the Viewer when using GL
renderer delegates, making selections easier to see. The selection color is also customizable, and can be
changed by navigating to Edit > Preferences> Viewer and adjusting the parameter available under
selectionColor.

At this time, standard selection modes and their customizable features are not supported when working with
non-GL render delegates.

Viewing Your Scene | Using the Hydra Viewer

USER GUIDE
325

Proxies and Bounding Boxes
Proxy geometry acts as a simplified stand-in for more complex geometry, allowing you to work with the
scene graph in the viewer without the overhead of complete geometry. Bounding boxes simplify the
representation even further by drawing a box around the region occupied by the geometry.

Detailed geometry.
The same geometry represented using
proxy geometry and bounding boxes.

The Viewer (Hydra) tab allows you to see any proxies or bounding boxes that have been defined on the
geometry.

Video: Watch this video for a quick overview on viewing Proxy geometry and bounding boxes in
the Hydra Viewer.

In order to view proxies and bounding boxes, the scene graph must be set to the right level of detail:

Viewing Your Scene | Using the Hydra Viewer

https://www.youtube.com/watch?v=I2OKKjldvDY

USER GUIDE
326

1. Collapse the scene graph by right-clicking on the required branch and select Collapse Branch or if
you're at root, select Collapse All.

2. Right-click on the branch (or root) select Expand to and Select Proxy Children.

To active bounding boxes or proxies in the Viewer (Hydra) tab, select View > Bounding Boxes or/and
View > Proxy Geometry.

Displaying Textures in the Hydra
Viewer
Displaying textures in the Hydra Viewer is useful for producing a preview of how the textures will look once
rendered. The basic principle is to create a Material node assigned with a Hydra Surface Shader and the
texture you want to apply, and a GafferThree node containing a Hydra Light Shader to light the texture in
the viewer.

Note: The Hydra Viewer can display RGB and RGBA image formats, such as .bmp, .png, and .jpg.
Texture maps in the form of .tx and .tex files are not currently supported. If textures are not
displaying as expected you can try a different file format.

Displaying Textures With Existing Materials
To display textures in the Hydra Viewer when you already have materials in the scene, you can make use of
the advanced merge options. They allow you to combine your new materials with the existing one.

Video: This video shows you how to display textures in the Hydra Viewer when you already have
materials in the scene.

Tip: For more information on advanced merge options, see Merge.

Viewing Your Scene | Using the Hydra Viewer

https://www.youtube.com/watch?v=xyucNB940zQ

USER GUIDE
327

In the video:
1. Open a scene containing geometry with a material already assigned.
2. Create a new Material node next to your existing material and give it the same name.
3. Select both your existing and new Material nodes and hit M on the keyboard to create a merge node.
4. In the Parameters tab of your new material, select Add Shader > hydra > surface.
5. From the drop down menu next to the hydraSurfaceShader parameter, select the katana_surface

option.
6. Expand the hydraSurfaceShader parameters and click the drop down menu next to diffuseTexture,

select Browse and choose your texture file.
7. Create a GafferThree node underneath your Merge node.
8. Left-click anywhere in the box within the Parameters of the GafferThree node and hit L on the

keyboard to create a new light.
9. Select the material tab and click Add Shader > hydra > light.

10. From the drop down menu next to hydraLightShader select the katana_spot option to create a spot
light.

11. Select the merge node you created earlier and choose Yes from the showAdvancedOptions drop
down menu to view the advanced merge options.

12. Expand the advanced options and select Add > New Entry from the mergeGroupAttributes
parameter.

13. Type "material" into the mergeGroupAttributes text field to specify the name of the group attribute
that you want to be merged between the two inputs.

Note: Be sure to replace the connection from the output of your existing material with your new
GafferThree node output so that it is linked to the rest of your scene.

Displaying Textures Without Existing Materials
If your geometry does not have existing materials assigned, follow this video to achieve the same result
without the need for advanced merging.

Note: This tutorial video shows the node graph, including the Material, MaterialAssign and
GafferThree nodes, already set up but with default parameters.

Viewing Your Scene | Using the Hydra Viewer

https://www.youtube.com/watch?v=2IQwwBOalGY

USER GUIDE
328

In the video:
1. Select the Material node.
2. In the Parameters tab of your new material, select Add Shader > hydra > surface.
3. From the dropdown menu next to the hydraSurfaceShader parameter, select the katana_surface

option.
4. Expand the hydraSurfaceShader parameters and click the dropdown menu next to diffuseTexture,

select Browse, and choose your texture file.
5. Select the MaterialAssign node and view its parameters.
6. From the Scene Graph, use the middle-mouse button to drag the material over to the materialAssign

text field.
7. Select Add Statements > Paths to create a text field for your geometry path.
8. From the Scene Graph, use the middle mouse button to drag your geometry over to the Paths text

field.
9. Select the GafferThree node and view its parameters.

10. Right-click anywhere in the box within the Parameters of the GafferThree node and select Add >
Light to create a new light.

11. Select the material tab and click Add Shader > hydra > light.
12. From the drop down menu next to hydraLightShader select the katana_distant option to create a

distant light.
13. Increase the Intensity to 10 to brighten the scene and view your material.

UsdPreviewSurface in the
Hydra Viewer
The Hydra Viewer in Katana allows you to view geometry loaded in your scene. By default, the geometry is
drawn using a Hydra shader which doesn't interact with lights in your scene, or provide a preview of your
materials.

UsdPreviewSurface is one of many USD shading nodes that allow you to view materials, lights and shadows
in the Hydra Viewer. This is very useful as it provides artists with a preview of what their scene looks like
without needing to perform a render. It allows you to experiment with material properties, such as
roughness or specularity, and immediately see the changes you make in the Hydra Viewer.

Viewing Your Scene | Using the Hydra Viewer

USER GUIDE
329

Loading USD Plug-ins

Find out how to load the USD plug-ins into Katana.

Setting up USD Materials

Discover how to assign UsdPreviewSurface materials to your objects and view them in the Hydra Viewer.

Using USD Lights

Learn how to set up USD lights in your scene and view them in the Hydra Viewer.

Loading USD Plug-ins into Katana
In Katana 4.5v1, and later, USD plug-ins are enabled by default. You don't need to define any environment
variables, you can use USD plug-ins straight away.

Viewing Your Scene | Using the Hydra Viewer

USER GUIDE
330

To use the USD nodes inside versions of Katana earlier than 4.5v1, you must first enable the USD plug-ins so
that they are loaded when you open Katana.

To do this, you must edit your KATANA_RESOURCES, LD_LIBRARY_PATH (PATH on Windows), and
PYTHONPATH in your Katana launcher script and add the USD plugin folder.

Note: For more information about creating a launcher script for Katana, refer to these Support
articles:
Linux: Creating a Katana Launcher Script for Linux
Windows: Creating a Katana Launcher Script for Windows

1. Add the following lines to your launcher script:

Note: <KATANA_ROOT> represents the path to your Katana install folder, for example:
C:\Program Files\Katana4.0v1

Windows
set PATH=%PATH%;<KATANA_ROOT>\plugins\Resources\Usd\lib
set KATANA_RESOURCES=%KATANA_RESOURCES%;<KATANA_ROOT>\plugins\Resources\Usd\plugin
set PYTHONPATH=%PYTHONPATH%;<KATANA_ROOT>\plugins\Resources\Usd\lib\python

Linux
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:<KATANA_ROOT>/plugins/Resources/Usd/lib
export KATANA_RESOURCES=$KATANA_RESOURCES:<KATANA_ROOT>/plugins/Resources/Usd/plugin
export PYTHONPATH=$PYTHONPATH:<KATANA_ROOT>/plugins/Resources/Usd/lib/python

2. Launch Katana using the launcher script and the additional USD node types are available from the
node creation menu.

Viewing Your Scene | Using the Hydra Viewer

https://support.foundry.com/hc/en-us/articles/115000107050-Q100272-Creating-a-Katana-launcher-script-for-Linux
https://support.foundry.com/hc/en-us/articles/207354710-Q100242-Creating-a-Katana-launcher-script-for-Windows

USER GUIDE
331

Additional USD nodes Additional USD shading nodes

A usd menu is also loaded on the Terminal sidebar inside NetworkMaterialCreate nodes.

Viewing Your Scene | Using the Hydra Viewer

USER GUIDE
332

Note: For more information on USD plug-ins for Katana, refer to the Katana USD Plug-ins section
in the Developer Guide.

Setting up USD Materials
You can use UsdPreviewSurface shading nodes to build USD materials. You can then assign these materials
to your object and view the result in the Hydra Viewer.

UsdPreviewSurface shading node types are accessible from the USD shading node creation menu inside
NetworkMaterialCreate nodes.

To use UsdPreviewSurface to display materials in the Hydra Viewer:

1. Load the USD plug-ins into Katana by following the steps in the Loading USD Plug-ins into Katana
topic.

2. Create a NetworkMaterialCreate node and jump inside it, or jump inside an existing
NetworkMaterialCreate node.

Viewing Your Scene | Using the Hydra Viewer

https://learn.foundry.com/katana/dev-guide/Plugins/KatanaUSDPlugins/index.html

USER GUIDE
333

Note: If you are using an existing NetworkMaterialCreate node, you may need to refresh the
Sidebar Terminal to see the usd outputs. To do this, open the Parameters for the

NetworkMaterialCreate node and choose Shelf Actions > Refresh Sidebar Terminal.

3. Press Shift + Tab to open the renderer selection menu and choose USD.

4. Press Tab to open the USD shading node creation menu.
5. Select UsdPreviewSurface and place the node.

Viewing Your Scene | Using the Hydra Viewer

USER GUIDE
334

6. Connect the surface output from the UsdPreviewSurface node to the usdSurface input under the
usd drop-down in the Terminal sidebar.

7. Open the Parameters for the UsdPreviewSurface and make the required adjustments.
8. Use a MaterialAssign node to assign the material to your geometry.

Note: For more information about assigning materials, see the Assigning Materials and
Textures section of the Material Basics topic.

9. In the Viewer (Hydra) tab, click View and disable Basic Material to preview your USD material.

Viewing Your Scene | Using the Hydra Viewer

USER GUIDE
335

In the Viewer (Hydra) tab, click View and choose Shadows from All Lights to preview your material
with shadows. If you only want selected lights to cast shadows, you can use the Shadows from
Selected Lights option.

Basic Material off
No Shadows

Basic Material off
Shadows from All Lights

You can assign texture maps to UsdPreviewSurface shading nodes using UsdUVTexture node types.

To assign a texture map to the diffuseColor parameter in your UsdPreviewSurface shading node:
10. Create a UsdUVTexture node, open the Parameters, and enter the file path in the file parameter.
11. Connect the rgb output from the UsdUVTexture node to the diffuseColor input of the

UsdPreviewSurface node.

Viewing Your Scene | Using the Hydra Viewer

USER GUIDE
336

12. Create a UsdPrimvarReader_float2 node and plug the result output into the st input on the
UsdUVTexture.

Viewing Your Scene | Using the Hydra Viewer

USER GUIDE
337

13. Within the UsdPrimvarReader_float2, set the varname parameter to st.

The texture can now be seen on the object in the Hydra Viewer.

Viewing Your Scene | Using the Hydra Viewer

USER GUIDE
338

Basic Material off, Shadows from All Lights

Setting up USD Lights
As well as setting up USD materials, it is also possible to set up USD lights and view them in the
Hydra Viewer.

Viewing Your Scene | Using the Hydra Viewer

USER GUIDE
339

To set up a USD light:

1. Create a GafferThree node and open its Parameters, or open the Parameters for an existing
GafferThree node.

Viewing Your Scene | Using the Hydra Viewer

USER GUIDE
340

2. In the GafferThree Parameters tab, right-click under Name and choose Add > Light.

Viewing Your Scene | Using the Hydra Viewer

USER GUIDE
341

3. In the Material section of the new light parameters, click Add Shader and choose usd > light.

4. In the usdLightShader drop-down menu, choose a USD light type, for example, UsdLuxRectLight.

The full light material parameters open and you can make adjustments.
5. In the Viewer (Hydra) tab, click View > Lighting using USD Lights to enable the USD lights.
6. Position the light using the Transform, Rotate, Scale, and Center of Interest manipulators in the

Hydra Viewer.

Viewing Your Scene | Using the Hydra Viewer

USER GUIDE
342

Changing Display Properties for
Some Locations
You can override the currently selected display method for a number of locations within the Viewer (Hydra)
tab using the ViewerObjectSettings node. To change how one or more locations are displayed:
1. Add a ViewerObjectSettings node to the recipe at some point before the current view node.
2. Select the ViewerObjectSettings node and press Alt+E.

The ViewerObjectSettings node becomes editable within the Parameters tab.
3. Assign the scene graph geometry locations of the objects to influence to the CEL parameter.

See Assigning Locations to a CEL Parameter for more on using CEL parameter fields.
4. Set any changes to how the locations should be displayed using the node’s parameters.

You can set the following display options in the drawOptions parameter grouping:
• hide - when set to Yes, the selected locations are hidden, as are their children.

Viewing Your Scene | Using the Hydra Viewer

USER GUIDE
343

• fill - changes how the location is displayed, as points, as a wireframe, as a solid, or to use the
Viewer’s default render type (inherit).

• windingOrder - sets whether the location should be drawn with a clockwise or counterclockwise
winding order. The correct value depends on how the imported geometry was exported from its
original package.

• pointSize - when displaying the location using the points display type, this option sets the size of the
points.

For example, the following image shows an object, with PRMan and Viewer Shader material applied. The
Viewer (Hydra) is in Solid mode, so the object is lit, and textured.

The next image shows the same scene, with the addition of a ViewerObjectSettings node. The CEL in the
node points to the pony, and the drawOptions parameters fill setting is set to Wireframe. The Viewer’s
draw mode for the pony object is overridden.

Viewing Your Scene | Using the Hydra Viewer

USER GUIDE
344

The following display options can be set in the annotation parameter grouping:
• text - displays this text with the location in the viewport.
• color - the background color of the annotation text.

The following parameters can be set in the ViewerObjectSettings node itself:
• pickable - when set to No, you can no longer select the object in the Viewer.
• resolveMaterialInViewer - controls whether the Viewer should always, never, or use default rules to

resolve materials.

Customizing the Viewport

Changing the Background Color
You can change the background color to make the scene easier to read, to reduce eye fatigue, or to better
match the background color when rendered.

To change the background color:

Viewing Your Scene | Using the Hydra Viewer

USER GUIDE
345

1. Navigate to Edit > Preferences > hydraViewer.
2. Change the backgroundColor parameter to the required color values.

The color changes in the Viewer (Hydra) tab.
3. Click OK to save changes.

Toggling the Grid Display
Katana displays a grid to help you get a sense of scale, the origin’s location, and the orientation of the XZ
plane.

To toggle displaying the grid, in the Viewer (Hydra) tab, select View > Grid (or press G).

Toggling the Head-Up Display (HUD)
Within Katana each Viewer tab has its own axis orientation guide in the bottom-left corner. The default
perspective camera and any other cameras have a manipulator in the top-right corner to change the
cameras position to a view axis, or three quarter view, centered on the current selection. You can hide these
features.

To toggle the display of the Head-Up Display (HUD), select View > HUD (or press H).

Viewing Your Scene | Using the Hydra Viewer

USER GUIDE

Lighting Your Scene

Lights are light scene graph locations with a light material assigned. The light material contains a shader,
which defines how that light illuminates the scene.

One strength of Katana is its ability to only load parts of the scene graph at render time if they are needed.
Lights can potentially be anywhere within the scene graph hierarchy. Katana needs to keep a list of all lights
so it doesn’t need to traverse what could potentially be a very complicated scene graph, just to find all the
lights. The light list is stored in the lightList attribute under the /root/world location.

Katana does not assume a given scene scale. There are no physics solvers, like those in Maya, that need to
know what real world measurement a unit represents. If you're using a shader library that has real world
units for shade parameters, such as emissive lights with power per unit area, that's handled by the shader
implementation rather than Katana.

The unit of measure used is up to you, because Katana equates any value as being equal to one unit in 3D
space. The image shows a simple scene containing an object and a camera. If the large white square in the
Viewer represents one unit of measure, so the smaller squares represent one tenth of that unit. So, if you
measured on set in meters, one small square could be equal to a meter, centimeter, or millimeter.

346

USER GUIDE
347

Creating a Light
Note: Lights can now be created using Lighting Tools within the Hydra Viewer. For more
information on this advanced workflow, see Lighting Tools.

Creating a light inside Katana can be done in two ways:
• using separate nodes (LightCreate and Material), or
• using the GafferThree node, which packages up light creation with a number of other useful functions.

To create a light from its core components:
1. Create a LightCreate node and place it within your recipe.
2. Create a Material node and connect the output of the LightCreate node to the input of the Material

node.
3. Select the Material node and press Alt+E.

The Material node becomes editable within the Parameters tab.
4. Select Add shader > dl> light within the Material node’s Parameters tab.

A new 3Delight light shader is added to the Material node.

Note: The shader you select in the Add Shader dropdown doesn't necessarily need to be dl.
Depending on your studio's setup, you may wish to select a different shader, and this can impact
which light options you choose. For the purpose of these instructions, the dl shader has been
chosen.

5. Click the arrow to the right of dlLightShader to display the shader options.

Lighting Your Scene | Creating a Light

USER GUIDE
348

6. Select the type areaLight from the dropdown.
The light name is populated in the dropdown button.

7. Create a MaterialAssign node and connect it to the output of the Material node.

8. Select the MaterialAssign node and press Alt+E.
The MaterialAssign node becomes editable within the Parameters tab.

Lighting Your Scene | Creating a Light

USER GUIDE
349

9. Shift+middle-click and drag from the LightCreate node in the Node Graph tab to the Add Statements
dropdown in the Parameters tab.
The Parameter Expression field is populated with the scene graph location.

10. Shift+middle-click and drag from the Material node in the Node Graph tab to the materialAssign field
in the Parameters tab.
An expression is created for the materialAssign parameter that evaluates to the location created by the
Material node.

Using the MaterialAssign node, the 3Delight light shader defined in the Material node is now assigned to the
light defined in the LightCreate node.

Lighting Your Scene | Creating a Light

USER GUIDE
350

Positioning Lights
To position a light it first needs to be visible within the Scene Graph tab (see Changing What is Shown in the
Viewer) then positioned within the Viewer tab.

Moving a Light Within the Viewer
To move a light, you can:
• Translate and rotate the light with the manipulators, (see Transforming an Object in the Viewer), or
• Look through the light and change its view position (see Choosing a Light or Camera to Look Through).

Light Linking
Light linking is a typical example of how a standard setting is defined high up in the hierarchy and then
overridden at a specified scene graph location where a different setting is needed. Shadow Linking works in
the exact same way.
1. In an empty scene, create a sphere using a PrimitiveCreate Node.

Set the name to /root/world/geo/sphere.
2. Add a plane with a PrimitiveCreate node.

Set the name to /root/world/geo/plane.
3. Add a Merge node and connect both PrimitiveCreate nodes as inputs.
4. Add a light with a GafferThree node.
5. Connect the output of the Merge node to the input of the GafferThree node.
6. Add a LightLink node.
7. Connect the output of the GafferThree node to the input of the LightLink node.
8. Select the LightLink node and press Alt+E to edit it.
9. Set the effect field to illumination, and the action field to off.
10. Add the primitive sphere to the objects field.
11. Add the light to the lights field.

Creating the light adds a lightList attribute group under /root/world with the enable attribute set to 1.

Lighting Your Scene | Positioning Lights

USER GUIDE
351

Note: With the default behavior of the light set to off - by changing the defaultLink dropdown to
off - the enable attribute is set to 0.

The primitive sphere’s lightList enable attribute is set to 0, as it is overridden locally by the LightLink node.
Attributes are inherited from parent scene graph locations. If needed, they can be locally overridden as
shown above where a specific light (/root/world/lgt/gaffer/light1) is disabled for a certain node
(/root/world/geo/sphere).

Note: A G label next to an attribute signifies that its value has been inherited from a parent scene
graph location, whereas the label L means the attribute is stored locally at the selected location.

Getting to Grips with the
GafferThree Node
The method described in Creating a Light, although valid, would be slow for a large number of lights.
Katana’s GafferThree node wraps light creation into a single node and adds the ability to:
• Create more than one light.
• Add rigs to group lights together.
• Add light filters and light filter references.
• Mute and solo lights and rigs.
• Link lights to specific objects.

Lighting Your Scene | Getting to Grips with the GafferThree Node

USER GUIDE
352

• Add aim constraints to lights.

Note: Some of the options listed in Creating a Light Using the GafferThree Node may not be
available due to the extensive customizability of Katana. Some of the GafferThree node’s menu
options are created using profiles, which can result in different light creation menu options.

Note: Using both Gaffer and GafferThree nodes together in a single node graph is not supported
as it can result in unexpected mute and solo behavior.

Gaffer Object Table Overview
Once you've created a GafferThree node, use the Gaffer object table to manage the lights, rigs, light filters,
light filter references, and Template Materials within your scene.

Here are some tips on how to use the Gaffer object table:
• You can edit the parameters' values for multiple items at once. Simply select the items you need to edit and

change the values directly in the Gaffer object table.
• The items are displayed in different colors depending on how their values have been set:

• Gray/white: value set as "default"
• Yellow: value set locally
• Blue: value set as forced default
• Pink: value inherited from a referenced Template Material

Lighting Your Scene | Getting to Grips with the GafferThree Node

USER GUIDE
353

• Right-click a cell in the Gaffer object table to display a context menu with commands for manipulating
underlying parameters. For instance, right-clicking in the Shader column allows you to add a renderer-
specific shader. You can also define your own context menu for custom columns through the
createContextMenu().

Note: To display the Network Material material interface parameters in the GafferThree object
table's columns, see Using and Overriding Look Files with GafferThree Lights

Creating a Light Using the
GafferThree Node

Note: Lights can now be created using Lighting Tools within the Hydra Viewer. For more
information on this advanced workflow, see Lighting Tools.

To create a light with the GafferThree node, you need first to create a light and then add a light shader to
that light.

To add a light:
1. Create a GafferThree node and place it within the project.
2. Select the GafferThree node and press Alt+E.

The GafferThree node becomes editable within the Parameters tab.
3. In the GafferThree node’s Parameters tab, right-click in the Gaffer object table and select Add > Light

or press L.
A light is added in the Gaffer object table.

Note: The light, rig, and Template Material locations are created under /root/world/lgt/gaffer
by default. You can change their scene graph locations by setting a new path in the root location
field in the GafferThree node's Parameters tab.

You can add a light shader to a light, either through the Gaffer object table or the Material tab in the
Parameters tab.

Lighting Your Scene | Getting to Grips with the GafferThree Node

USER GUIDE
354

To add a light shader through the Gaffer object table, follow the steps below:
1. Right-click in the Shader column, then select Add Shader and select a renderer-specific shader.

Nothing appears below the Shader heading.
2. Double-click below the Shader heading in-line with the light and select Spotlight from the list.

The name of the light shader, Spotlight, appears in the Shader column in the Gaffer object table and in
the Material tab as well.

To add a light shader through the Material tab in the Parameters tab, follow the steps below:
1. Select the newly added light in the Gaffer object table.
2. In the Parameters tab, click on the Material sub-tab .
3. Click on the Add Shader dropdown.
4. Select a dl Light shader from the list.

The renderer-specific shader appears in the Material tab.
5. Click on the newly added shader and select Spotlight from the list.

The name of the light shader, Spotlight, appears in the Material sub-tab and in the Shader column of
the Gaffer object table as well.

Note: 3Delight lights, with shaders pre-applied are available to add to the Gaffer table via the Add
menu or the associated keyboard shortcuts.

Tip: Only shaders for the default renderer are displayed when double-clicking the Shader column.
To assign shaders for a different renderer, right-click in the Shader column or use the Material tab
below the Gaffer object table.

If you want to set or amend the default renderer for Katana, refer to Changing the Default
Renderer for details on setting the DEFAULT_RENDERER environment variable. If this environment
variable is not set, dl (3Delight) is assumed to be default.

Making Use of Rigs
Rigs create a scene graph group complete with transform attributes and the ability to easily add constraints.
Lights created below the rig inherit its transformations, which enables you to move the lights around as one.
Rigs can also be exported and imported.

Lighting Your Scene | Getting to Grips with the GafferThree Node

USER GUIDE
355

Creating a Rig

In the GafferThree node’s Parameters tab, right-click in the Gaffer object table and select Add > Rig or
press R. A rig is created in the Gaffer object table.

Note: You can also nest rigs. Simply right-click on an existing rig and select Add > Rig or press R.

Adding a Light to a Rig

In the Gaffer object table, right-click on a rig and select Add > Light or press L. A light is created under the
rig location.

Note: You can expand or collapse the lights nested under a rig location. Simply right-click on a rig
and select the required option from the dropdown menu.

Importing a Rig
1. In the GafferThree node’s Parameters tab, right-click a location within the Gaffer object table and select

Add > Import Rig....
The Import Rig dialog displays.

2. Select the rig file in the dialog and click Accept.
The rig is imported under the selected location.

Exporting a Rig
1. Right-click on the rig to export and select Export Rig.

The Export Rig dialog displays.
2. Navigate within the dialog to where you wish to save the rig and enter a rig name.
3. Click Accept.

The rig is saved with a .rig file extension.

Adding a Point Constraint to a Rig

To add a point constraint:

Lighting Your Scene | Getting to Grips with the GafferThree Node

USER GUIDE
356

1. Select the rig and click the Parameters > Object sub-tab.
2. Check enable point constraint and open the point constraint options parameter grouping.
3. Enter the scene graph location for the target in the targetPath parameter. For more on using scene

graph location parameters, see Manipulating a Scene Graph Location Parameter.
4. Click the targetOrigin dropdown and select the part of the target to use as the point constraint:

• Object - the object’s transform position is used.
• Bounding Box - the center of the object’s bounding box is used.
• Face Center Average - the center of all the faces for the object are averaged to create the point

constraint position.
• Face Bounding Box - the center of the face’s bounding box is used.

Adding an Orient Constraint to a Rig

To add an orient constraint:
1. Select the rig and click the Parameters > Object sub-tab.
2. Check enable orient constraint and open the orient constraint options parameter grouping.
3. Enter the scene graph location for the target in the targetPath parameter. For more on using scene

graph location parameters, see Manipulating a Scene Graph Location Parameter.
4. Select the axes to constrain (by default, it’s all three). To remove the constraint for any of the individual

axes, click the checkbox to disable it.

Defining a Template Light Material
At times it is best to have a Template Material and set local overrides per light. This can be done within the
GafferThree node by creating a Template Material and assigning it to a light. Any changes made within the
light’s Material sub-tab act as an override for the Template Material.

Creating a Template Material

In the GafferThree node’s Parameters tab , right-click in the Gaffer object table, and select Add > Template
Material or press Alt+M.

A Template Material location is created inside the GafferThree node.

Lighting Your Scene | Getting to Grips with the GafferThree Node

USER GUIDE
357

Assigning a Template Material to a Light
1. In the Parameters tab, double-click below the Shader heading in-line with the light you want to assign

the Template Material to.
2. Select the Template Material from the list (Template Materials are displayed in pink).

The Template Material is assigned to the light.

Adding an Aim Constraint to a Light
Lights created inside the GafferThree node come with the ability to use an aim constraint. Using an aim
constraint makes the light point at an object (the target) within the scene.

To add an aim constraint to a light:
1. In the Parameters tab, select the light within the Gaffer object table.
2. In the Object sub-tab of the Gaffer object table, select the enable aim constraint checkbox.

The aim constraint options grouping displays.
3. In the aim constraint options grouping, enter the aim target in targetPath (for more details on how to

enter a scene graph location, see Manipulating a Scene Graph Location Parameter).

To change the aim constraint’s center point, select from the targetOrigin dropdown:
• Object - the point defined by the transform of the object.
• Bounding Box - the center of the bounding box.
• Face Center Average - the average from all the face centers.
• Face Bounding Box - the bounding box of all the faces.

Note: Using Face Center Average or Face Bounding Box could be slow for heavy geometry.

Creating a Light Filter Using the
GafferThree Node
Light filters allow you to modify a light's behavior in order to give these light sources additional effects. Light
filters are renderer-specific, but regardless of renderer, you can add them in the GafferThree node in the
same way.

Lighting Your Scene | Getting to Grips with the GafferThree Node

USER GUIDE
358

To create a light filter with the GafferThree node:
1. Create a GafferThree node and place it within the project.
2. Select the GafferThree node and press Alt+E.

The GafferThree node becomes editable within the Parameters tab.
3. In the GafferThree node’s Parameters tab, right-click in the Gaffer object table and select Add > Light

Filter or press F.
A light filter is added in the Gaffer object table.

Note: The light filter location is created under /root/world/lgt/gaffer by default. You can change
the scene graph location by setting a new path in the root location field in the GafferThree node's
Parameters tab.

Creating a Light Filter Reference Using the GafferThree Node

Light filter references are light filters attached to a light or skydome that reference another light filter
package. These packages allow you to apply multiple light filter effects as only one light filter on a pre-
existing light.

To create a light filter reference with the GafferThree node:
1. Create a GafferThree node and place it within the project.
2. Select the GafferThree node and press Alt+E.

The GafferThree node becomes editable within the Parameters tab.
3. In the GafferThree node’s Parameters tab, right-click in the Gaffer object table and select Add > Light

or press L.
A light is added in the Gaffer object table.

4. Right-click the light and select Add > Light Filter Reference or press Alt+F when the light is selected.
A light filter reference is added to the light.

5. Select the light filter reference and click on the Object tab beneath the object table list. Specify the path
to the light filter package in the referencePath field.

Linking Lights to Specific Objects
Light linking allows you to light a set of objects while others aren’t or turn off the lights on a set of objects
while the others are lit.

Lighting Your Scene | Getting to Grips with the GafferThree Node

USER GUIDE
359

Note: By default the whole scene is lit. In order to light only one specific object, you need first to
turn off all the lights for the entire scene (/root/world/geo location).

To link a light to a specific object in the scene, do the following:
1. Ensure your light is positioned towards the object you want to light.
2. In the Gaffer object table's Parameters tab, select a light or light filter and click on the Linking sub-tab.

The parameters of the Linking sub-tab are displayed.
3. Click on the light linking section.

The on and off CEL widgets are displayed.
4. Shift+middle-click and drag from the /root/world/geo location in the Scene Graph tab to the off CEL

widget in the Parameters > Linking sub-tab.
All the lights are turned off in your scene. In the Gaffer object table, the icon "off" appears in the Linking
column to indicate you have set up a light link of type "off".

5. Shift+middle-click and drag from the chosen object location in the Scene Graph tab to the on CEL
widget in the Parameters > Linking sub-tab.
The light or light filter selected in the Gaffer object table lights the chosen object only. In the Gaffer
object table, the icon "on" appears in the Linking column to indicate you have set up a light link of type
"on".

Warning: If a location is matched by both the on and off CEL expressions, then the on
CEL expression overrides the off CEL expression.

Note: To light several objects, drag as many object locations as needed from the Scene Graph tab
to the on CEL widget in the Parameters > Linking sub-tab.

Disabling a Light for Specific Object
To disable a light or light filter, follow the steps below:
1. In the Gaffer object table's Parameters tab, select the light or light filter you want to disable and click on

the Linking sub-tab.
The parameters of the Linking sub-tab are displayed.

2. Click on the light linking section.
The on and off CEL widgets are displayed.

Lighting Your Scene | Getting to Grips with the GafferThree Node

USER GUIDE
360

3. Shift +middle-click and drag from the chosen object location in the Scene Graph tab to the off CEL
widget in the Parameters > Linking sub-tab.
The selected light or light filter for the chosen object location is disabled in your scene. In the Gaffer
object table, the icon "off" appears in the Linking column to indicate you have set up a light link of type
"off".

Warning: If a location is matched by both the on and off CEL expressions, then the on
CEL expression overrides the off CEL expression.

Note: For information on how to use the clearUnmatched parameter, see GafferThree.

Linking Shadows to Specific Objects
Linking shadows is handled in the same manner as linking lights. Each location within the scene graph under
/root/world has a lightList attribute. This is where light linking and shadow linking information is stored.

Adopting Items from an Incoming
Scene
You can adopt lights, rigs, and Template Materials from any upstream GafferThree nodes and then override
any of their set parameters.

To adopt items from the incoming scene, do the following:
1. Select the GafferThree node in which you want to collect the adopted items and press Alt+E.

The GafferThree node's parameters display in the Parameters tab.

2. In the GafferThree node's Parameters tab, click on the button and select Show Incoming Scene
from the dropdown menu.
All adopted lights, rigs and Template Materials, along with their parameters, are displayed in the Gaffer
object table.

Lighting Your Scene | Getting to Grips with the GafferThree Node

USER GUIDE
361

The names of the items are displayed in italics showing they are adopted items. The light gray color
indicates they are read-only items.

Note: The disabled lights, rigs, and Template Materials from any upstream nodes don't show
when you adopt items from the incoming scene.

Editing Adopted Items

Any adopted item from the incoming scene is, by default, read-only.

To make the adopted items editable, right-click on the name of the item you want to edit and select Adopt
for Editing from the dropdown menu. The name of the item displays in a white color showing it is editable.
You can now make any changes to its parameters.

Note: You can edit the parameters of the adopted items and also add child lights, rigs and
Template Materials to the adopted rigs.

Deleting Edits Made to Adopted Items

To delete edits made to the adopted items and retrieve their original values, in the Gaffer object table, right-
click on an adopted item and select Delete Edit Package from the dropdown menu. The parameters of the
adopted item are set back to their original values (adopted items' parameters from the incoming scene) and
the adopted item is now read-only.

Soloing and Muting Lights, Light
Filters, and Rigs
You can either solo or mute lights in a scene. Soloing a light means that you are only keeping that one
specific light to light the scene. All the other lights are automatically set as "mute" and therefore turned off.
Muting lights means you can turn specific lights off while others are lit. Soloing or muting light filters and
rigs works the same way.

To solo a light, do the following:

Lighting Your Scene | Getting to Grips with the GafferThree Node

USER GUIDE
362

1. In the Gaffer object table, select the light you want to solo.

2. In the Solo column check the box in-line with the selected light.

The light is set as "solo" and all the other lights are automatically set as "mute".

In the Mute column , the icon shows which lights are set as "mute" and it is also displayed in the
Scene Graph tab to indicate which light locations are in a mute state.

Note: To solo a light filter or a rig, follow the same procedure but select a light filter or rig instead
of a light.

To mute a light, do the following:
1. In the Gaffer object table, select one or as many lights as you want to mute.

2. In the Mute column check the box in-line with the selected light or one of the selected lights for
multiple selection.
The selected lights are set as "mute" while all the other lights still light the scene.

In the Mute column , the icon shows which lights are set as "mute" and it is also displayed in the
Scene Graph tab to indicate which light locations are in a mute state.

Note: To mute light filters or rigs, follow the same procedure but select the light filters or rigs you
want to mute, instead of a light.

Locking a Light or Rig's Transform
Once a light is in the correct position, you can lock it to prevent accidental movement. Locking a light does
not prevent it from being edited or deleted.

To toggle whether a light is locked, right-click on the light and select Toggle Lock State of Selected Items

or press Ctrl+L. The blue lock icon is either added or removed in place of the light icon in the Gaffer
object table.

Lighting Your Scene | Getting to Grips with the GafferThree Node

USER GUIDE
363

Note: Locking a rig works the same way. Simply right-click on the rig and select Toggle Lock
State of Selected Items or press Ctrl+L.

Duplicating an Item Within the
Gaffer Object Table
To duplicate an item within the Gaffer object table, right-click on the item and select Duplicate.

The item is duplicated into the Gaffer object table and a number is appended to the name.

Syncing the GafferThree Selection
with the Scene Graph
When editing lights using both the GafferThree and manipulators in the Viewer, it is often convenient to sync
the selection of those lights between the two locations. The sync selection parameter in the GafferThree
node’s parameters allows you to set sync selection in three ways:
• off - no syncing is performed (the default).
• out - selection of a light in the GafferThree node is mirrored in the Scene Graph tab, but not the other way

around.
• in/out - selecting in either the Scene Graph tab or GafferThree node results in the corresponding entry in

the other also being selected.

Deleting from the Gaffer Object Table
To delete an item from the Gaffer object table, right-click on the item you want to delete and select Delete
or press the Delete keyboard shortcut.

Lighting Your Scene | Getting to Grips with the GafferThree Node

USER GUIDE
364

Using and Overriding Look Files
with GafferThree Lights
To use more complex shading networks to drive your light’s materials, you can define the material first, and
then use a look file to apply it to lights created in GafferThree nodes.

To set up the network material, and bake it into a look file:
1. Add a NetworkMaterial node. In it’s parameters tab, click add terminal, and choose dl/Light from the

dropdown
2. Add a DlShadingNode and change the nodeType to spotLight

Displaying Network Material Parameter Values
To show values of parameters from the public interface of the Network Material in specific columns of the
GafferThree object table, you need to set parameter meta name attributes in the material group attribute of
the material location that defines the Network Material. To set these attributes, do the following:

1. In the DlShadingNode, click the wrench icon to the right of the Color controls, select Edit Parameter
Name in Material Interface..., and change the Name value to color.

2. Using the wrench button for both Intensity and Exposure, change Name parameter to intensity and
exposure respectively.

3. Change the Color, Intensity, and Exposure values to non-defaults.
The parameters are displayed in the Material Interface section of the NetworkMaterial node's
parameters tab.

Lighting Your Scene | Getting to Grips with the GafferThree Node

USER GUIDE
365

Note: The naming of the parameters, and their related attributes, need to follow a strict syntax to
be read as metadata by the gafferThree table.
Attributes must be set to read the material parameters and feed their values as metadata to the
gaffer object table. These attributes need to adhere to the following syntax:

Names of the attribute: material.meta.[parameterMetaName].[rendererName]

For example, material.meta.exposure.dl
The values: parameters.[parameterName]
For example, parameters.exposure

You can set these string attributes one at a time using AttributeSet nodes, or you can set multiple
attributes at once using OpScript nodes.

4. Add an OpScript node and use the following script, which will populate the material.meta attributes with
the names and values of the parameters declared in the network material.

local materialInterfaceGroupAttr = Interface.GetAttr("material.interface")

local targetName = "dl"

for i = 0, materialInterfaceGroupAttr:getNumberOfChildren() - 1 do
local parameterName = materialInterfaceGroupAttr:getChildName(i)
Interface.SetAttr("material.meta." .. parameterName .. "." ..

Lighting Your Scene | Getting to Grips with the GafferThree Node

USER GUIDE
366

targetName,
StringAttribute("parameters." .. parameterName))

end

5. Bake a material lookfile, by using a LookFileMaterialsOut node. Set the saveTo location and click Write
Look File and save the look file.

6. In a separate branch of the NodeGraph, add a LookFileMaterialsIn node. In the lookfile section, browse
to your saved lookfile from step 5.

7. Add a gafferThree node.
Your node graph should now look similar to this:

8. Add a 3Delight spotlight by right-clicking in the gaffer table, select Add3Delight > Spotlight, or type Q.
9. Select the spotlight in the gaffer table, open the Material tab below, check useLookFileMaterial.
10. In the asset field, browse to the look file that was baked in step 5.
11. Middle-mouse and drag the network material that appears in the Scene Graph tab under

root/materials/NetworkMaterial) into the materialPath field.

Lighting Your Scene | Getting to Grips with the GafferThree Node

USER GUIDE
367

The exposed parameters from your network material will be listed as editable parameters. These parameters
and their values will also be displayed correctly in the Color, Int and Exp columns of the gaffer table for ease
of reference. Any overrides to the material parameters are reflected here.

The same look file can be applied to many different lights, and locally overridden in the GafferThree node.

Lighting Your Scene | Getting to Grips with the GafferThree Node

USER GUIDE
368

Lighting Tools
Katana's Lighting Tools enhance lighting workflows for artists. When the Lighting Tools button is enabled,
artists can work full-screen in the Hydra Viewer, streamlining the creation and editing of lights in your
scene. This workflow is inspired by the thought processes of live action cinematographers and lighting
artists, allowing you to work quickly and smoothly with more creative freedom.

Lighting Tools UI

Katana's Lighting Tools reduce the number of steps required to place lights and increases the accuracy of the
placement. This intuitive way of working embraces the way lighting artists think so you can focus on the
result, not the process.

Creating and Placing Lights

Find out how to create and place lights using Lighting Tools in the Hydra Viewer.

Editing Lights in the Parameter Widget

Lighting Your Scene | Lighting Tools

USER GUIDE
369

Discover how to edit your lights and customize the parameters shown on your light parameters widgets.

Clones and Template Materials

Learn how to further streamline your lighting workflows using cloning and Template Materials.

Creating Lights using Lighting Tools
Katana's Lighting Tools introduce an artist-friendly environment to set up lights in a GafferThree node
within your scene. It allows you to interact directly with your image during a live render session.

Lighting Tools are especially useful when artists want to work in a purely creative way without being slowed
down or distracted by unnecessary panels.

How to Place a Light using Lighting Tools
1. Create a GafferThree node and place it in your Node Graph.

Note: For more information on the GafferThree node, see Getting to Grips with the
GafferThree Node.

2. Click the Lighting Tools button in the Viewer (Hydra) tab, or press L on the keyboard to turn
on Lighting Tools.

Additional buttons are displayed in the Hydra Viewer.

If you have more than one GafferThree node in your scene, you can select which GafferThree node
you would like to use to create your light by clicking on the GafferThree dropdown.

Lighting Your Scene | Lighting Tools

USER GUIDE
370

You can no longer select any geometry in the scene.

Tip: Press Spacebar over the Hydra Viewer to enter full-screen mode and work directly on
your image.

3. Click the dropdown arrow next to the Lighting Tools button to choose a Lighting Mode. You can also
hold Shift and press L to cycle Lighting Modes.

Note: For information about each Lighting Mode, see the Lighting Modes section in this
topic.

Lighting Your Scene | Lighting Tools

USER GUIDE
371

4. Choose the light you want to create from the Lights dropdown menu.

Your default renderer's lights appear in the list. If you want to choose a light from a different renderer

you have set up in Katana, click the settings icon from within the Lights dropdown menu, and
select the renderers you want to access from the dropdown menu.

Note: For information about the Clone and Clone as Template options, see Cloning Lights
and Template Materials.

5. Shift + Click to place a light.

A light parameter widget is displayed.

Lighting Your Scene | Lighting Tools

USER GUIDE
372

Note: For information on editing lights using the light parameter widget, see the Editing
Lights using Lighting Tools section of this topic.

You can also place lights at the same position as the camera you are currently looking through, and other
lights in you scene.

To place a light at the same position as the camera you are looking through, click the Camera Position
button.

To place a light at the same position as an existing light in your scene, select the light and press the
Duplicate button.

Note: It is also possible to clone lights using the Clone and Clone as Template options in the
Lights dropdown menu.
For more information, see Cloning Lights and Template Materials.

Lighting Your Scene | Lighting Tools

#editing
#editing

USER GUIDE
373

Lighting Modes
The following lighting modes are available from the Lighting Tools dropdown menu:

/ Edit Light
Materials

When enabled, new lights cannot be created and existing lights cannot be
moved. You can only select lights to open their light parameter widget and
make edits to their parameters.

This mode is useful if you have finalized the light positions in your scene and
want to make sure you cannot move them accidentally while adjusting the
parameters.

/ Fixed Rotation
Make small adjustments to a light's position without changing the angle of
the light.

This mode is useful when you have finalized the angle of light you want but
want to change the position slightly.

Note: For more information, see the Fixed Rotation section of this
topic.

/ Normal
The direction of the light is oriented to the normal of the geometry.

This mode places the light directly above the point of placement on the
geometry and gives a diffuse appearance.

Lighting Your Scene | Lighting Tools

USER GUIDE
374

/ Specular
The direction of light is exactly halfway between the normal and the
reflection angles.

This mode is useful if you want a soft transition between a diffuse light and a
sharp reflection.

Lighting Your Scene | Lighting Tools

USER GUIDE
375

/ Reflection
The direction of the light is oriented to the reflection of the object's surface.
This mode is useful for placing a specific light reflection precisely where you
want it to appear on your geometry.

Lighting Your Scene | Lighting Tools

USER GUIDE
376

/ Shadow
When enabled, you can create a light as normal and also create a shadow
point beyond the light which can be positioned.

This mode give you full control over where shadows are cast.

Note: For a workflow example using Shadow mode, see the
Shadow Mode Workflow Example section in this topic.

/ Face - Center
These modes come from the Snapping toolset,
they allow you to snap a light to a target
location's Faces, Center, or Object.

These modes can be useful for placing a light in
a specific location on a piece of geometry. For
example, if you would like to place a light in the
very center of a light bulb object, you can use
Object Center mode to ensure the light is
placed precisely in the correct position.

Lighting Your Scene | Lighting Tools

USER GUIDE
377

Note: For more information about
Snapping modes, see Snapping
Modes./ Face - Center - Oriented to Normal

/ Object Surface

/ Object Surface - Oriented to Normal

/ Object Center

How to Position Lights Using Lighting Tools
There are a few different ways of positioning lights using Lighting Tools:

l Click + Drag a light's arrowhead to move it along the surface of the object.

Lighting Your Scene | Lighting Tools

USER GUIDE
378

l Ctrl + Click + Drag to move the light towards and away from the object.

l Ctrl + Shift + Click + Drag to scale the light uniformly.

l Use the manipulators in the toolbar to the left of the Viewer (Hydra) tab to Translate, Rotate, and
Scale the light.

You can also use the Center of Interest manipulator to position your lights.

Lighting Your Scene | Lighting Tools

USER GUIDE
379

Translate light Rotate light Scale light

If you want to make small adjustments to a light's position without changing the angle of the light, you can
use Fixed Rotation mode. Fixed Rotation mode allows you to move a light by snapping the Center of
Interest head to the surface of the geometry, without rotating the light.

1. Click on the Fixed Rotation button in the Hydra Viewer or press O on the keyboard to activate
Fixed Rotation mode. You can also select Fixed Rotation mode from the Lighting Mode dropdown
menu.

Note: Press and hold O to temporarily activate Fixed Rotation mode.

2. Click or marquee select the light(s) you want to move.
3. Click +Drag the light(s) into position.

Shadow Mode Workflow Example
Shadow mode allows you to place a light while taking into account where you would like the shadow from
the light to be cast in your scene. This is useful if you want a shadow from a particular object to be cast in a
specific location. Shadow mode is a fast and accurate way of placing lights and provides you with a high
level of control in situations where shadow placement is important.

Shadow mode provides a pivot point on each light so you can control which part of geometry the light hits,
and where you want the shadow cast from that geometry to fall.

Lighting Your Scene | Lighting Tools

USER GUIDE
380

To place a light using Shadow Mode:

1. Select Shadow mode from the Lighting Tools dropdown menu.
2. Choose a light type from the Lights dropdown menu.
3. Shift + Click to place the pivot point of the light.

The light is created.

Lighting Your Scene | Lighting Tools

USER GUIDE
381

Lighting Your Scene | Lighting Tools

USER GUIDE
382

4. Click and drag the pivot point to target the section of geometry you want the light to affect.

Lighting Your Scene | Lighting Tools

USER GUIDE
383

5. Click and drag the arrowhead to control where the shadow falls.

Editing Lights Using the Lighting
Tools Parameter Widget
Once a light has been created, a light parameter widget is displayed containing GafferThree light
parameters you can access and edit, without leaving the Hydra Viewer. The light parameter widget is visible
while the light is selected. If multiple lights are selected, the lights are stacked in the parameter widget.

Note: To edit a light, you must have the correct GafferThree selected in the GafferThree
dropdown, that is, where the light was created. Otherwise you can use per-shot overrides to edit a
light in a different GafferThree node. For more information, see the Shot Level Overrides section of
this topic.

Lighting Your Scene | Lighting Tools

USER GUIDE
384

The default light widget controls and parameters are:

l Click and drag on the move icon to move the light widget around the Hydra Viewer.
l Click the expand/collapse buttons to expand/collapse the light widget.
l Int - The light intensity.

Click and drag in the value field to increase and decrease the intensity. You can also click and type in
the value field to specify a value.

l Exp - The light exposure.
Click and drag in the value field to increase and decrease the exposure. You can also click and type in
the value field to specify a value.

l Col - The light color.
Click on the color to open a color adjustment panel and choose a light color.

l M - Mute light.
Click to toggle. When a light is muted it is omitted from renders.

l S - Solo light.
Click to toggle. Only soloed lights are included in renders. All lights which are not solo-ed are muted
and therefore omitted from renders.

l Click the star button to pin a light parameter widget, preventing the light parameter widget from
closing when the light is deselected.

Lighting Your Scene | Lighting Tools

USER GUIDE
385

l Click and drag the hatched column on the right of the widget to resize it.

Note: For full information about the GafferThree light parameters, see Getting to Grips with the
GafferThree Node and the GafferThree reference guide.

Customizing the Light Widget in the Lighting Tools
The light parameters widget provides quick access to the Intensity, Exposure and Color parameters for
your lights. You may want to customize this widget to display more parameters, specific to the light type you
create. This allows you to further streamline your workflow by adding the parameters you use the most.

A customized light parameter widget

Lighting Your Scene | Lighting Tools

USER GUIDE
386

The light parameters widget can be customized using the ViewerObjectSettings node.

Note: You can also choose to hide certain lights' arrowheads, when they are not selected, using
the hideHandle parameter in a ViewerObjectSettings node parameters.
For more information, see the ViewerObjectSettings reference guide.

1. Create a ViewerObjectSettings node and place it in your Node Graph underneath your GafferThree
node.

2. Open the ViewerObjectSettings Parameters.
3. If you want to affect just one light, click Add Statements > Paths.

If you want this statement to affect all new and existing lights of a specific type in your scene, you can
use an expression to access the attribute defining the light type. For this select Add Statements >
Custom.

4. For single lights, MMB drag the Scene Graph location for the light you want to be affected, into the
Paths field.

Lighting Your Scene | Lighting Tools

USER GUIDE
387

In this example, only spotLight8 is affected.

For multiple lights, type an expression for the light types you want to be affected.

In this example, the expression targets all lights under /root/world/lgt/gaffer/ with a
material.dlLightShader attribute called spotLight. Therefore, all new and existing 3Delight Spot
Lights are affected.

5. Navigate to the Lighting Tools section in the ViewerObjectSettings Parameters.
6. Under parameters, in the first text field, enter the path of the parameter you would like to add to the

light parameter widget.

The parameter is now accessible from the parameter widgets.

Lighting Your Scene | Lighting Tools

USER GUIDE
388

7. In the second text field, enter the label you would like to appear on the light parameter widget for this
parameter.

The label is updated on the light parameter widget.

Lighting Your Scene | Lighting Tools

USER GUIDE
389

Note: The label field is optional. If a label is not provided, the parameter's original label is
used.

You can add as many extra parameters as needed to allow you to work efficiently when using Lighting Tools.

If you have two lights selected and have added extra parameters, the parameters for all the lights are visible
but you can only edit the parameters for the light types that they exist in. If a parameter does not exist in a
certain light type, it is disabled for that light type and marked with a dash.

Shot Level Overrides
It is common to work with multiple GafferThree nodes in one scene. This enables artists to set up lighting for
the entire sequence in one GafferThree node, and make per-shot overrides in other GafferThree nodes.

Lighting Tools makes it easy to switch between different GafferThree nodes, they are all displayed in a
dropdown list in the Hydra Viewer when Lighting Tools is enabled.

Depending on which light is selected, a symbol is displayed next to the selected GafferThree.

The selected lights can be edited and all edits can be recorded in the selected
GafferThree node.

The selected lights parameters cannot be edited in the selected GafferThree node as
it does not have the ability to record edits. The selected lights can be edited in an

Lighting Your Scene | Lighting Tools

USER GUIDE
390

upstream GafferThree node.

Transform edits can be made from the selected GafferThree node and recorded in
the upstream GafferThree node. Parameter edits, such as Intensity and Exposure,
can only be made in an upstream GafferThree node.

The selected lights cannot be edited either in this GafferThree node or any upstream
GafferThree node.

This means the selected light has no creation or edit package, or it is inside a locked
node, such as a LiveGroup.

This symbol represents a combination of the and symbols.

This means one or more selected lights can be edited in the selected GafferThree
node, and one or more selected lights can be edited in an upstream GafferThree
node.

This symbol represents a combination of the and symbols.

This means one or more selected lights can be edited in the selected GafferThree
node, and one or more selected lights cannot be edited in this, or any upstream
GafferThree node.

This symbol represents a combination of the and symbols.

This means one or more selected lights can be edited in an upstream GafferThree
node, and one or more selected lights cannot be edited in this, or any upstream
GafferThree node.

This symbol represents a combination of the , and symbols.

This means one or more selected lights can be edited in the selected GafferThree
node, one or more selected lights can be edited in an upstream GafferThree node,
and one or more selected lights cannot be edited in this, or any upstream
GafferThree node.

This symbol implies there are more than three lights selected.

To edit a light outside of it's original GafferThree node:

Lighting Your Scene | Lighting Tools

USER GUIDE
391

1. Select the light you want to edit.

2. In the GafferThree dropdown, choose the GafferThree you want your edits to be recorded in.

Note: The GafferThree you choose must be downstream from the original GafferThree
node.

The GafferThree node is marked with a symbol.

Lighting Your Scene | Lighting Tools

USER GUIDE
392

3. Right-Click the light parameter widget and select Adopt for Editing.

The GafferThree node is marked with a symbol and you can now make edits to the light through
the parameter widget.

Lighting Your Scene | Lighting Tools

USER GUIDE
393

Note: These edits do not affect the light parameters in the original GafferThree node.

The GafferThree dropdown provides a breadcrumb trail of edits so it is clear what changes have been
made.

Lighting Your Scene | Lighting Tools

USER GUIDE
394

Cloning Lights and Using Template
Materials With Lighting Tools
When lighting a scene, artists often want to copy existing lights to place multiple versions with the same
properties in various locations. For example, a room may have ten lights on the ceiling, each with the same
properties.

Depending on the situation, an artist may want to simply use an existing light as a basis when creating a new
light, or use a Template Material. Template Materials allow you to define the overall look of the lighting in
a scene, while making local overrides per light if necessary. Assigning a Template Material to multiple lights
means that you only need to change the parameters of the Template Material, rather than each individual
light.

Note: For more information on Template Materials, see Defining a Template Light Material.

Katana's Lighting Tools allows you to clone lights using the Clone and Clone as Template light options.
These options create new lights with the same parameters as the light you cloned.

Cloning a Light
The Clone option uses a selected light as a basis for the new light you create. The new light has all the same
parameters as the selected light including its size, distance, intensity, exposure and color, and any other
parameters you may have changed.

In this example we have two lamp objects and want to place Spot Lights to resemble the light bulbs. One
Spot Light is set up so we can use the Clone option to create the second light.

Lighting Your Scene | Lighting Tools

USER GUIDE
395

1. Enable Lighting Tools in the Hydra Viewer.
2. Choose the Clone option from the Lights drop-down menu.

3. Select the light you want to clone.

Lighting Your Scene | Lighting Tools

USER GUIDE
396

4. Shift + Click to place a light under the lamp.

A new Spot Light is created with the same properties and parameters as the cloned Spot Light.
5. Use the manipulators to position the new Spot Light.

Lighting Your Scene | Lighting Tools

USER GUIDE
397

How to Clone a Light as a Template
The Clone as Template option lets you use a selected light as a basis for a Template Material. The new
light, and selected light are both assigned to that Template Material.

In this example we have a series of windows and we want to place an Area Light behind each one to
resemble sunlight. The first window already has an Area Light so we can use the Clone as Template option
to create a Template Material from the existing light, and place new lights which are also assigned to the
Template Material.

Lighting Your Scene | Lighting Tools

USER GUIDE
398

1. Enable Lighting Tools in the Hydra Viewer.
2. Choose the Clone as Template option from the Lights drop-down menu.

3. Select the light you want to clone as a Template Material.
4. Shift + Click to place a new light.

A Template Material is created using the parameters of the selected light.

A new light is created and assigned to the new Template Material.

The original light is assigned to the new Template Material.

Any light that is assigned to a Template Material is displayed with a Template Material button
on the parameter widget, and any parameters driven by the Template Material are pink.

Lighting Your Scene | Lighting Tools

USER GUIDE
399

Click the Template Material button to show the parameters for the Template Material.

Click the button on the Template Material parameters to show all other lights assigned to that
Template Material.

Lighting Your Scene | Lighting Tools

USER GUIDE
400

5. Position the new light behind the next window.

Lighting Your Scene | Lighting Tools

USER GUIDE
401

6. You can now Clone or Duplicate these lights to place behind the remaining windows.

The new lights are also assigned to the Template Material.

7. Once all the lights are set up, any changes you make to the Template Material are also applied to the
lights.

Lighting Your Scene | Lighting Tools

USER GUIDE
402

Lighting Your Scene | Lighting Tools

USER GUIDE

Look Development
This chapter walks you through how to use Katana as a Look Development tool.

Look Development with Look Files - An introduction to look files and how they are used to store the changes
from one state of the scene graph to another.

Adding and Assigning Materials - A material is a scene graph location that holds shaders.

Checking UVs - Use the UV Viewer tab to inspect the UVs of selected objects.

Look Files - More uses of Look Files in Katana including baking, material overrides, collections, and palettes
of materials.

Look Development with Look Files
The primary use for look files is to store the changes from one state of the scene graph to another. This is
how a look development artist records the changes from a bare asset to its completed state. Other
departments can use look files to record:
• the renderer settings for a show (recorded at /root), such as the renderer, resolution and what AOVs to

output.
• a material palette, used either within the look development department or later during lighting.

Using Look Files to Create a
Material Palette
Look files can be used to create a material palette. This material palette can be brought into other recipes,
allowing material presets to be setup and shared across assets, shots, and scenes. A material palette can also

403

USER GUIDE
404

be passed to the lighting department with typical light materials to be assigned to lights, for instance, using
the GafferThree node.

Creating a Material Palette
The LookFileMaterialsOut node writes all materials at or below the location /root/materials to a Katana look
file. This look file is designed to be a material palette that can then be read in by those in look development
to help design an asset’s look but can also be used in lighting if the materials are light shaders.

To create a material palette:
1. Create the materials for the material palette. For information on the creation of materials, see Adding

and Assigning Materials.
2. Create a LookFileMaterialsOut node and connect it to the bottom of the recipe.
3. Select the LookFileMaterialsOut node and press Alt+E.

The LookFileMaterialsOut node becomes editable within the Parameters tab.
4. Enter the location for the Katana look file (.klf) in the saveTo parameter.
5. Click Write Look File.

The Save Materials to Look File dialog displays.
6. Confirm the location of the Katana look file within the dialog and click Accept.

The look file is saved.

Reading in a Material Palette
Once you've created a material palette, it can then be easily added to any asset’s look development recipe.

To read in a material palette:
1. Create a LookFileMaterialsIn node and connect it to the recipe. It is usually added in a separate branch

and joined with a Merge node.
2. Select the LookFileMaterialsIn node and press Alt+E.

The LookFileMaterialsIn node becomes editable within the Parameters tab.
3. Enter the location for the material palette’s Katana look file (.klf) in the lookfile parameter.
4. Select the pass from the Katana look file to use for this palette with the passName parameter.
5. Select whether or not to bring in the materials palette by reference using the asReference dropdown.

When reading the material palette by reference, any materials assigned keep a reference to the Katana
look file from which they got their material. Thus, if the material in the materials palette Katana look file
is updated, so is the material assigned to the asset. This happens even if the asset’s look development is
saved in a new Katana look file. If by reference is not used, the asset’s look development Katana look file
is baked and not updated.

Look Development |

USER GUIDE
405

6. Using the locationForMaterials dropdown, select where in the scene graph to import the materials
from:
• Load at original location - the materials maintain the same location.
• Load at specified location - provides a parameter, userLocation, that acts as a namespace for the

material palette. For instance, a material at /root/materials/geo/chrome with userLocation default_
pass is placed at /root/materials/lookfile/default_pass/geo/chrome.

If a location already exists, it is overwritten.

Using Look Files in an Asset’s Look
Development
Katana look files (.klf) can be used for an asset’s look development. They are created by comparing the
scene graph generated at two points within the Node Graph and then recording the difference. When that
same asset is used within another recipe, the look file can be applied, restoring the state created during look
development. Multiple looks (within the same file) can be created for different passes, the first pass is always
called default.

Creating a Look File Using
LookFileBake
The LookFileBake node is used to compare the scene graph generated at two points within the node graph,
an original and a second point downstream of the original. At each location below the LookFileBake node’s
rootLocations parameter the difference between the original scene graph and the downstream scene graph
is recorded.

Creating a Look File
1. Create a LookFileBake node and place it anywhere within the Node Graph.
2. Connect from a point in the recipe where the bake asset has no materials assigned to the orig input of

the LookFileBake node.

Look Development |

USER GUIDE
406

Tip: Connecting from a point straight after the geometry has been imported usually produces the
best results.

3. Connect an output from downstream in the recipe, where the asset has the look you want to bake, to the
default input of the LookFileBake node.

4. Select the LookFileBake node and press Alt+E.
The LookFileBake node becomes editable within the Parameters tab.

5. In rootLocations, enter the scene graph location to traverse.

Tip: It is a good idea to make sure rootLocations matches the location the asset was initially
imported.
You can traverse multiple locations by using Add Locations to the right of the rootLocations
parameter. For more information on adding path locations using location parameters, see Node
Parameter Basics.

6. Enter the asset name for the look file in the saveTo parameter.
7. Click the Write Look File button.

The Write Look File dialog displays.
8. Select where the asset is going to be saved (it defaults to the saveTo parameter) and click Accept.

Katana starts to bake out the look file. This may take some time as all locations in rootLocations must be
fully expanded for each pass and all their attributes compared. Any differences detected between the
scene graph generated at the orig input and the scene graph generated at the pass inputs are written to
the look file.

Adding Additional Locations and Using rootIds

A LookFileBake can compare multiple original points (root locations) with a single downstream location,
potentially recording the changes to multiple assets, located under different scene graph branches. When
resolving a Look File with multiple root locations, Katana attempts to match root locations in the Look File,
with scene graph locations in the target scene.

You can specify a user attribute called rootId for any scene graph location, and - if that location is used as a
root locations in a LookFileBake - use rootIds to help determine which scene graph location the resulting
Look File is resolved to. A rootId is an attribute of type string, under lookfile.rootId in a scene graph
location’s Attributes.

Look Development |

USER GUIDE
407

Note: To create a user attribute lookfile.rootId, use an AttributeSet node pointed to the target
location. Set the action field to Create/Override, the attributeName field to lookfile.rootId, the
attributeType to string, and groupInherit to Yes. In the stringValue field, enter your chosen
rootId. For more on using AttributeSet nodes, see Making Changes with the AttributeSet Node.

Note: You can select any scene graph location as a root location. It determines the first level of the
relative path - or paths - generated by a LookFileBake.

When a LookFileAssign is resolved, local paths are determined using either the root location names of source
and target, or if specified by the unique rootIds of source and target root locations. Materials from a Look
File are applied using a combination of the determined local paths, and the name of the location the material
is applied to.

In an example with multiple root locations, and materials at multiple child locations, there are a number of
possible outcomes when the resulting LookFile is resolved:
• With rootIds set, and matching location names, the materials are assigned as expected.
• With no rootIds, but location names the same, one of the multiple source materials is assigned. There’s no

way to guarantee which one.
• With no rootIds and different location names, one of the multiple source materials is assigned. Again

there’s no way to guarantee which one.

The scene graph shown below has multiple root locations firstRoot and secondRoot, with geometry under
each.

Look Development |

USER GUIDE
408

In this case, each root location has geometry with applied materials in the path below it, and we want to
include those materials in a Look File. We also want to use rootIds to determine the resolve locations of the
Look File, so scene graph locations firstRoot and secondRoot each have a unique rootId. See Look
Development with Look Files for more on Look Files, and their uses.

To use rootIds in a LookFileBake with multiple root locations, first set rootIds on the root locations, then add
each root location to the rootLocations field in a LookFileBake node before writing a LookFile:
• In a scene like the one shown below, with multiple scene graph root locations, add rootIds to each root

location using an AttributeSet node.
• Add a LookFileBake node.
• Edit the LookFileBake node, select Add Locations > Path, in the node’s Parameters tab and enter the path

of a scene graph location you want to add into the resulting rootLocations field. Repeat for each
additional root location you want to add.

Look Development |

USER GUIDE
409

• Write the Look File.

The Look File stores local paths using each rootId as the top level, as well as the asset names.

Note: If the chosen root location has a rootId, it is included in the LookFileBake. If not, the
location name is used.

Using a LookFileAssign node, bring the Look File into a new scene, with different scene graph location
names, and paths (such as the scene shown below).

Look Development |

USER GUIDE
410

Although the paths, and path names are different, the geometry locations firstGeometry and
secondGeometry have the same relationship to locations firstLocal and secondLocal that the same
locations did to firstRoot and secondRoot in the original scene. So, as long as firstLocal shares a rootId
with firstRoot, and secondLocal with secondRoot, and the geometry location names are the same, the
Look File assigns as expected.

Adding Additional Passes to a Look File
1. In the LookFileBake node, select Add > Add Pass Input to the right of the passes parameter grouping.

A new pass name parameter displays.
2. Type the name of the new pass in the name parameter.

A new input is added to the LookFileBake node, named according to the name of the new pass
3. Connect the new input of the LookFileBake node to the output of the point in the recipe you want to

record the look of.

Look Development |

USER GUIDE
411

Having the Look File Include any Changes to /root

Select Yes for the includeGlobalAttributes dropdown inside the options parameter grouping of the
LookFileBake node.

Including Materials within the Look File

Look files automatically include materials that are assigned to geometry below locations it traverses (as are
renderer procedurals). On occasion it might be useful to include extra materials created during look
development to be read in later using the LookFileMaterialsIn or Material nodes.

To force materials to be included within the look file:
1. In the options parameter grouping of the LookFileBake node, select Yes for the

alwaysIncludeSelectedMaterialTrees dropdown.
A locations widget displays.

2. In selectedMaterialTreeRootLocations, enter the material root scene graph location of the materials to
include.
Multiple locations can be included by using Add Locations to the right of the
selectedMaterialTreeRootLocations parameter. For more information on adding path locations using
the location widget, see Manipulating a Scene Graph Location Parameter.

Note: Two things that are not recorded when a look file is written: changes over time (only
differences for the current frame are recorded) and deleted locations (locations cannot be removed
by look files - for geometry, a similar effect can be achieved by setting its visibility to off).

Assigning a Look File to an Asset
The easiest way to assign a Katana look file to your asset is by using the Importomatic, see Using the
Importomatic. It is also possible to assign a Katana look file using LookFileAssign.

To assign a Look File using LookFileAssign:
1. Create a LookFileAssign node and connect it to the recipe.
2. Select the LookFileAssign node and press Alt+E.

Look Development |

USER GUIDE
412

The LookFileAssign node becomes editable within the Parameters tab.
3. Assign the scene graph locations of the 3D assets to the LookFileAssign CEL parameter (see Assigning

Locations to a CEL Parameter under Node Parameter Basics).
4. In the asset parameter, enter the Katana look file to assign.

Note: When you bake a LookFile, CEL statement locations are automatically amended to be
relative to the root of the LookFile bake. This means that although the full hierarchy of the target
scene does not need to match the source scene, intermediate hierarchies must correspond.

For example, the assignment baked at -
/root/world/geo/someGeometry:
./geometry/subGeometry/subSubGeometry

- works applied to any locations with matching intermediate hierarchy. Assigning the LookFile to
//subSubScene in the path below would work -
/root/newScene/newSubScene/geometry/subGeometry/subSubGeometry

- as would assigning the LookFile to //newSubBranch in the path below-
/root/newSubBranch/geometry/subGeometry/subSubGeometry

Assigning the LookFile to //worldAssets it the path below would not work, as the intermediate
hierarchies do not match -
/root/worldAssets/someGeometry/geo

Resolving Look Files
A look file is assigned to a location in much the same way a material is assigned. An attribute on the location,
lookfile.asset in this case, stores where to retrieve the look file without actually copying the details to that
location. In order to apply the changes specified in the look file for a particular pass, use a LookFileResolve
node. The alternate, and preferred method, is to use the LookFileManager node, see Making Look Files
Easier with the LookFileManager.

To resolve the look file for a particular pass:
1. Create a LookFileResolve node and connect it to the recipe at the point you want to resolve for a specific

pass.
2. Select the LookFileResolve node and press Alt+E.

The LookFileResolve node becomes editable within the Parameters tab.

Look Development |

USER GUIDE
413

3. In the passName parameter, enter the look file pass to use.
If no look file pass is specified when attempting to resolve, the pass falls back to the default pass when
KATANA_LOOKFILE_DEFAULT_PASS_FALLBACK is set to 1. In this case, no error is generated and the
default pass is used, otherwise Katana produces an error location.

Note: The lookfile.resolvedPass attribute always reports the requested pass and is, therefore, not
affected by this fall-back.

Note: To force a reload for a look file that is being resolved, click Flush Look File Cache in the
LookFileResolve’s parameters.

Overriding Look File Material
Attributes
When a Katana look file is assigned to a location, the details of where to find the look file are stored, not the
contents of the look file itself. To retrieve the actual contents, a LookFileResolve or LookFileManager node is
needed. These nodes enable you to select a pass, stored within the Katana look file, and retrieve the scene
graph locations for that pass.

While this behavior has a number of advantages, scene specific overrides need access to the information
within the look file. To make scene specific changes you bring in a look file’s materials and then change
those material locations. This is achieved with either the LookFileOverrideEnable or the LookFileManager
nodes. For details on overriding with the LookFileManager node, see Overriding Look Files.

To override a look file material using the LookFileOverrideEnable node:
1. Create a LookFileOverrideEnable node and connect it to the recipe.

The LookFileOverrideEnable node should be connected at some point downstream of a LookFileAssign
node but before the look file is resolved.

2. Select the LookFileOverrideEnable node and press Alt+E.
The LookFileOverrideEnable node becomes editable within the Parameters tab.

3. Enter the name of the look file to override in the lookfile parameter.
4. Enter the look file’s pass name to use in the passName parameter.

The materials within the look file are brought into the recipe and can be overridden.

Look Development |

USER GUIDE
414

5. Edit the material as needed. See Editing a Material for further details.

Activating Look File Lights and
Constraints
Katana maintains a list of lights, cameras, and constraints at /root/world within the scene graph. When a
Look File brings in a light or constraint, the lists at /root/world need to be updated. The
LookFileLightAndConstraintActivator node activates Look File lights and constraints by updating the
respective lists. It is also used to add constraints from LookFiles to the global constraint list. This list is used
to specify the order in which constraints are evaluated, so this only has to be done if the constraints from the
LookFile need to be evaluated in a specific order.

To activate lights and constraints from within a look file:
1. Create a LookFileLightAndConstraintActivator node and connect it to the recipe at some point

downstream of a LookFileResolve or LookFileManager node.
2. Select the LookFileLightAndConstraintActivator node and press Alt+E.

The LookFileLightAndConstraintActivator node becomes editable within the Parameters tab.
3. Find the lights or constraints to activate by either:

• selecting Action > Search Entire Incoming Scene...,
OR

• selecting a location within the scene graph and then selecting Action > Search Incoming Scene From
Scene graph Selection... .

Any look files with lights or constraints, found during the search, populate the node’s hierarchical display
(located below the Action menu in the Parameter tab).

4. Enable the lights and constraints for activation by right-clicking the .klf file in the hierarchical display and
selecting Enable (or expanding the hierarchy and doing it individually).

Using Look Files as Default Settings
It is often desirable to have consistent default render settings across an entire show. Most render settings
reside in the scene graph at /root. These settings can be stored in a Katana look file and brought in to each
recipe of a show.

Look Development |

USER GUIDE
415

Creating a look file for a show’s default settings is the same as creating any other look file but you need to
have the look file record changes at /root, which is not recorded by default.

Saving Changes to /root as Part of a Look File

With the LookFileBake node’s parameters in the Parameter’s tab, open up the options parameter grouping
and select Yes for the includeGlobalAttributes dropdown.

The look file now records changes to /root.

Setting a Globals Look File for a Recipe

Look files for assets are assigned to the location of the asset. As a look file for a show’s settings is designed
to repeat the changes made to /root, a LookFileGlobalsAssign node associates a look file with the /root
location (this can also be achieved with the LookFileManager node, see Assigning and Unassigning a Global
Look File).

To have a look file associated with /root:
1. Create a LookFileGlobalsAssign node and connect it to the recipe at the point you want to setup the

show’s default settings.
2. Select the LookFileGlobalsAssign node and press Alt+E.

The LookFileGlobalsAssign node becomes editable within the Parameters tab.
3. Enter the look file to use in the asset parameter.
4. If you want the look file to be resolved immediately, select Yes from the resolveImmediately dropdown.

Tip: You can force a reload of the look file at anytime by either: clicking the Flush Look File Cache

button in the Parameter tab (when the LookFileGlobalsAssign node is editable), or by clicking
at the top of the Katana window.

Making Look Files Easier with the LookFileManager
The LookFileManager node has a lot of the functionality mentioned above, but it does it all in one node!

The LookFileManager node can:
• Assign a look file to /root, thus providing a show’s default settings, in the same way as the

LookFileGlobalsAssign node.

Look Development |

USER GUIDE
416

• Bring in a look file’s material locations enabling them to be overridden, in the same way as the
LookFileOverrideEnable node.

• Define which passes to resolve, in the same was as the LookFileResolve node. The LookFileManager node
can resolve multiple passes, providing an output for each.

Create a LookFileManager node and connect it to the recipe at the point you want to resolve any look files
into their respective passes.

Bringing a Look File into the Scene
Graph
You can bring in a look file into the scene graph for later overriding or assigning to /root (to set a shot’s
global settings). This is done by adding the look file to the Look Files list of the LookFileManager node.

You can add a look file to the Look Files list in a number of ways:
• Adding the look file currently assigned to a scene graph location.
• Adding a look file from all the look files in the current scene graph.
• Adding a look file from a list of all look files at or below a scene graph location.
• Adding a look file that is not assigned anywhere within the scene graph.

To add the look file currently assigned to a scene graph location, right-click inside the Look Files list (or click
) and select Add Look File Asset From Scene graph Selection.

To add a look file from all the look files in the current scene graph:

1. Right-click inside the Look Files list (or click) and select Find All Look File Assets In Incoming
Scene... .
The Find Look File Assets On Incoming Scene dialog displays. The dialog is populated with all the look
files in the current scene graph.

2. Right-click on a look file you want to add and select Add Look File Asset.
You can repeat this step for as many look files as you want to add.

3. Click Close when you have finished.

To add a look file from a list of all look files at or below a scene graph location:

Look Development |

USER GUIDE
417

1. With one or more scene graph locations selected, right-click inside the Look Files list (or click) and
select Find All Look File Assets Beneath Selection In Incoming Scene... .
The Find Look File Assets On Incoming Scene dialog displays. The dialog is populated with all the look
files assigned at or below the scene graph location selected.

2. Right-click on a look file you want to add and select Add Look File Asset.
Repeat this step for as many look files as you want to add.

3. Click Close when you have finished.

To add a look file that is not assigned anywhere within the scene graph:

1. Right-click in the Look Files list (or click) and select Advanced > Add Look File Asset From
Browser... .

2. Select the look file within the browser and click Accept.
The look file is added to the LookFileManager Look Files list and assigned as the look file to /root. To
unassign it, uncheck the Add As Look File Root Asset checkbox.

Assigning and Unassigning a Global
Look File
You can replicate the behavior of the LookFileGlobalsAssign node inside the LookFileManager.

Assigning a Global Look File

To assign a look file to /root that is not currently in the scene graph:
1. With the LookFileManager node’s parameters in the Parameters tab, right-click in the Look Files list (or

click) and select Advanced > Add Look File Asset From Browser... .

The Load Look File dialog displays.
2. Select the look file within the browser and click Accept.

The look file is added to the LookFileManager Look Files list and assigned as the look file to /root.

To assign a look file that is currently within the scene to /root:
1. Bring the look file into the LookFileManager node’s Look Files list.

2. Right-click on the look file (or select it and click) and select Use Look File For Scene Globals.

Look Development |

USER GUIDE
418

Unassigning a Global Look File

It is possible to unassign a look file previously assigned to /root within the LookFileManager node without
deleting it.

To unassign a look file from /root, within the Look Files list, right-click on the look file (or select it and click
) and select Disable Use of Look File For Scene Root Attribute.

Removing a Look File from the Look
Files List
You can remove a look file from the Look Files list of the LookFileManager node. Removing a look file that
has previously been assigned to the /root scene graph location unassigns it. Also, any look file that is
removed from the Look Files list is no longer available for material overrides within the scene graph.

To remove a look file from the LookFileManager’s Look Files list, within the Look Files list, right-click on the

look file (or select it and click) and select Remove Look File From Manager.

Managing Passes in the
LookFileManager
Each look file has one or more passes. The LookFileManager can resolve as many of these passes as needed,
creating an output for each (the default pass is always resolved). One technique is to have the look file that
is assigned to /root contain all the necessary passes for that shot. This method means only one look file
needs to be brought into the LookFileManager node to define all the passes that need resolving.

The Passes list to the right of the Look Files list inside the LookFileManager shows a list of passes that are
both being resolved and are available within a look file to be resolved. Each pass name has one of three
states:

• - this pass is not only being resolved, the LookFileManager is the view node and the Scene Graph tab
shows the results of resolving for this pass.

Look Development |

USER GUIDE
419

• - this pass is being resolved, it has an output from the LookFileManager.

• no icon - this pass is within the currently selected look file but is not being resolved.

Having the LookFileManager Resolve Additional Passes
1. Within the Look Files list for the LookFileManager node, click on the look file with additional passes. The

Passes list to the right of the Look Files list shows additional unresolved passes that are contained
within the look file. These additional passes are displayed with no accompanying icon.

2. In the Passes list, right-click on the pass to resolve and select Add Selected Pass Name Output.
The pass is now resolved and an output is added to the LookFileManager node.

Changing Which Pass to Use When the LookFileManager is the Current View Node
• right-click on the pass in the Passes list and select View Scene graph For Pass, or

• select the pass in the Passes list and select > View Scene graph For Pass, or

• click next to the pass name.

Overriding Look Files
When a look file is added to the Look Files list, its materials are added to the scene graph under the location
/root/materials/lookfile. You can then override/edit these materials.

To override or edit a Material within a look file:
1. Add the look file to the Look Files list.
2. In the Parameters tab, select Add Override > Material.

You can narrow the list of nodes in the Add Override menu using the Filter field.
To have the new Material node override affect all passes, toggle the New Overrides Active For All
Passes to on.

3. Follow the steps for overriding and editing a material at Editing a Material.

Note: It is also possible to Shift+middle-click and drag a node into the overrides list from within
the Node Graph tab.

Look Development |

USER GUIDE
420

You can toggle the ignore state of an override by right-clicking on the override in the Add Override list (or

selecting it and clicking) and selecting Toggle Ignore State.

Duplicating an Existing Override

To duplicate an override, in the Add Override list, right-click on the override (or select it and click), and
select Duplicate Override.

Viewing the Parameters for an Override in a Separate Panel

To view override parameters in another panel, right-click on the override in the Add Override list (or select it

and click), and select Tearoff Parameters of Override... .

Deleting an Override

To delete an override, right-click on the override in the Add Override list (or select it and click), and
select Delete Override (or with it selected, press Delete).

Note: You can change which passes the overrides are valid for using the active for passes menu
to the right of Add Override.

Tip: Although the most common use of the Add Override menu is for adding material overrides,
any kind of override may be created so long as the node has both an input and an output.

Adding and Assigning Materials
A material is a scene graph location that holds one or more shaders. Shaders define how an object, such as a
piece of geometry or a light, or - in the case of an Atmosphere shader - a volume, interacts within a renderer
to create an image.

The most common types of materials are:
• light materials (complete with a light shader), which are assigned to light locations to illuminate a scene,

and

Look Development | Adding and Assigning Materials

USER GUIDE
421

• geometry materials (with surface shaders and possibly displacement or bump shaders), which are
assigned to 3D geometry and particles.

The process of creating a basic material is broken down into two stages (although this can be done with one
node):
1. Create the scene graph material location to hold the shaders.
2. Add the shaders to that location.

You can assign one material to multiple lights or pieces of geometry. To define this relationship between a
material and its objects, use a MaterialAssign node.

An object with a material assigned keeps a reference to its material on the materialAssign attribute. The
material is actually copied to the object’s location either at render time, or at a MaterialResolve node.

At render time, a number of resolvers are applied automatically. These resolvers perform just-in-time
resolving of certain operations that are usually best done at the last minute. These resolvers are called
implicit resolvers. This method allows data to remain at a higher level for longer. For more details, see
Turning on Implicit Resolvers.

Note: Katana is a renderer agnostic application, and the shader types available depend upon the
renderer plug-ins and how they locate their shader libraries.

Material Basics
Note: The following steps are part of a legacy workflow, as of Katana3.2 you can create materials
using NetworkMaterialCreate nodes. For more information and workflow examples, see Building
Materials Using NetworkMaterialCreate.

Creating a Material
The first stage in creating a material is the creation of that material’s location. This is the scene graph
location that acts as a container for one or more shaders.

To create a material location:
1. Create a Material node and add it to your recipe.

Look Development | Adding and Assigning Materials

USER GUIDE
422

Materials are usually created in their own branch and a Merge node is used to connect them to the rest
of the recipe. If you need multiple materials, use a MaterialStack node. See Adding Multiple Materials for
more information.

2. Select the Material node and press Alt+E.
The Material node becomes editable within the Parameters tab.

3. Enter the material’s name in the name parameter.
Although strictly not needed as Katana handles name clashes gracefully, it is good practice to name the
material, as the name is used for both the node name and the material’s scene graph location.

4. In the namespace parameter, enter the location below /root/materials to place the material.
By default, the material is placed below /root/materials in the scene graph. If namespace is not blank,
the material is placed below
/root/materials/<namespace>. Some of the most common namespaces are included as a dropdown to
the right of the parameter. You can also specify nested namespaces, for instance, if the namespace
parameter is geo/metals, the material is placed in the scene graph below /root/materials/geo/metals.

Adding a Shader to a Material Location
A material location needs to have one or more shaders attached.

To add shaders to the material location:
1. Follow steps 1 to 4 in Material Basics above to create a material location.
2. Click Add shader and select a shader type.

The list of shader types varies depending on the renderers installed.
3. Add a shader to the new shader type’s parameter. You can:

• Click to the immediate right of the shader type and select the shader from the list.

OR

• Browse for a shader with > Browse... and navigate to the shader using the Shader Browser dialog,
select it and click Accept.

4. If you want to set any of the shader’s parameters to non-default values, expand the parameters for the

shader by clicking and enter the changes where needed.

5. Repeat steps 2 to 4 for any additional shaders for this material.
A possible combination might be a surface shader and a displacement shader. Material locations can
have shaders from more than one renderer, only shaders for the appropriate renderer are selected at
render time. This makes it possible for a single material to control how an object looks in a number of
different renderers.

Look Development | Adding and Assigning Materials

USER GUIDE
423

Editing a Material
Once a material is created, it is not locked down. Later in the recipe, you can edit the material using another
Material node.

To edit a material location:
1. Create a Material node and connect it to the recipe downstream of the target material.
2. Select the Material node and press Alt+E.

The Material node becomes editable within the Parameters tab.
3. Select edit material in the action parameter dropdown.
4. Enter the scene graph location of the material to edit in the location parameter within the edit

parameter grouping. See Manipulating a Scene Graph Location Parameterfor details on scene graph
location parameter fields.
The shaders and their current parameter values are displayed below.

5. Edit the shaders for that material location wherever needed. This includes adding additional shaders.

Overriding a Material
As a material location can be assigned to multiple pieces of geometry, sometimes a geometry-specific
change is needed. One way to perform this change is to use a material override. You point the Material node
at the location(s) to override. Then any changes made are stored on the materialOverride attribute of the
location.

It is also possible to override material locations directly. In this case, the override acts in the same way as an
edit.

You can also override multiple materials at once, but only edit one.

To override the material at a geometry location:
1. Create a Material node and connect it to the recipe downstream of the target material.
2. Select the Material node and press Alt+E.

The Material node becomes editable within the Parameters tab.
3. Set the action dropdown to override materials.
4. Assign the scene graph locations of the geometry locations to the CEL parameter (located in the

overrides parameter grouping). See Assigning Locations to a CEL Parameter for more on using CEL
parameter fields.

5. In the Scene Graph tab, select the material location of the material assigned at the geometry location (or

select > Select In Scene graph on the materialAssign attribute of the geometry location).

Look Development | Adding and Assigning Materials

USER GUIDE
424

6. Middle-click and drag from the attribute to override to the Drop Attributes Here hotspot at the top of
the attrs parameter grouping.
The attribute displays within the attrs parameter grouping and can now be overriden inside the
Parameters tab.
All changes you make are added as attributes to the location(s) specified by the CEL parameter (under
the materialOverride attribute).

Assigning Materials and Textures
As mentioned in the introduction, a material location needs to be associated with a geometry or light
location. This is achieved with the MaterialAssign node.

To assign a material to a scene graph location:
1. Create a MaterialAssign node and connect it to the recipe after both the geometry and material locations

have been created.
2. Select the MaterialAssign node and press Alt+E.

The MaterialAssign node becomes editable within the Parameters tab.
3. Add the scene graph locations where the material is to be assigned to the CEL parameter. See Assigning

Locations to a CEL Parameter for more on using CEL parameter fields.
4. Enter the scene graph location of the material to assign in the materialAssign parameter. See

Manipulating a Scene Graph Location Parameter for details on scene graph location parameter fields.

Tip: The best way to enter a material into the materialAssign parameter is to Shift+middle-click
and drag from the Material node in the Node Graph tab to the materialAssign parameter. This
creates an expression linking the material created by the Material node to the materialAssign
parameter.

Shaders may be responsible for how a geometry location is rendered, but a lot of the time, the richness of
the render comes from a number of asset-specific textures. These textures sometimes need to be passed to
the shader on a per-asset basis. Katana provides a number of ways to assign textures to assets depending on
your pipeline.

For more information on textures, refer to Handling Textures.

Forcing Katana to Resolve a Material
By default, Katana connects a geometry or light location with its respective material using the location’s
materialAssign attribute. This attribute points to where the material is located within the scene graph. At

Look Development | Adding and Assigning Materials

USER GUIDE
425

render time, an implicit resolver copies the material, pointed to by the materialAssign attribute, to the
geometry or light’s location. For more on implicit resolvers and their benefits, seeTurning on Implicit
Resolvers .

You can force material resolving at an earlier point within a recipe using the MaterialResolve node. To force
materials to be resolved earlier within the recipe, create a MaterialResolve node and connect it to the recipe
at the point materials should be resolved.

Using Face Sets
When assigning materials to assets, it is often useful to break up the asset into smaller parts based on its
faces. This allows different materials to be assigned to the different parts.

Creating a Face Set

Face sets are just a list of faces for a particular polymesh or subdivision surface. To create a face set:
1. Create a FaceSetCreate node and connect it to the recipe at the point you want to create the face set.
2. Select the FaceSetCreate node and press Alt+E.

The FaceSetCreate node becomes editable within the Parameters tab.
3. Add to the meshLocation parameter the polymesh or subdivision surface scene graph location. For

more on editing a scene graph location parameter, see Manipulating a Scene Graph Location Parameter.
4. Enter the name of this face set in the faceSetName parameter.

This is the name that is displayed in the Scene Graph tab below the meshLocation scene graph
location.

5. Switch the Viewer tab into face set selection mode by:

• selecting the polymesh or subdivision surface in the Scene Graph tab and clicking in the Viewer
tab, or

• Shift+middle-click and drag the FaceSetCreate node onto the icon, or

• middle-click and drag the selection parameter name onto the icon.

6. Select the faces for this face set. You can:
• Select individual faces or marquee select multiple faces.
• Use the Shift key while selecting to toggle whether a face is included, or the Ctrl key to remove faces,

or hold Ctrl+Shift to add faces.
• Select Selection > X-ray Selection in the Viewer tab to toggle between only selecting the faces that

are visible, and selecting all faces encompassed by the selection.

7. When you are happy with the selection, click next to the selection parameter and then select Adopt
Faces From Viewer.

Look Development | Adding and Assigning Materials

USER GUIDE
426

The Viewer tab exits face selection mode and the currently selected faces are copied to the selection
parameter.

Tip: You can invert the selection using the invertSelection checkbox. Using two FaceSetCreate
nodes, this feature, and an expression between the selection parameters, you can assign materials
to both halves of an asset.

Editing a Face Set

If you need to edit an existing face set, you can:

• Shift+middle-click and drag the FaceSetCreate node onto the icon, or

• middle-click and drag the selection parameter name onto the icon.

This puts the Viewer tab into face selection mode and enables you to edit the faces selected following the
steps from Step 6 in Creating a Face Set.

Assigning Materials to a Face Set

Assigning materials to a face set is done in the same way as assigning a material to any other location. Using
a MaterialAssign node to edit the materialAssign attribute of the face set’s scene graph location.

Material Pipelines
Creating a Material from a Look File
Materials previously baked out into Katana look files can also be assigned to material locations. Look files
and the look development process is explained in greater detail in Look Development with Look Files.

Note: This is different from reading in all the materials from a Katana look file, such as a material
palette look file created during look development. Material palettes and their creation is covered in
Using Look Files to Create a Material Palette.

To use a material from a look file at this material location:

Look Development | Adding and Assigning Materials

USER GUIDE
427

1. Follow steps 1 to 4 in Material Basics above to create a material location.
2. Select create from Look File in the action parameter dropdown.

3. Enter the path to the look file in the lookfile parameter, or click > Browse..., navigate to the look file
and click Accept.

4. Select a material from the materialPath dropdown list.
This is the list of materials contained within the look file. The list is automatically populated when a valid
look file is assigned to the lookfile parameter.

5. If you don’t want to import the material as a reference, select No for the asReference parameter
dropdown.
When Katana imports the material by reference, a reference to the original location of the material is
kept. This enables any changes to the original material to be propagated downstream, even if this
material is itself baked as part of a look file.

6. If you need to change any parameters, expand the parameters for the shader(s) by clicking and
entering the changes where needed.

Creating a Material that is a Child of Another Material
A child material inherits all the shaders from the parent, but changes you make to the child do not influence
the parent.

To create a child material:
1. Follow steps 1 to 4 in Material Basics above to create a material location.
2. Select create child material in the action parameter dropdown.
3. Enter the scene graph location of the parent material in the location parameter within the inheritsFrom

parameter grouping. See Manipulating a Scene Graph Location Parameter for details on scene graph
location parameter fields.
The child material now has the same attribute values as the parent.
You can make any changes needed to the parameters in this node without changing the parent. This
includes adding additional shaders.

Adding Multiple Materials
Having a chain of Material nodes would soon clutter up a recipe. To avoid this, create multiple materials
within one node using the MaterialStack node.

Look Development | Adding and Assigning Materials

USER GUIDE
428

Adding a Material
To add a material inside the MaterialStack node:
1. Select Add > Add Material.

A new material is added to the Add list.
2. Enter a new name in the name parameter.
3. Follow steps 2 to 5 in Adding a Shader to a Material Location.

To add a material from a look file inside the MaterialStack node:
1. Select Add > Add Look File Material.

A new material is added to the Add list.
2. Enter a new name in the name parameter.
3. Follow steps 3 to 6 in Creating a Material from a Look File .

To add a material as a child of an existing material:
1. Select a material in the Add list.
2. Select Add > Add Child Material.

A new material is added below the selected material.
3. Enter a new name in the name parameter.
4. Make any changes needed to the parameters, you can also add additional shaders.

Note: The parent has to be within the MaterialStack node, otherwise the menu options are not
available.

To add Material nodes from the Node Graph into the MaterialStack node, Shift+middle-click and drag the
nodes into the Add list.

Duplicating a Material
To duplicate a material within the MaterialStack node, select the material node in the Add list, right-click,
and select Duplicate Material.

Look Development | Adding and Assigning Materials

USER GUIDE
429

Disabling a Material
To disable a material within the MaterialStack node, select the material node in the Add list, right-click, and
select Ignore Material (or press D).

Deleting a Material
To delete a material from the MaterialStack node, select the material node in the Add list, right-click, and
select Delete Material (or press Delete).

Moving Materials Within the Add List
To move materials within the Add list, middle-click and drag.

Building Materials Using
NetworkMaterialCreate
The NetworkMaterialCreate node is specifically designed for building materials. It is similar to a Group node
as it acts like a container for a selection of your node graph, however it exclusively stores your material
network.

Note: To learn about the NetworkMaterialCreate node parameters, see NetworkMaterialCreate.

One aim of the NetworkMaterialCreate node is to minimize the amount of separate nodes the user needs to
create when working with materials. Because of this, it incorporates a NetworkMaterial and other nodes, all
conveniently within the NetworkMaterialCreate node. The node features a left-to-right workflow and a new
shading node design, which enables you to work more efficiently, making building and editing materials as
quick and simple as possible. NetworkMaterialCreate nodes support multiple NetworkMaterial locations to
further streamline your workflow.

This new network material workflow also introduces the ShadingGroup node which allows you to section off
pieces of your shading network within a NetworkMaterialCreate node. This layout results in multiple levels of
networks which allows full control over the accessibility of certain shading nodes and parameters.

Look Development | Adding and Assigning Materials

USER GUIDE
430

Example node graph showing the NetworkMaterialCreate workflow layout

Creating Shading Networks

Learn how to use the NetworkMaterialCreate node to build shading node networks.

Adding Multiple NetworkMaterials

Use the NetworkMaterialCreate node to create and organise multiple NetworkMaterials.

Using the ShadingGroup Node

Learn to use the ShadingGroup node to keep your shading node networks organized.

The Node Parameters and Interface Controls

Use the Node Parameters and Interface controls to customize shading node parameters from outside the
NetworkMaterialCreate node.

The NetworkMaterialEdit Node

Edit NetworkMaterials that have been created using NetworkMaterialEdit nodes.

NetworkMaterialCreate Compatibility
The new workflow of using a NetworkMaterialCreate node to build a material is both forward and backward
compatible.

Look Development | Adding and Assigning Materials

USER GUIDE
431

This means that your shading node networks from previous Katana versions can be copy-and-pasted into a
NetworkMaterialCreate node and the shading nodes will appear in the updated node design. The network
will be connected up correctly and will give you the same result as before.

In the same way, the shading nodes from your new network within the NetworkMaterialCreate can be copy-
and-pasted to previous versions of Katana as well as copied to the root of your node graph.

Creating Shading Networks
This topic explains how to use the NetworkMaterialCreate node to build a shading node network.

Note: To learn about the NetworkMaterialCreate node parameters, see NetworkMaterialCreate.

This example illustrates the difference between the previous, and new workflows for building materials. Both
networks function in the same way and have the same end result.

Look Development | Adding and Assigning Materials

USER GUIDE
432

Previous NetworkMaterial workflow VS current NetworkMaterialCreate workflow

Rendered result for both workflows

NetworkMaterialCreate Overview
The NetworkMaterialCreate node is created in the same way as any other node, hit Tab, select it from the
menu and place it in your node graph. To jump inside the node, you can:

l Ctrl + Middle-mouse click on the node.
l Click the enter node button.
l Select the node and hit Ctrl + Enter.

Inside the NetworkMaterialCreate node is a fixed sidebar on the right, which shows each NetworkMaterial
and their terminals for each renderer you have set up with Katana. This sidebar functions in the same way as
the Network Material node in the previous workflow, but all the terminals are prepopulated so the user

doesn’t need to add them manually. The sidebar can be hidden and exposed using the collapse and

expand tabs.

Note: By default, a NetworkMaterialCreate node provides one NetworkMaterial location. If you
would like to discover how to set up multiple NetworkMaterial locations within one
NetworkMaterialCreate node, see Multiple NetworkMaterials with NetworkMaterialCreate.

The NetworkMaterialCreate node Inside the NetworkMaterialCreate node

Look Development | Adding and Assigning Materials

USER GUIDE
433

At the top of this bar there is a Filter which allows you to enter a string to search for a specific terminal. For
example, start typing ‘displacement’ and the list filters down to only show the terminals containing the word
displacement. This is useful especially if you have multiple renderers or NetworkMaterials set up.

Under the Filter bar is the name of your Network Material, you can rename this from the Parameters tab, by
double clicking your Network Material or selecting it and pressing Enter on the keyboard.

The fixed terminal sidebar

Note: Renaming the node itself won’t change the name you’ll see on the terminal sidebar. The
Network Material name can be changed from the Parameters > Node Parameters tab.

The Node Menus
To create a shading node, press Tab from inside a NetworkMaterialCreate node to bring up the node
creation menu, and type the node name. As you're typing, the menu will filter down. When inside a
NetworkMaterialCreate node, the menu is limited to show your default renderer nodes, and a few standard
Katana nodes, only the nodes you are able to use are visible.

The nodes have a colored stripe on the left to indicate whether they belong to a renderer or whether they
are standard Katana nodes. For example, the 3Delight shading nodes are color-coded with a red stripe and
the Katana nodes appear yellow.

Look Development | Adding and Assigning Materials

USER GUIDE
434

Colored stripes in the node creation menu indicate group type

You can alter the node menu to display shading nodes from your other renderers. To do this:

1. Hold Shift and hit Tab.
2. Select the required renderer.
3. Hit Tab again to bring up the node menu for your selected renderer.

The S key is a 3Delight keyboard shortcut which brings up the node creation menu for 3Delight shading
nodes. This can be useful if you want to switch back and forth between two renders as you can use the S key
to bring up 3Delight shading nodes whilst using Tab to bring up the node menu for a different renderer.

Tab Node menu for selected renderer.

S Node menu for 3Delight shading nodes.

Shift+Tab Select renderer to change node menu.

Note: It is possible to change the nodeType from within a shading node's parameters. Values of
any parameter names that overlap between node types will be remembered and no changes will
be lost if you want to switch back and forth.

Look Development | Adding and Assigning Materials

USER GUIDE
435

Connecting Shading Nodes
Setting up shading nodes within the NetworkMaterialCreate node is designed to make things as simple as
possible for artists. Shading networks set up inside the group feature a left-to-right workflow which is well
suited to working with a large number of shading nodes.

The shading nodes themselves are designed and optimized for creating materials, as the input and output
ports are all visible and clearly labeled.

Tip: You can rename the shading nodes by selecting the node, hitting Enter, and typing the new
name. You can also show and hide the Filter function on selected nodes using the Alt+Enter
keyboard shortcut.

Look Development | Adding and Assigning Materials

USER GUIDE
436

Shading Node UI

Tip: Some pairs or groups of nodes that are normally used together or that rely on each other, are
automatically created when you place one of the nodes. For example, if you place a file node, a
place2DTexture node is automatically created.

To link shading nodes together, click once on a parameter port to begin drawing the connection, and then
click once on the other shading node's port to connect the two nodes together. Invalid target ports are
grayed out and disabled to show which connections are available.

The input and output ports are all color-coded to indicate which connections can be made. You can only
connect the compatible data types, for example, int to int and float to float.

Tip: Hover your cursor over the input/ouput port to see what data type it provides/receives.

Tip: Hover over a connection and press '/' on your keyboard to follow the connection to its
connected node.

Data Type Color Codes:
color

float / array_float

int

matrix

normal

point

string

vector

disabled

Look Development | Adding and Assigning Materials

USER GUIDE
437

misc

Once your shading nodes are connected to the terminal sidebar, the network is now set up and your
NetworkMaterial is in your Scene Graph under /root/materials by default.

Note: To learn how to change your NetworkMaterial scene graph location and other
NetworkMaterialCreate parameters, see NetworkMaterialCreate.

Tip: In the same way as the terminal sidebar, you can type in the Filter field of the shading nodes
to quickly search for an input/output, even if the menu is not expanded. You can show and hide
the Filter function on selected nodes using the Alt+Enter keyboard shortcut.

The arrows on the shading nodes show if a page is expanded:

l - A downwards-facing arrow means the page is expanded.
l - A right-facing arrow means the page is collapsed.

You can click on the page titles to expand/collapse pages so that you can hide certain sections. To
collapse/expand the entire shading node, you can click the expand/collapse state button at the top-left
of a node or use the keyboard shortcuts:

Tip: You can use the preference nodegraph > defaultShadingNodeViewState to set the default
expand/collpase state of new nodes.

l ALT + 1 - Collapse completely.

l ALT + 2 - Expand to show connected ports.

Look Development | Adding and Assigning Materials

USER GUIDE
438

Tip: The example shows just connections exposed, but you can expose the pages containing
the connected inputs and outputs, such as Base by enabling the
showPagesConnectedOnly control in the Preferences under nodegraph.

Look Development | Adding and Assigning Materials

USER GUIDE
439

l ALT + 3 - Fully expand pages and connections.

Look Development | Adding and Assigning Materials

USER GUIDE
440

If a node is collapsed, you can drag a connection over the node to automatically expose compatible
connections. The node collapses again automatically after connecting the input or output. The same is true if
you change you mind and drop the connection outside the node.

A collapsed dlPrincipled target node with no exposed
connections

Dragging a connection over the node auto-expands
compatible connections

The auto-collapsed node after a connection is made

You can hover over a connection to display a tooltip detailing the node the connection originates from and
the node it is connected to downstream.

The data types of each connection are also shown.

Look Development | Adding and Assigning Materials

USER GUIDE
441

Organizing a Shading Network with Dot Nodes
Dot nodes can help you organize complex shading networks to make them easier to read. For example, you
can bend connections around notes for other artists or use a Dot to connect a single output to multiple
inputs.

Using Dot nodes to bend connections Splitting an input using a Dot node

You can add a Dot like any other node, by pressing Tab and then typing Dot into the node finder, but the
fastest way to add a Dot node is to press . (period) on your keyboard. Like other nodes, the Dot node sticks
to your pointer and you can click anywhere in the shading network to place it.

Alternatively, you can add Dot nodes when hovering over a connection to insert the Dot between nodes or
you can drag a node output and then add a Dot node to create a Dot chain.

Look Development | Adding and Assigning Materials

USER GUIDE
442

Adding a Dot node to a connection Adding multiple Dot nodes to create a chain

Dot nodes in shading networks are omnidirectional, meaning you can connect to them and drag outputs
from them in any direction. They can have as many output connections as you like, but only one input
connection.

Hiding Node Connections
In node-heavy shading networks, the connections between nodes can cause confusion if you're looking for a
particular input. You can show and hide node input connections to clean up the network by navigating to
Edit > Toggle Input Connection Visibility or by using the Alt+H keyboard shortcut.

Look Development | Adding and Assigning Materials

USER GUIDE
443

Tip: You can also show and hide the Filter function on selected nodes using the Alt+Enter
keyboard shortcut.

1. Select the node or nodes you want to affect in the shader tree. In this example, the Diffuse and
Roughness nodes.

2. Navigate to Edit > Toggle Input Connection Visibility or use the Alt+H keyboard shortcut to hide
the input connections on the selected nodes.

Look Development | Adding and Assigning Materials

USER GUIDE
444

3. Deselect the nodes to see the effect.

4. You can select a node in the tree to temporarily display its input connections.

Look Development | Adding and Assigning Materials

USER GUIDE
445

5. When the inputs are hidden, the connections on the node are still filled to indicate that a hidden
connection exists.

Look Development | Adding and Assigning Materials

USER GUIDE
446

6. Select the nodes and navigate to Edit > Toggle Input Connection Visibility or use the Alt+H
keyboard shortcut to show the input connections on the selected nodes.

7.
Tip: Hold Alt+H with no selection to temporarily show hidden connections.

Multiple NetworkMaterials with
NetworkMaterialCreate
You can create multiple NetworkMaterials within one NetworkMaterialCreate node. This allows you to share
shading nodes across different network materials, reducing the number of nodes needed when creating
variants of a material.

The Material Scenegraph within the NetworkMaterialCreate Parameters allows you to organize your
NetworkMaterials through rearranging and adding Namespaces. Adding a Namespace in your Material
Scenegraph creates a group in your Scene Graph tab, which can parent multiple Network Materials and
other Namespaces for the purpose of organization.

Look Development | Adding and Assigning Materials

USER GUIDE
447

Note: For more information about the Material Scenegraph, refer to the Organizing
NetworkMaterials and Namespaces section of this topic.
For more information about the NetworkMaterialCreate Parameters, see NetworkMaterialCreate.

Adding a New NetworkMaterial
To add a new NetworkMaterial to a NetworkMaterialCreate node:

1. Open the NetworkMaterialCreate node Parameters by activating the edit flag.

2. Click the plus button and select Add NetworkMaterial.

A new NetworkMaterial is created.

New NetworkMaterial in the Material Scenegraph
3. Change the name of the new NetworkMaterial by selecting it and pressing Enter on the keyboard, or

by double-clicking.

Look Development | Adding and Assigning Materials

USER GUIDE
448

New NetworkMaterial in the terminal sidebar

Adding a New Namespace
To add a new Namespace to a NetworkMaterialCreate node:

Look Development | Adding and Assigning Materials

USER GUIDE
449

1. Open the NetworkMaterialCreate node Parameters by activating the edit flag.

2. Click the plus button and select Add Namespace.

A new Namespace is created.

New Namespace in the Material Scenegraph
3. Change the name of the new Namespace by selecting it and pressing Enter on the keyboard, or by

double-clicking.

Look Development | Adding and Assigning Materials

USER GUIDE
450

New Namespace in the terminal sidebar

Note: You can also add NetworkMaterials and Namespaces through the menu options when
right-clicking within the NetworkMaterialCreate Material Scenegraph.

Organizing NetworkMaterials and Namespaces
You can organize your NetworkMaterials and Namespaces through the NetworkMaterialCreate Material
Scenegraph in node Parameters.

l Use the middle-mouse button to click and drag the NetworkMaterials and Namespaces into the
structure you require.
This structure is reflected in the Scene Graph and the terminal sidebar inside the
NetworkMaterialCreate node.

Look Development | Adding and Assigning Materials

USER GUIDE
451

Note: Rick-click in the Material Scenegraph to delete and duplicate NetworkMaterials and
Namespaces as well as fully expand or collapse them.

NetworkMaterials and Namespaces organized in the Material Scenegraph

NetworkMaterial and Namespace structure in the Scene Graph

Look Development | Adding and Assigning Materials

USER GUIDE
452

NetworkMaterial and Namespace structure reflected in the terminal sidebar

The Material Scenegraph also provides some information about each NetworkMaterial. You can see how
many renderers and terminals are connected to each NetworkMaterial, set the interactive state of a
NetworkMaterial, and assign it a color.

Look Development | Adding and Assigning Materials

USER GUIDE
453

Note: For more information about the NetworkMaterialCreate node parameters, see
NetworkMaterialCreate.

The color helps to distinguish multiple NetworkMaterials at a glance. These colors are represented on the
NetworkMaterial names on the terminal sidebar within the NetworkMaterialCreate node.

The NetworkMaterials and Namespaces can be collapsed and expanded using the arrows on the terminal
sidebar.

Workflow Example
In this example there are two robot characters each requiring a different material variation. The ability to
create multiple NetworkMaterials from one NetworkMaterialCreate node is very useful in this situation as

Look Development | Adding and Assigning Materials

USER GUIDE
454

each material variation uses some of the same textures and masks.

Each of the robots' materials share a transmission mask, roughness and emissive texture files, and require
the same glass shader.

Using a separate NetworkMaterialCreate node for each NetworkMaterial would require a lot of duplicated
nodes resulting in more nodes overall. This simple example shows how sharing parts of the network reduces
duplication. In production scripts featuring hundreds of nodes, the power of multiple NetworkMaterials
within a single NetworkMaterialCreate node is far greater.

Look Development | Adding and Assigning Materials

USER GUIDE
455

A NetworkMaterialCreate node with one NetworkMaterial location for a white material. Duplicates
highlighted.

A NetworkMaterialCreate node with one NetworkMaterial location for an orange material. Duplicates
highlighted.

Using one NetworkMaterialCreate node with two NetworkMaterials means that they can share sections of
the shading node network, in this case, the 8 highlighted nodes. This reduces the number of nodes from 27

Look Development | Adding and Assigning Materials

USER GUIDE
456

over two separate NetworkMaterialCreate nodes, to 19 nodes in one NetworkMaterialCreate node by
sharing 8 nodes.

A NetworkMaterialCreate node with two NetworkMaterial locations. Shared nodes highlighted.

Organizing Shading Networks with
ShadingGroup Nodes
The ShadingGroup node is designed to keep your workspace organized by allowing you to group sections of
your shading node network together. Inside a ShadingGroup node, there are fixed input and output bars,
which are used to connect the nodes within the group to the rest of the network. This also means you are
able to view and access the input and output ports of the nodes within the group on the exterior of the
ShadingGroup node. These features of ShadingGroup nodes help to provide the artist with a user friendly
interface and enables you to hide any unnecessary details from your shading node network.

Look Development | Adding and Assigning Materials

USER GUIDE
457

The ShadingGroup node

Note: The ShadingGroup node is designed to be used within the NetworkMaterialCreate node
and can therefore only be created whilst inside the NetworkMaterialCreate node.

Using the ShadingGroup Node
To create a ShadingGroup:

1. Hit Tab.
2. Type and select ShadingGroup from the Foundry nodes.

You can jump inside the ShadingGroup in the same way as the NetworkMaterialCreate, by holding Ctrl and
clicking with the Middle-mouse button or by clicking the enter node button.

You can either create nodes directly inside the ShadingGroup or you can cut-and-paste existing nodes from
your network, into the group.

To connect shading nodes within the group to input and output sidebars:

1. From your shading node, click the input parameter that you would like to be fed in.
2. Click anywhere on the fixed INPUT bar on the left to create a port and path for that specific

parameter.
3. Click on the output parameter that you would like to be read out.
4. Click anywhere on the fixed OUTPUT bar on the right to create a port and path for that specific

parameter.

Look Development | Adding and Assigning Materials

USER GUIDE
458

Connecting a shading node within a ShadingGroup to the INPUT and OUTPUT sidebars

Tip: The INPUT and OUTPUT bars are filterable in the same way as the terminals on a
NetworkMaterialCreate node. Enter a string in the Filter bar to search.

When you exit a ShadingGroup node, you'll see that the input and output parameters are visible on the
outside of the node. You can now connect these up to the rest of your network.

Look Development | Adding and Assigning Materials

USER GUIDE
459

Connecting the ShadingGroup node to the rest of the Network

In the same way as any node within a NetworkMaterialCreate node, you can collapse and expand the
ShadingGroup using Alt + 1, Alt + 2 and Alt + 3. This helps to keep the whole section organized.

Menu options
From inside the ShadingGroup, right-click on one of your ports to bring up the options menu. From here,
you can:

l Jump to the node it's connected to.
l Delete the port.
l Rename the port.

Look Development | Adding and Assigning Materials

USER GUIDE
460

ShadingGroup port menu options

Tip: When renaming a port, you can use fullstops in between names to create nested pages. This is
a great way of customizing your interface for input and output ports.

Rearranging Ports Within ShadingGroups
You can rearrange the order of your ports within a ShadingGroup, allowing you to customize its inputs and
outputs. Rearranging ports allows you to organize your ShadingGroups easily. Changes made to the order of
Input and Output ports made within the ShadingGroup are reflected on the ShadingGroup node when
viewed within a Network Material context, such as NetworkMaterialCreate or NetworkMaterialEdit.

Rearrange Input and Output ports by middle-mouse clicking the port you wish to move and then dragging it
within its respective sidebar. Nested or grouped ports can also move between or out of groups by middle-
mouse dragging the chosen port between groups.

Look Development | Adding and Assigning Materials

USER GUIDE
461

Ports on the Output sidebar before being
rearranged.

Ports on the Output sidebar after being rearranged.

The order of rearranged ports is reflected in the ShadingGroup node once you exit the group.

Look Development | Adding and Assigning Materials

USER GUIDE
462

ShadingGroup with default port arrangements. The same ShadingGroup, with ports rearranged.

Note: You can rearrange ports within LiveShadingGroups. However, if the LiveShadingGroup is
locked, ports cannot be rearranged or edited.

Sharing and Reusing ShadingGroups with Macros
Macros enable you to wrap any single node, or ShadingGroup, and publish them so that their state is saved
and they can be recalled in other shading networks. Saved macros can be added to a shader network as you
would add a regular node, including from the Tab node creation menu.

To create a macro in a shading network:

Look Development | Adding and Assigning Materials

USER GUIDE
463

1. Select the part of the shading network you want to save as a macro.

2. Press G on the keyboard to convert the selected nodes into a ShadingGroup.

The target shading nodes in the tree The target nodes collapsed into a group

Note: If you're creating a macro from a single node, you don't need to create a group.

3. Double-click the group, or use the keyboard shortcut E, to open its controls in the Parameters tab.

4. Click the wrench icon and select Save as Macro.

By default, macros are saved in your home directory in .katana/Macros/_User and are automatically
assigned the suffix _User. See Macros for more detailed information.

5. To add a macro to your shading network, press Tab on the keyboard and start typing the name of
your macro.

Look Development | Adding and Assigning Materials

USER GUIDE
464

Node Parameters and Interface
Controls
The node parameters and interface controls are found in the Material Interface of the
NetworkMaterialCreate and NetworkMaterialEdit nodes. These controls can be used to customize various
shading node parameters that you may want to be accessible from outside Network Material nodes. The
controls can be used to provide an artist-friendly set of parameters, established inside Network Material
nodes, presented outside as an interface for controlling certain aspects without being exposed to all of the
parameters. This can be beneficial as it allows the artist to focus only on the necessary parameters and make
quick alterations without having to enter their Network Material nodes.

Look Development | Adding and Assigning Materials

USER GUIDE
465

Promoted parameters in a NetworkMaterialCreate Parameters tab

Note: The examples on this page demonstrate promoting and customizing the material interface
in the context of a NetworkMaterialCreate node. All these steps are reproducible when working
with NetworkMaterialEdit.

Adding Custom Parameters to the Material Interface
Network Materials can contain any number of nodes and opening the group to access node parameters is
time consuming. If you know that some node parameters are used often, you can expose those internal node
parameters on the parent NetworkMaterialCreate's Parameters tab for ease of access. You can promote
parameters from any shading node within your NetworkMaterialCreate node, including those within
ShadingGroups.

Note: The examples on this page demonstrate promoting and customizing the Material interface
in the context of a NetworkMaterialCreate node. All these steps are reproducible when working
with NetworkMaterialEdit, and there are no differences in workflows between the two nodes.

Look Development | Adding and Assigning Materials

USER GUIDE
466

To promote parameters quickly with the default Name, Page, and Label:

1. Click the NetworkMaterialCreate node's expand button to display the nodes inside.

2. Double-click the node that contains the parameters you want to expose, or press the E keyboard
shortcut.

Tip: If the source node is in a ShadingGroup, click the ShadingGroup node's expand button
to display the nodes inside and then double-click the node that contains the parameters you
want to expose..

The node's Parameters tab opens.

3. Click the wrench icon to the right of the parameter you want to expose and select Add to Material
Interface.

The wrench turns yellow to indicate that the parameter is added to the Material Interface.

4. Open the Parameters for your NetworkMaterialCreate node to see your promoted parameters.

Look Development | Adding and Assigning Materials

USER GUIDE
467

5. Click the wrench and select Remove from Material Interface to remove an exposed parameter.
6. Click the green arrow next to a parameter to open its source node's Parameters.

Editing a parameter in the Material Interface or the source node updates both, so your nodes and
NetworkMaterial are always synchronized.

To promote a parameter and customize its appearance:

1. Bring up the Parameters of your shading node by setting the edit flag.
2. Click on the Edit Parameter wrench icon on the right-hand side of the parameter you would like

to promote.
3. Choose Edit Material Interface Options from the dropdown menu.

The Material Interface Options dialog is displayed.

4. In the dialog box, enter the name you would like to give to the parameter in the Name field.
5. You can use the Page and Label fields to customize the appearance of the parameter.

• Page - creates a subsection in the Parameters tab and places the new parameter in that
subsection. If you leave Page blank, the new parameter is added directly to the Parameters tab.

• Label - specifies the label describing the new parameter.

Look Development | Adding and Assigning Materials

USER GUIDE
468

Tip: Pages appear as dropdowns in the Parameters tab. To create a page within a page, put
a full stop between the two names. For example, Base Layer.Diffuse and Subsurface
creates a page called Base Layer and a subsection called Diffuse and Subsurface.

6. Click OK to finish editing.
7. Open the Parameters for your NetworkMaterialCreate node to see your promoted parameters.

8. Click the wrench and select Remove from Material Interface to remove an exposed parameter.
9. Click the green arrow next to a parameter to open its source node's Parameters.

Editing a parameter in the Material Interface or the source node updates both, so your nodes and
NetworkMaterial are always synchronized.

Adding Prefixes to Custom Parameters from ShadingGroups
Promoting parameters from inside a ShadingGroup to the Material Interface allows you to add prefixes to
parameters' page and name. This allows you to group parameters quickly without drilling down into the
ShadingGroup to change the page and name of promoted parameters manually.

Note: The parameter name is its scripting reference, not its label in the Material Interface.

To add a prefix to promoted parameters:

1. Open the Parameters for your ShadingGroup node.

2. Click the publicInterface dropdown to open the prefix panel.

3. Enter the required prefixes in the available fields:

Look Development | Adding and Assigning Materials

USER GUIDE
469

• namePrefix - adds a prefix to the promoted parameter's name. This is the parameter's scripting
reference, not its label in the Material Interface.

• pagePrefix - adds a prefix to the page name visible in the Material Interface.

For example:

4. Open the NetworkMaterialCreate node's Parameters.

The promoted parameters are prefixed as described.

Note: The name prefix is only displayed when you hover over a parameter.

Look Development | Adding and Assigning Materials

USER GUIDE
470

Adding Visibility and Lock Constraints to Parameters
The Visibility & Locking tab uses a GroupStack node that automatically sets the type to
NetworkMaterialInterfaceControls. It can manage any number of controls from within the parameters of a
NetworkMaterialCreate node.

Visibility & Locking allows you to lock or hide promoted parameters so they cannot be changed under
certain conditions. The conditions depend on the operator and the value of another promoted parameter.
You can add multiple conditions and operators to customize the public parameter interface exactly as you
need.

In this example, a control has been set up that causes the parameter Displacement.Scale to lock on the
condition that the value of the parameter Dlprincipled.Bump.Intensity is equal to 0.5.

Look Development | Adding and Assigning Materials

USER GUIDE
471

Look Development | Adding and Assigning Materials

USER GUIDE
472

The result of a lock on the promoted parameters

To create a new Network Material lock or visibility constraint:

1. Open the Parameters for your NetworkMaterialCreate node.
2. Click the Visibility & Locking tab.
3. Click the Add button to create a new control.

Note: For information about each parameter, see NetworkMaterialInterfaceControls.

Changing the Order of Promoted Parameters
Promoted parameters can be rearranged in whatever order you like. For example, you might want to
position more commonly used parameters at the top of the Parameters tab or organize parameters
alphabetically. Promoted parameters are listed in the order they appear on the Sources & Order tab.

Look Development | Adding and Assigning Materials

USER GUIDE
473

Default parameter order in the Parameters tab

The same parameters in the Sources & Order tab

To change the order of parameters:

1. Click the Sources & Order tab in the Material Interface.

2. Click the dropdown to display the parameters hidden in pages, if required.

3. Middle-mouse click and drag to rearrange the order of the parameters. A white line highlights the
parameter's new position as a guide.

Look Development | Adding and Assigning Materials

USER GUIDE
474

Tip: You can drag and drop entire pages or single parameters, but parameters within pages
can only be reordered within the page.

The Parameters tab updates to reflect the changes you made to ordering.

Using Custom User Interfaces With the
NetworkMaterialEdit Node
When referencing an upstream material in a NetworkMaterialEdit for the first time, you must repopulate the
NetworkMaterialEdit. Repopulating the NetworkMaterialEdit node generates any inherited shading networks
and any promoted user parameters present in your upstream materials.

To repopulate a NetworkMaterialEdit node, either:

l Enable the NetworkMaterialEdit node’s parameter flag from the nodegraph, or
l If the NetworkMaterialEdit node is already open in the Parameters tab, click the Repopulate

Look Development | Adding and Assigning Materials

USER GUIDE
475

NetworkMaterialEdit button.

Repopulating generates the shading network and the material interface is inherited from the material
upstream.

If the contents of the upstream reference material are updated, you are prompted to refresh the contents of
the NetworkMaterialEdit in the node’s parameters.

Look Development | Adding and Assigning Materials

USER GUIDE
476

Click Refresh NetworkMaterialEdit to include changes made in the referenced upstream material.

Tip: For more information on working with NetworkMaterialEdit, see Editing Materials With The
NetworkMaterialEdit Node.

Editing Materials With The
NetworkMaterialEdit Node
The NetworkMaterialEdit nodes allow artists to edit network materials, by adding or removing shading
nodes from an existing network, as well as by creating new connections or breaking existing connections.
You can also modify any of the parameters of shading nodes in an existing network.

Look Development | Adding and Assigning Materials

USER GUIDE
477

The NetworkMaterialEdit node uses a Scene Graph location, set in the Node Parameters, which stores
information about how a Network Material was created using the material.layout attribute. The Scene
Graph location could be brought in through a look file and could have been created in a different
department, with the original material network in a separate project. This workflow allows artists to have full
control of the Network Material without needing to go back and edit the original material network.

Any upstream changes to the original material network change the material.layout attribute causing the
NetworkMaterialEdit node to update to reflect those changes.

Inside a NetworkMaterialCreate node

Look Development | Adding and Assigning Materials

USER GUIDE
478

Inside a NetworkMaterialEdit node

The contents of NetworkMaterialEdit nodes are drawn in the same style that was introduced for
NetworkMaterialCreate nodes, with exposed ports on shading nodes and a left-to-right node layout. If the
network material you are editing was created using a NetworkMaterialCreate node, the material network
layout inside the NetworkMaterialEdit node is an exact duplicate of the original layout.

If the network material you are editing was created using the legacy NetworkMaterial workflow, the shading
nodes in the NetworkMaterialEdit node are automatically arranged in the node graph.

Look Development | Adding and Assigning Materials

USER GUIDE
479

Using a NetworkMaterialEdit node to edit a legacy NetworkMaterial

Note: For more information on the NetworkMaterialCreate node, refer to Building Materials Using
NetworkMaterialCreate.

At first, the shading node network within a NetworkMaterialEdit node appears slightly dimmed to indicate
that no changes have been made since the network was created, this can be changed using the NME Filter
buttons.

Once a change is made to a node inside a NetworkMaterialEdit node, the node is marked with a yellow stripe
to indicate that its parameters have been edited. Similarly, any new nodes are marked with a green stripe.
This makes it easy to track any changes that you make within the NetworkMaterialEdit node, in comparison
to the original NetworkMaterialCreate node.

Nodes which are left disconnected from the output inside the original NetworkMaterialCreate node are
disabled within a NetworkMaterialEdit node and marked with a padlock symbol to indicate they cannot be
edited from with the NetworkMaterialEdit node. If you disconnect a node completely from within a
NetworkMaterialEdit node, that node is marked with a red stripe.

Yellow stripe indicates an edit. Green stripe indicates a new node.

Look Development | Adding and Assigning Materials

USER GUIDE
480

Padlock symbol indicates a disabled node. Red stripe indicates a disconnected node.

This workflow allows artists to make adjustments to their shading node network without overriding the
original. This can be useful when working on one asset across multiple shots as you are not constrained by
how the original network material was set up, so small changes can be made on a per-shot basis.

NetworkMaterialEdit nodes combine the functionality of the existing NetworkMaterialParameterEdit and
NetworkMaterialSplice node types, but in a UI that is visually representative of how the material was
originally authored.

Filtering within NetworkMaterialEdit
The NetworkMaterialEdit node UI features the NME Filter options. These buttons allow you to dim nodes
within the Node Graph for node states which are not toggled on. This is especially useful when working with
large shading node networks as it allows you to focus your attention on a clear section of the node graph.

- Edited nodes

- New nodes

- Unchanged nodes

 - Disconnected nodes

For example, to highlight which nodes are new to the NetworkMaterialEdit node, turn on the New button
and turn off the Edited , Unchanged , and Disconnected buttons.

Look Development | Adding and Assigning Materials

USER GUIDE
481

If you would like all nodes to be fully visible and none to appear dimmed, turn on the Edited , New ,

Unchanged , and Disconnected buttons.

Look Development | Adding and Assigning Materials

USER GUIDE
482

How to Use the NetworkMaterialEdit Node
1. Create a NetworkMaterialEdit node by pressing Tab and typing NetworkMaterialEdit.
2. Connect the NetworkMaterialEdit node to your network.

Note: The NetworkMaterialEdit node must be downstream of the original
NetworkMaterialCreate node information, whether that information has come from a look
file or the NetworkMaterialCreate node itself.

3. Open the Parameters of the NetworkMaterialEdit node by hovering your mouse over the node and
pressing E, or by clicking the Edit flag on the node.

4. Use Ctrl + Middle Mouse button to drag the NetworkMaterial from the Scene Graph to the
sceneGraphLocation field in the NetworkMaterialEdit Node Parameters.

5. Click the Enter button on the NetworkMaterialEdit node to view the shading node network and start
editing.

Look Development | Adding and Assigning Materials

USER GUIDE
483

Note: Shading nodes within a NetworkMaterialCreate node that are not contributing to the
final material are missing important attributes, making it hard to reconnect them from a
NetworkMaterialEdit node. These nodes are locked from within the NetworkMaterialEdit
node.

Easily Preview Sections of Your
LookDev Using Material Solo
Material Soloing accelerates your look development by short-circuiting a shading network to preview
sections of your materials independently. With an interactive Preview or Live render running, use the 1-9
keyboard shortcuts to preview different points of your network and the render updates to display the
material output from that point in the node graph.

Note: Soloing only affects interactive, preview, and live render sessions. Disk and batch renders
ignore soloing and render the entire scene.

You can map multiple nodes to different hotkeys, even those within ShadingGroups, so it's really quick and
easy to switch between different points in a shading network to compare outputs. Soloing also helps you to
familiarize yourself with networks handed to you from other artists or debug networks by locating any
potential issues much faster.

Look Development | Adding and Assigning Materials

USER GUIDE
484

Note: You can modify soloing behavior using Python. For example, you might not want to connect
to the first output available for certain nodes. There are example MaterialSoloingConverters scripts
for several renders shipped with Katana here:
<install_dir>plugins/Src/Resources/Core/Plugins/

Enable Material Soloing
Soloing is activated from inside material networks and temporarily replaces the Output sidebar. To enable
soloing:

1. Click the soloing icon in the Output sidebar, or press 0 (zero) on your keyboard.

The Output sidebar changes to show the available soloing ports. Connecting a port displays the name
of the node to which the port is connected.

Look Development | Adding and Assigning Materials

USER GUIDE
485

2. To solo a material, drag the output from the target node into a port in the Output sidebar or drag a
port from the Output sidebar to the target node,

OR

Select or hover over the target node and use keyboard shortcuts 1 through 9 to assign the node to the
corresponding port.

Tip: Pressing the 1 through 9 keyboard shortcuts with soloing disabled activates soloing
and connects the port automatically.

3. You can disconnect a port by double-clicking the required number in the Output sidebar or by
disconnecting the pipe manually.

4. Click the soloing icon in the Output sidebar, or press 0 (zero) again to disable soloing mode and
return to the Network Material view.

Familiarize Yourself with Another Artist's Work
Collaboration is a key component of any pipeline, so working with materials that someone else created is
very common. The first thing you'd do as an artist is make sure you understand how this material was set up
and how each section of the node graph impacts the rendered result.

In this example, we'll preview some texture maps for a spaceship asset. Once you understand the setup, you
can then develop the look of the asset consistently to retain the overall look of the shot.

1. Enable the material soloing tools by clicking the soloing icon in the Output sidebar, or by pressing
0 (zero) on your keyboard.

2. Connect the Color, Metallic, Roughness, and Normal outputs to soloing ports by hovering over the
nodes and pressing the 1 through 4 keyboard shortcuts.

Look Development | Adding and Assigning Materials

USER GUIDE
486

3. Cycling between the four ports gives you a clear picture of how each node contributes to the material.

4. You can also connect a port to the last node in the this section of the node graph to quickly view all
the component parts merged together.

Tip: Switching to an unassigned port also displays the final material. In this example, ports 5
through 9 have no assignment so the final material is displayed instead.

Look Development | Adding and Assigning Materials

USER GUIDE
487

For example, you might want to have the final result in port 1 and the other materials in ports 2
through 5, so that you can always press 1 on you keyboard to see the result.

Working your way through a material network this way before you start work gives you a good
understanding of the whole picture and helps to avoid wasting time figuring out what each
component is doing to reach a final result faster.

Network Materials
Note: This is a legacy workflow, to learn about the new and improved NetworkMaterialCreate
workflow, see Building Materials Using NetworkMaterialCreate.

Building a shader from a number of smaller parts is versatile and often more efficient. Complicated shading
networks can be built from simple re-usable utility nodes. If a renderer supports the ability to build a shader
in this manner, Katana provides the mechanism for connecting the output from one shader to the input of
another. These shaders are connected using a renderer-specific shading node, for instance a DlShadingNode
node.

Network materials are connected into the recipe through the NetworkMaterial node. This creates a scene
graph location and, from this, you add terminals (also known as ports) depending on the type of shader you
are creating, such as a PRMan surface shader. Just like a normal Material node, multiple types of shaders can
be assigned to a single scene graph location, for instance a PRMan displacement shader can be connected
to the same NetworkMaterial node as a PRMan surface shader.

Look Development | Adding and Assigning Materials

USER GUIDE
488

Creating a Network Material
To create a network material:
1. Create a NetworkMaterial node and add it to your recipe.

Network materials are usually created in their own branch and a Merge node is used to connect them to
the rest of the recipe.

2. Select the NetworkMaterial node and press Alt+E.
The NetworkMaterial node becomes editable within the Parameters tab.

3. Enter the material’s name in the name parameter.
Although it's not strictly needed, as Katana handles name clashes gracefully, it's good practice to name
the network material, as the name is used for both the node name and the material’s scene graph
location.

4. In the namespace parameter, enter the location below /root/materials to place the material.
By default, the material is placed below /root/materials in the scene graph, so you don't need to add
this in the nameSpace field. Some of the most common namespaces are included as a dropdown to the
right of the parameter. You can also specify nested namespaces, for instance, if the namespace
parameter is geo/metals, the material is placed in the scene graph below /root/materials/geo/metals.

Adding Ports to a NetworkMaterial Node

On its own, a NetworkMaterial node only creates a scene graph location and it needs to have terminals/ports
added to allow the connection of shading nodes. These ports are shader-specific and multiple ports can be
added to the same NetworkMaterial node. To add ports, click Add Terminal and select a port type from the
terminal type dropdown.

Connecting into a NetworkMaterial Node

A shading node is connected into a NetworkMaterial node’s input port. The type of shading node that
connects is renderer specific, for instance the DlShadingNode node. Also, the shader that is assigned to the
shading node needs to be of the correct type for the renderer and the NetworkMaterial node’s port.

For example, when creating a 3Delight surface shader as a network material, the shader node that connects
to the NetworkMaterial node’s dlSurface port must be a valid surface shader (either of type surface or
when using a class based shader, implement one of the expected methods for a surface shader).

Look Development | Adding and Assigning Materials

USER GUIDE
489

Connection Logic Checking

Connections between shading nodes support connection checking logic, so when connecting shading nodes
together through the UI, only permissible connections are allowed. For example:
1. In an empty recipe, create two ArnoldShadingNodes. Set one to nodeType image, and the other to

nodeType spot_light.
2. In the image type shading node, set the filename parameter to point to an image.
3. Click on the right output arrow of the image shading node to see the available outputs, which are r, g, b,

and a.
For this example, click on the r to select the red channel of the image shading node, then click on the left
input arrow of the spot_light shading node.

4. A new window shows the connection options.
The input ports on the standard node that cannot accept an r input, such as decay_type, are grayed out.

Note: Holding the mouse over an output or input channel shows the type it generates or accepts.

In the image above, you can see the r channel output of the image nodes provides a float.

5. Connect the r channel output of the image shading node to the penumbra_angle input of the spot_light
shading node, which accepts float, RGB, RGBA, vector, point, or point2 inputs.

Note: To connect an output to an input, click on the output arrow of the source shading node, and
click on the output you want. Then, click on the input arrow of the target shading node, and select
the input you want to connect to.

Look Development | Adding and Assigning Materials

USER GUIDE
490

Showing Connections

Once two shading nodes are connected, they’re joined in the Node Graph by an arrow. Right-clicking on the
arrow near the source node shows the outputs from that node, and what they connect to on the target node.
For example, open the recipe created in Connection Logic Checking. Right-click on the arrow connecting the
image and spot_light ArnoldShadingNodes. When the mouse is closer to the image node, the following is
displayed:

This indicates that the r output is connected to the penumbra_angle input of a node named, in this case
ArnoldShadingNodeSpotLight. Right-clicking with the mouse closer to the spot_light shading node
produces the following:

This indicates that the penumbra_angle input has an incoming connection from the r output of a node
named, in this case ArnoldShadingNodeImage.

Using a Network Shading Node
Shading nodes for network materials have a different appearance to other nodes. Inputs for the shading
node are accessed by clicking the triangle on the left of the node and outputs by clicking the triangle on the
right. The green square shows when this node is editable in the Parameters tab. It is not possible to view the
scene graph generated at this node. To view how this node influences the scene graph you can view the
scene graph generated at its NetworkMaterial node.

Look Development | Adding and Assigning Materials

USER GUIDE
491

Creating a Shading Node
1. Create a shading node and add it to the recipe.

The renderer name acts as a prefix for the shading node. So for the 3Delight renderer, the shading node
is called dlShadingNode, and for the Arnold renderer, the shading node is ArnoldShadingNode.

2. Select the shading node and press Alt+E.
The shading node becomes editable within the Parameters tab.

3. From the nodeType dropdown, select the shader for this node.
The parameters for the shader display in the parameters dropdown below nodeType.

Tip: A quick way to name the node from the nodeType is to middle-click and drag from the
nodeType label to the name parameter.

Connecting a Shading Node

There are two main ways to connect shading nodes, you can:

1. Click the output arrow on the right side of the shading node.

A list of possible inputs displays. Again, this list depends on the shader.
2. Select the output parameter from the list.

This creates the output connection, highlighted in yellow, that follows your cursor until you click.

3. Click the input arrow on the left side of the next shading node.

A list of possible inputs is displayed. The contents of the list depends on the shader.
4. Select an input from the list.

This creates the input connection.

Using this method, it's also possible to connect the nodes in reverse order by first selecting the input
parameter of one shading node and then selecting the output parameter of another.

OR
1. Hover the cursor over the first node you want to connect.
2. Press the Backtick key (‘) once.
3. Hover the cursor over the second node and press the Backtick key again.

The first output from the first node is connected to the first input of the second.

Look Development | Adding and Assigning Materials

USER GUIDE
492

Connection Logic Checking

Connections between shading nodes support connection checking logic, so when connecting shading nodes
together through the UI, only permissible connections are allowed. For example:
1. In an empty recipe, create two DlShadingNodes. Set one to nodeType file, and the other to nodeType

spotLight.
2. In the file type shading node, set the image name parameter to point to an image.

3. Click on the right output arrow of the file shading node to see the available outputs.

For this example, click on the outAlpha to select the alpha channel of the image shading node, then click

on the left input arrow of the spotLight shading node.

4. A new window shows the connection options.
The input ports on the standard node that cannot accept an outAlpha input (such as Decay Rate) are
grayed out.

Note: Holding the mouse over an output or input channel shows the type it generates or accepts.

In the image above, you can see the outAlpha channel output of the image nodes provides Float.

5. Connect the outAlpha channel output of the image shading node to the PenumbraAngle input of the
spotLight shading node, which accepts float inputs.

Note: To connect an output to an input, click on the output arrow of the source shading node,

and click on the output you want. Then, click on the input arrow of the target shading node,
and select the input to which you want to connect.

Look Development | Adding and Assigning Materials

USER GUIDE
493

Showing Connections

Once two shading nodes are connected, they’re joined in the node graph by an arrow. Left-clicking on the
arrow near the source node shows the outputs from that node, and what they connect to on the target node.

For example, open the recipe created in Connection Logic Checking and left-click on the arrow connecting
the image and spotLight DlShadingNodes. When the mouse is closer to the image node, the following is
displayed:

This indicates that the outAlpha output is connected to the Penumbru Angle input of a node named, in this
case DlShadingNode1. Left-clicking with the mouse closer to the spotLight shading node produces the
following:

Look Development | Adding and Assigning Materials

USER GUIDE
494

This indicates that the Penumbra Angle input has an incoming connection from the outAlpha output of the
(in this case) DlShadingNode.

Disconnecting a Shading Node

To disconnect one shading node from another:
1. Hover the mouse over the input connection and click when it turns yellow.

A connection list displays.
2. Select the link in the list.

The link becomes disconnected.
3. Click an empty area in the Node Graph tab.

Exposing a Shading Node’s Parameters

Materials can be built from a large number of shading nodes, which might make it difficult to work out which
parameters are important. Instead of trying to find the relevant parameters manually, you can flag shading
node parameters as important by creating an interface of exposed parameters to be used when editing the
material. To expose a shading node's parameters:
1. Select the shading node and press Alt+E.

Look Development | Adding and Assigning Materials

USER GUIDE
495

The shading node becomes editable within the Parameters tab.

2. Click the menu to the right of any parameter and select Edit Parameter Name in Material
Interface....
The Material Interface Options dialog displays.

3. Enter the details for the public interface in the dialog:
• In the Name field, enter the name for this parameter’s public interface.
• In the Group field, enter the name for a group that acts as a parent for this parameter’s public

interface.
If only the Group field is populated, the parameter’s public interface becomes the actual parameter
name (grouped under the contents of Group).

4. Once you've set the details, click OK.
The parameter is exposed in a ShadingNodeSubnet's Subnet Material Interface and a tag appears
beneath the parameter in the shading node's Parameters tab, listing the details of the exposed
parameter.

Note: For more on the Subnet Material Interface and the Material Public Interface, continue to
Collecting Shading Nodes Inside a ShadingNodeSubnet and Creating a Network Material’s Public
Interface.

Collecting Shading Nodes Inside a ShadingNodeSubnet

To help keep the shading network clear, it is possible to group shading nodes inside a node similar to a
Group node, called a ShadingNodeSubnet. The main difference between a ShadingNodeSubnet node and a
Group node is its ability to display and re-order the public interface (explained more in Creating a Network
Material’s Public Interface) of the shading nodes within.

To add nodes to a ShadingNodeSubnet node:
1. Create a ShadingNodeSubnet node.
2. Click the icon towards the bottom of the ShadingNodeSubnet to open the subnet’s group.
3. Select the nodes to be added then Shift+middle-click and drag the nodes over the opened subnet’s

group. When the subnet’s group highlights, release the mouse button.

To add the shading node’s exposed parameters to the ShadingNodeSubnet’s Subnet Material Interface:
1. Select the ShadingNodeSubnet node and press Alt+E.

The ShadingNodeSubnet node becomes editable within the Parameters tab and the Subnet Material
Interface displays. By default, this appears empty.

Look Development | Adding and Assigning Materials

USER GUIDE
496

2. Select the shading nodes with exposed parameters, and Shift+middle-click and drag the nodes into the
Subnet Material Interface within the Parameters tab.
The exposed parameters are shown in the Subnet Material Interface.

Note: If you attempt to drag any shading nodes into the Subnet Material Interface but they do
not display, ensure that it has exposed parameters within it. If you have multiple nodes selected,
and there is a node that does not have exposed parameters within it, the exposed parameters of all
the selected nodes are still added to the interface.

These parameters can be re-ordered, setting a preference for how they should be displayed downstream.
This preference can always be overriden by a NetworkMaterial node, and only acts as a default. To re-order
the exposed parameters, middle-click and drag one group or parameter to another valid location. An orange
line highlights the new position.

You can also modify the order of the exposed parameters for a NetworkMaterial node. Do this by dragging
and dropping them in the Material Interface widget, in the base NetworkMaterial node.

Creating a Network Material’s
Public Interface
When building a network material, shading node parameters can be flagged as important, creating a public
interface that is then exposed inside any network materials that use the shading node. These parameters are
then used when editing the material or when using it to create a new material.

The public interface of a parameter can be nested using a page name, defined at the node level, and/or a
group name, defined when exposing the parameter. When building the public interface any group name is

Look Development | Adding and Assigning Materials

USER GUIDE
497

appended to the end of a page name and any periods (.) are interpreted as the start of a sub-group. For
instance:
• A page name of image with a group name of coords would place any parameters below imagecoords.
• A page name of image. with a group name of coords would place any parameters below image > coords.
• A page name of image. with a group name of coords.s would place any parameters below image >

coords > s.
• An empty page name with a group name of image.coords.s would place any parameters below image >

coords > s.

Note: To display the NetworkMaterial node's Material Interface parameters in the GafferThree
object table's columns, see Using and Overriding Look Files with GafferThree Lights

Re-ordering the Parameters in the Network Material

The parameters with a public interface that are exposed in the network material’s Material Interface can be
re-ordered. The ShadingNodeSubnet node provides a hint as to the preferred order but, ultimately, the
order is decided by the network material. To re-order the interface of the network material in the Material
Interface, middle-click and drag the parameter or group.

Using the NetworkMaterialInterfaceControls Node

Logic can be applied to the public interface of a network material to change the visibility or lock status of
pages or parameters. You can test parameter values using the following operators:
• contains
• doesNotContain
• greaterThan
• greaterThanOrEqualTo
• lessThan
• lessThanOrEqualTo
• numChildrenEqualTo
• numChildrenGreaterThanOrEqualTo
• equalTo
• notEqualTo
• regex
• endsWith
• in

Look Development | Adding and Assigning Materials

USER GUIDE
498

• notIn

These tests can be combined using and as well as or logical operators. The node evaluates the test, for
instance checking if the samples parameter is equalTo 0, and uses the result of that test to hide or lock the
target interface element.

To make use of the NetworkMaterialInterfaceControls node:
1. Create a NetworkMaterialInterfaceControls node and add it to the recipe downstream of the

NetworkMaterial node.
2. Select the NetworkMaterialInterfaceControls node and press Alt+E.

The NetworkMaterialInterfaceControls node becomes editable within the Parameters tab.
3. Add the network material’s scene graph location whose interface you want to control to the

materialLocation parameter. For more on editing a scene graph location parameter, see Manipulating a
Scene Graph Location Parameter.

4. Select from the state parameter dropdown:
• visibility - to have a page or parameter be visible based on the parameter test this node defines.
• lock - to have a page or parameter locked based on the parameter test this node defines.

5. Select the type of interface element this node influences from the targetType parameter:
• page (also referred to as a group)
• parameter

6. In the targetName parameter, type the name of the network material’s public interface element this
node influences.

7. Select how the interface is controlled using the definitionStyle parameter dropdown. Selecting
operator tree is assumed here as the conditional state expression option is beyond the scope of this
document.

8. Select the type of test in the op parameter (under operators > ops).
9. Enter the name of the interface element in the path parameter to perform the test against.
10. Enter the value for the test in the value parameter.
11. Add any additional tests needed using the Add > ... menu.

Look Development | Adding and Assigning Materials

USER GUIDE
499

Changing a Network Material’s
Connections
After a network material and its corresponding shading network has been built, the connections can be
edited downstream through the use of the NetworkMaterialSplice node. This is especially useful when a
network material has been read in from a look file and you need to edit the connections and/or make
additions to the shading nodes.

To edit the connections after the shading network has been created, use the NetworkMaterialSplice node.
There are two main ways to use it, to add in additional shading nodes, or to change the connections that
exist inside the current network material. You can do both operations with the same node.

Appending New Shading Nodes to an Existing Network Material

To append new shading nodes to an existing network material:
1. Create a NetworkMaterialSplice node and connect the in port to the part of the recipe that contains the

network material.
2. Add the network material’s scene graph location you want to append to the location parameter. For

more on editing a scene graph location parameter, see Manipulating a Scene Graph Location Parameter.
3. Connect the shading network you want to append to the append port of the NetworkMaterialSplice

node.

4. Under inputs > append, click .

A window appears with the current network material’s shading network displays.

5. In the window, select the input to connect into by clicking the left arrow of a shading node and
selecting the appropriate input.

Adding Extra Connections for the Shading Nodes in a Network Material
1. Create a NetworkMaterialSplice node and connect the in port to the part of the recipe that contains the

network material.
2. Add the network material’s scene graph location to the location parameter. For more on editing a scene

graph location parameter, see Manipulating a Scene Graph Location Parameter.
3. To the right of the extraConnections parameter grouping, click Add > Add Entry.

Look Development | Adding and Assigning Materials

USER GUIDE
500

A new parameter group is added. The first one is called c0, and subsequent entries are incremented,
such as c1, c2, and so forth.

4. To the right of the connectFromNode parameter, click .

5. Select the output from one of the shading nodes. This is where the connection comes from.

6. To the right of the connectToNode parameter, click .

7. Select the input to one of the shading nodes. This is where the connection goes to.

Deleting Connections Between Shading Nodes in a Network Material
1. Create a NetworkMaterialSplice node and connect the in port to the part of the recipe that contains the

network material.
2. Add to the location parameter the network material’s scene graph location. For more on editing a scene

graph location parameter, see Manipulating a Scene Graph Location Parameter.
3. To the right of the disconnections parameter grouping, click Add > Add Entry.

A new parameter group is added. The first one is called d0, and subsequent entries are incremented,
such as d1, d2, and so forth.

4. To the right of the node parameter, click .

5. Select the input to one of the shading nodes. This is the connection that is disconnected.

Editing a Network Material
You can edit the attributes created by the network material and shading network in two ways - either using
the interface previously created or, more directly, edit the attributes of the original shading nodes.

Edit a network material using its interface, you need to edit the scene graph location, in the same way as a
normal material, using the Material node. To do this, follow the steps in Editing a Material It's necessary to
use a Material node, even for a network material, and the node must be able to accept edits. In addition, the
makeInteractive option on the Material node needs to be set to yes in order for the edits to be made
interactively in the Viewer.

The shading node’s parameters are stored as attributes on the network material. The interface is used to
expose some of these parameters and attributes for easy editing. Sometimes you may need to edit the
attributes not exposed. Editing the attributes that aren’t exposed is done with the
NetworkMaterialParameterEdit node.

To perform an edit with the NetworkMaterialParameterEdit node:

Look Development | Adding and Assigning Materials

USER GUIDE
501

1. Create a NetworkMaterialParameterEdit node and connect it to the recipe at the point you want to make
an edit.

2. Select the NetworkMaterialParameterEdit node and press Alt+E.
The NetworkMaterialParameterEdit node becomes editable within the Parameters tab.

3. Add the network material’s scene graph location you want to edit to the location parameter. For more
on editing a scene graph location parameter, see Manipulating a Scene Graph Location Parameter.

4. Select any shading nodes to edit by either:
• selecting Add > <shading node name>, or

• clicking , and then right-clicking on any shading nodes to edit and selecting Expose Parameters.

5. Make any changes to the shading nodes inside the nodes parameter grouping.

Handling Textures
Because textures are handled in a variety of different ways by shader libraries and studio pipelines Katana
doesn't enforce rigid standards for how textures are declared, but acts as a flexible framework with some
common conventions.

In particular there is a convention to use string attributes with the naming convention textures.xxx where xxx
is the name of the file path for the texture. For example textures.ColMap would specify the filepath for a
texture called ColMap.

Texture Handling Options
Materials with Explicit Textures
The simplest way of specifying textures to have separate materials that each explicitly declare the textures
they need to use as strings parameters of the shaders. Each object that needs a different texture is simply
assigned the relevant material.

Though this is simple it lacks flexibility. In particular it's common to want to be able to use the same material
on multiple objects, but with each object picking up its own the textures.

Look Development | Adding and Assigning Materials

USER GUIDE
502

Using Material Overrides to Specify Textures

If you have exposed parameters on a material that define the textures to use, you can use material overrides
to create new object specific versions of materials with the relevant textures.

The material that is to be used in common on a number of objects can be assigned to those objects (or
assigned higher up the hierarchy and inherited), and a material override set on the objects to override
shader parameters that specify textures with new object specific values.

This can be done directly using MaterialAssign nodes, but since all MaterialAssign nodes do is create
attributes under a group called materialOverride we can also set up material overrides by directly setting
those attributes directly by any other process, such as using OpScripts.

For instance, this fragment of OpScript reads the attribute value contained in tx_name and use it to override
a shader with a parameter called textureFile:

tx_name_attr = Interface.GetAttr("tx_name")
if tx_name_attr then Interface.SetAttr
("materialOverride.parameters.textureFile", tx_name_attr)
end

This means that a new copy of the material is created for the object with the shader's textureFile parameter
changed to the appropriate values.

Note: Material overriding actually takes place as part of MaterialResolve, one of Katana's implicit
resolvers. During MaterialResolve it looks for attributes in the 'materialOverride' group, and creates
a new copy of the material at that location with the relevant changed to shader parameters.

Using the {attr:xxx} and {globalattr:xxx} Syntax for Shader Parameters

For versatility, shader parameters can be set to the value of an attribute. You can do this using either local or
global attributes:

{attr:<attribute name>} - queries local attributes

{globalattr:<attribute name>} - queries global (inherited) attributes

Look Development | Adding and Assigning Materials

USER GUIDE
503

Note: Querying global attributes has a higher processing cost than local attributes.

If you define any string parameter on a shader to be {attr:xxx} (for example), then during MaterialResolve it
looks for an attribute called xxx at the location the material is being assigned to, and uses that as the shader
value.

To illustrate, suppose you have a 3Delight file reader shader with a parameter called filename, and you set
filename to {attr:textures.ColMap}. filename is set to the value of the attribute textures.ColMap on any
location the material is assigned to. This means you can set up the original shader to automatically pick up
relevant texture name attributes for every object it is applied to.

Example of Using {attr:xxx} to Assign a Parameter
The following steps show you how to create a 3Delight Network Material with a File node, and link the
filename parameter of the ImageRead node to a textures.ColMap attribute on geometry locations.
1. In an empty Katana scene create two DlShadingNodes, set one to type File, and one to type

Material3Delight. Link the outColor of the File node, to the BaseLayer>Diffuse>Color parameter of
the Material3Delight node.

2. In the filename field in the Image node’s parameters enter:
{attr:textures.ColMap}

3. Add a NetworkMaterial node, with a dlSurface terminal. Connect the output of the Material3Delight
node to the input of the NetworkMaterial node.

4. Add two PrimitiveCreate nodes and two AttributeSet nodes. With the AttributeSet nodes set a string
attribute with the attributeName textures.ColMap on each primitive location. Set the stringValue for each
to the path to a texture (for example /tmp/yourTexture.tx and /tmp/yourOtherTexture.tx).

5. Add a CameraCreate node.

Look Development | Adding and Assigning Materials

USER GUIDE
504

6. Connect the outputs of PrimitiveCreate nodes, the CameraCreate, and the NetworkShading node to
inputs on a Merge node. Add a MaterialAssign node below the Merge node. Assign the NetworkShading
material to each applicable scene graph location. For example, use the CEL statement:
/root/world/geo//*

Assignments created using {attr:yourParameter} are evaluated during material resolve. Therefore any
material using those parameters must be explicitly assigned to any relevant scene graph locations, rather
than relying on inheritance.

7. Add a GafferThree below the RenderSettings node, and add a spotlight.
8. Add a Render node below the GafferThree node.
9. Position the spotlight, and the camera.
10. Right-click on the Render node and select Preview Render.

At material resolve time Katana picks up the texture.ColMap parameter on each of the geometry
locations, and creates an instance of the assigned material for each, with the material’s filename
parameter set to the value of textures.ColMap.

Note: Because {attr:xxx} is evaluated during MaterialResolve you must apply the base material
directly to every object that needs it, rather than using material inheritance in the hierarchy.

Look Development | Adding and Assigning Materials

USER GUIDE
505

Using User Custom Data

Some other renderers don't have RenderMan style primvars, but allow some form of custom user data that
can be looked up by shaders. With a little more work and suitable shaders these can be used to give similar
results.

For instance, in 3Delight and Arnold, if you have shaders designed to look for user data that contain strings
declaring the paths to textures, instead of the paths to the textures being direct parameters on the shaders,
you can use user data to have a shared material on multiple objects and each object picks up its own
individual textures.

Any string attribute called textures.xxx is automatically written out to the renderer as a piece of string user
data called xxx, which can then be looked up inside shaders.

You can also do per-face assignment of textures using user data. If textures.xxx is set to an array of string
values, with the number of elements matching the number of faces, that array is written out as a per-face
array of user data so each face can pick up its own value.

Using Pipeline Data to Set Textures
Different pipelines often use different methods to specify which textures should be used on a particular
asset. The normal convention in Katana is to use attributes called textures.xxx on geometry to hold the
individual texture paths needed for that piece of geometry. That data can be set in a number of different
ways. For instance:

Metadata on Imported Geometry
Arbitrary metadata can be read in with geometry on import, such as string data containing the texture paths
that is written out into Alembic and read in as arbitrary geometry data. This means that assets can be created
with additional metadata, such as by adding string attributes to shape nodes in Maya before writing the data
to Alembic.

In Katana the convention is for arbitrary geometry data to be read in as attributes called
geometry.arbitrary.xxx, which are then by default also written out as user or primvar data to renderers.
This means that if you are using primvars or user data to specify textures you can have this work
automatically.

Look Development | Adding and Assigning Materials

USER GUIDE
506

Processes to Procedurally Resolve Textures
You could also use a resolver to procedurally set the values of textures.xxx to appropriate file paths,
allowing the actual creation of these file paths as one of the last automatic processes in the pipeline.

The example project Crowd System - Look Dev & Metadata illustrates how metadata can be further
processed by an OpScript to turn it into final texture paths. By setting these in attributes called
textures.ColMap, textures.SpecMap and textures.BumpMap these are exported to renderers as “MatTag”
attributes.

Checking UVs
The UV Viewer tab allows you to examine the UVs of the currently selected object in the scene graph, both
for subdivision surfaces and polygonal meshes. An asset’s UVs are not usually manipulated inside Katana,
instead, the UVs should be included when the asset is published.

Bringing up the UV Viewer Tab
You can display the UV Viewer tab in one of two ways:
• Select Tabs > UV Viewer to display the UV Viewer in its own floating panel, or

• In the top-left corner of one of the existing panes, click and select UV Viewer to add the tab to that
pane.

Navigating in the UV Viewer Tab
Moving around inside the UV Viewer is done in a similar manner to moving in the Node Graph tab.

Look Development | Checking UVs

USER GUIDE
507

Panning
Middle-click and drag the mouse pointer over the grid within the UV Viewer. The UV space moves with your
pointer.

Zooming
There are multiple options for zooming into or out from the UV grid.

To zoom in, move your mouse pointer over the area you want to zoom in on, and:
• Press + (Plus key) repeatedly until the UV Viewer displays the UV space at the desired scale.
• Alt+left/right-click and drag right.
• Scroll up with the mouse wheel.

To zoom out, move your mouse pointer over the area you want to zoom out from, and then:
• Press - (Minus key) repeatedly until the UV Viewer displays the UV space at the desired scale.
• Alt+left/right-click and drag left.
• Scroll down with the mouse wheel.

Framing
To change the framing within the UV Viewer, you can:
• Press A to frame all the UVs.
• Press F to frame the currently selected UVs.
• Select the coordinate space from the Frame UV dropdown towards the top of the UV Viewer tab, for

instance 0, 0.

Selecting Faces
Whether creating face sets or seeing where the UV faces fall on the model, it is possible to select faces using
the UV Viewer and then see the same faces selected in the Viewer. The reverse is also possible. To select
one or more faces, left-click and drag to marquee an area. Faces with at least one UV coordinate or the face’s
center encompassed by the marquee are selected.

Look Development | Checking UVs

USER GUIDE
508

You can see in the two images above that, of the six faces originally selected, faces two and five have been
de-selected in the second image.

Modifying an Existing Selection

To modify the selection, you can:
• Hold Shift while marqueeing to toggle whether or not faces are selected.
• Hold Ctrl while marqueeing to remove faces from the selection.
• Hold Ctrl+Shift while marqueeing to append to the selection.

Viewing the Selected Faces in the Viewer

For the faces to be visible on the model, the Viewer must be in face selection mode. To toggle face selection

mode, in the top-right corner of the Viewer tab, click .

Look Development | Checking UVs

USER GUIDE
509

Adding Textures to the UV Viewer
The UV Viewer automatically detects texture filename attributes on the currently selected scene graph
location, which is the same as the currently selected Viewer object, when placed under textures in the
location’s attributes, for instance textures.ColMap.

Note: Before trying to load multi-tile textures, make sure the correct format is selected in the Tile
Format menu in the UV Viewer, for instance UDIM.

To load textures into the UV Viewer, you can:
• Select the texture name from the Select a texture dropdown.

• To the right of the Select a texture dropdown, click and select the texture from the dialog.

Look Development | Checking UVs

USER GUIDE
510

Note: Valid texture formats are: .tif, .exr, .tx, and .jpg.

Using Multi-Tile Textures
The UV Viewer currently supports two different naming schemes for multi-tile textures, UDIM and the
naming scheme used in Autodesk® Mudbox™.

UDIM values identify the integer position of a texture or patch. Each patch represents one square of 1x1 in
UV space. UDIM values are a way of representing the integer coordinates of that square, from the
coordinates of its bottom-left corner in UV space. UDIMs are up to ten patches across, and any number of

Look Development | Checking UVs

USER GUIDE
511

patches upwards. This means the U index of a patch is in the range 0 to 9, and the V index upwards from 0.
To calculate the exact UDIM value for a patch, use the following formula: 1001 + u + (10 * v).

For example, the UDIM of the bottom-left patch, which represents the UV space region (0, 0) to (1, 1), is
1001. The next patch to the right of that has a UDIM value of 1002, and the patch directly above the bottom-
left is 1011. For example, the patch representing the UV space region (2, 5) to (3, 6) has a U index of 2 and a V
index of 5, so replacing the values in the formula above we get: 1001 + 2 + (10 * 5) = 1053.

One way to load textures that use the UDIM format is to use a filename of the form <asset_name>_
<texture_type>.#.<file_type>, for instance blacksmith_color.#.tx. The exact format used depends on
your asset naming scheme, file sequence plug-in, and texture type. For more on the asset management and
the file sequence plug-in, see the included technical PDFs in the ${KATANA_ROOT}/docs/pdf directory.

Multi-tile textures exported from Mudbox have a texture name of the form <name>_u<#>_v<#>.<file_
type>, for instance blacksmith_u1_v2.tif.

Multi-Tile Naming Convention Table

...

1011

0,1 to 1,2

(0,1)

u1_v2

1012

1,1 to 2,2

(1,1)

u2_v2

1013

2,1 to 3,2

(2,1)

u3_v2

1014

3,1 to 4,2

(3,1)

u4_v2

UDIM: 1001

Area: 0,0 to 1,1

UV Tile: (0,0)

Mudbox: u1_v1

1002

1,0 to 2,1

(1,0)

u2_v1

1003

2,0 to 3,1

(2,0)

u3_v1

1004

3,0 to 4,1

(3,0)

u4_v1

...

Changing the UV Viewer Display
You can customize how the UV Viewer displays textures, UVs, and the labels that are displayed.

Look Development | Checking UVs

USER GUIDE
512

To toggle whether selected faces are shown in isolation select Display > Isolate Selection. If active, when
faces are selected all other faces become hidden.

To change the labels for each tile, select Display > Tile Position Labels > The following options are
available:
• Off - hides the position labels.
• Show Tile Co-ordinates - displays the UV space coordinates of the tile, for instance 1, 0.
• Show Tile IDs - displays the tile name based on its tile texture name. This is dependent on the tile format

in use, for instance u1_v2 for textures saved using the Mudbox file naming format and 1002 for textures
saved using the UDIM file naming format.

To show the texture resolution for any textures, select Display > Show Texture Resolution.

To only display textures when contained within a face, select Display > Clip Textures to Poly.

Look Files
Katana's Look Files are a powerful general purpose tool that can be used in a number of ways. In essence
they contain a baked cache of changes that can be applied to a section of scene graph to take it from an
initial state to a new one.

Typically they are used to store all the relevant changes that need to be applied to take an asset from its raw
state, as delivered from modeling with no materials, to a look developed state ready for rendering. They can
also be used for other purposes such as to contain palettes of materials or to hold show standard settings for
render outputs such as image resolutions, anti-aliasing settings and what output channels (AOVs) to use.

Different studios define the tasks done by look development and lighting in different ways. In this section
we're going to look at what could be considered a typical example of the tasks to give a clear example of
possible use, but the actual work done by different departments could be different. Look files should be seen
as a useful flexible general tool that can be used to pass baked caches of scene graph modifications from
one KATANA project to another.

Look Development | Look Files

USER GUIDE
513

Handing off Looks from Look
Development to Lighting
The most standard use of Katana's Look Files is to describe what materials are needed for a given asset, such
as a character, car or building, and which material is assigned to each geometry location. The Look File can
also record any overrides such as modifications to shaders on particular locations, for example if a given
object needs the specular intensity on a shader setting to a special value. The Look File can also record the
shaders and assignments that are needed for a number of different passes, such as if you are going to do
separate renders for passes such as the beauty pass, volumetric renderer.

The traditional workflow is that Look Development defines how each asset should look in all the different
render passes required. They then 'bake' out a Look File for each asset, or multiple Look Files if there are a
number of alternative look variants for an asset.

The Look File records this data in a form that can be re-applied to the 'naked' asset in Lighting. In Lighting
the appropriate Look File is assigned to each asset. Downstream in the Katana graph, when you want to split
into all the different, separate passes, you do a 'LookFileResolve', which actually does the work of re-applying
all the materials and other changes to the asset that are needed for a given pass.

Look File Baking
Look Files are written out by using the LookFileBake node. Using this node you have to set one input to a
point in the node graph where the scene data is in its original state and another to indicate the point in the
node graph where the scene data is in its modified state. If you want to include multiple output passes in the
Look File you can add additional inputs to connect to points in the node graph where the scene data has
been set up for that extra pass.

During LookFileBake every location in the scene graph under the root location is compared with the
equivalent scene graph location in the original state. What is written out into the Look File are all the
changes, such as changes to attributes (new attributes, modified values of existing attributes, and any
attributes that have been deleted).

The details of any new locations that have been added are also written out. This means that new locations
that are part of the 'look' can be included, such as face-sets for a polygon mesh that weren't part of the
original model, or to add lights such as architectural lights on a building.

Look Development | Look Files

USER GUIDE
514

One important thing to note here is that while the nodes in the Node Graph represent live recipe, the Look
File is a baked cache of the results of those nodes: it's a list of all the changes that the nodes make to the
scene graph data rather than the recipe itself.

One of the main reasons for using Look Files rather than keeping everything as live recipe is efficiency. If you
have thousands of assets, like you could in a typical shot from a CG Feature or VFX film, it can be inefficient
to keep everything as live recipe. The Look Files allow the changes needed to be calculated once and then
recorded as a baked list by comparing the state of the scene graph data before and after the filters. If you
want to make additional changes in lighting on top of those defined by a Look File you still can do so by
using additional overrides.

If a new version of the asset is created, any associated Look Files need to be baked out again by re-running
the LookFileBake in the appropriate Katana project.

Conversely, if you want to hand off live recipe from one Katana project to another one you should use
macros or LiveGroups instead.

Other Uses of Look Files
As mentioned previously, Look Files are actually quite a flexible tool that can be used for a number of
different purposes as well as their 'classic' use to hand off looks for Look Dev to Lighting. Some of the other
things they can be used for include:
• Defining palettes of standard shaders to use in a show.
• Making additional modifications to assets beyond simple shader assignment, such as:

• Visibility settings to hide objects if they shouldn't be visible.
• Adding face-sets to objects for per-face shader assignment.
• Per-object render settings, such as renderer specific tessellation settings.
• Defining additional lights that need to be associated with an asset, such as a car that needs head lights

or a building that needs architectural lights.
• Adding additional locations to the asset such as new locations in the asset hierarchy for hair

procedurals.
• Specifying global settings for render passes, such as what resolution to render at, defining what outputs

(AOVs) are available and anti-aliasing settings.

Look Development | Look Files

USER GUIDE
515

How Look Files Work
To gain a better understanding of what Look Files are and how they can be used we are going to look in
more detail at how they actually work.

The geek-eye view of a Look File is that it's a 'scene graph diff'. In other words it's a list of all the changes that
need to be made to a sub-branch of the scene graph hierarchy to take from an initial state (typically a model
without any materials assigned) to a new transformed state (typically the model with all its materials
assigned to correct pieces of geometry, and any additional overrides such as shader values or to change
visibility flags). When you do a LookFileResolve all those changes are re-played back onto the relevant scene
graph locations.

To make material assignments work all the materials assigned within the hierarchy are also written out into
the Look File. Similarly, any renderer procedurals required are also written out into the Look File.

For each render pass a separate scene graph diff is supplied. There are two caveats we should mention about
Look Files:
• The data in Look Files is non-animating, so you can't use them to hand off animating data such as flashing

disco lights or lightning strikes. Animating data like this can be handled in a number of ways, including
making the animating data part of the 'naked' asset, or by using Katana Macros and Live Groups to hand
off actual Katana node that can have animating parameters.

• Currently you can't delete scene graph locations using Look Files, you can only add new locations or
modify existing ones. For instance, to hide an object you should set its visibility options rather than pruning
it from the scene graph.

Look Development | Look Files

USER GUIDE
516

Setting Material Overrides using
Look Files
Following the core principle in Katana that all scene data should be inspectable and modifiable, mechanisms
are needed to allow material settings defined in Look Files to be overridable downstream.

In Katana this is done by bringing the materials into the scene so that the user can use the normal Katana
nodes, such as the Material node in 'override' mode, so make changes.

For efficiency, and to avoid lighters scenes becoming littered with every single material that may be used on
any asset in the scene, the materials used in by a Look File aren't loaded into scenes by default. If you want to
set overrides on the materials you first need to use a LookFileOverrideEnable node. This brings in the
materials from the Look File into the Katana scene and sets them up (by bringing them in a specific locations
in the scene graph hierarchy based on the name of the Look File) so that these instances are used instead of
the ones contained in the original Look File.

LookFileOverrideEnable also brings in any renderer procedurals for overriding in a similar manner to
materials.

Collections using Look Files
Look Files can also be used to pass off Collections from one Katana project to another.

When a Look File is baked out for a sub-section of the scene graph hierarchy, for every Collection the baking
process notes if any locations inside that sub-section of the hierarchy are in the Collection. If they do the
paths for those matching locations are written into the Look File.

When the Look File is brought in and resolved, these baked sub-collections are brought in as Collections that
are available at the root location of the asset.

In essence this means that if you're using a Look File to pass off the materials and assignments on an asset
from Look Dev to Lighting you can also declare Collections in your Look Dev scene so that they are
conveniently available to the lighters.

Look Development | Look Files

USER GUIDE
517

Look Files for Palettes of Materials
As well as being used to contain the Materials used by a specific asset, Look Files can also be used to contain
general collections of shaders. This is particularly useful if you want to have studio- or show-standard sets of
shaders created in 'shader development', which are then made available to other users. Another use of
shaders from Look Files is to pre-define standard shader sets for lights (including light shaders made out of
network shaders) to be brought in for Lighting.

Materials can be written out into a Look File using the LookFileMaterialsOut node. LookFileBake also has an
option to 'alwaysIncludeSelectedMaterialTrees' that allows the user to specify additional locations of
materials they want to write out into the Look File whether or not they are assigned to geometry.

To bring the materials from a Look Files into a project you can use the LookFileMaterialsIn node.

Look File Globals
Look Files can also be used to store global settings, so that these values can be brought back in as part of the
Look File Resolve. This is usually used to define show standard settings for different passes. It can be used to
set things such as:
• What renderer to use for a given pass
• What resolution and anti-aliasing settings to use
• Any additional render output channels (AOVs) you want to define and use.

When using LookFileBake you can specify the option to 'includeGlobalAttributes'. Enabling this option
means that any values set at /root are stored in the Look File.

To specify which Look File to use to set global settings use the LookFileGlobalsAssign node.

Lights and Constraints in Look Files
If lights and constraints are declared in a Look File there is some special handling needed when they are
brought in because knowledge of lights and constraints is generally needed at the global scene level.

Look Development | Look Files

USER GUIDE
518

There is a special node called LookFileLightsAndConstraintsActivator designed to declare any Look Files that
are being used that declare lights and constraints. This handles the work of adding them to the global lists
held at /root/world.

The Look File Manager
The LookFileManager is provided to simplify the process of resolving Look Files, applying global settings,
and allow the users to specify overrides such as for materials. This is a SuperTool that makes use of many of
the more atomic operation nodes mentioned previously such as LookFileResolve, LookFileOverrideEnable
and LookFileGlobalsAssign.

In particular it is designed to help make setting material overrides that need to be applied to some passes
but not all passes a lot easier for the user.

Look Development | Look Files

USER GUIDE

Rendering Your Scene
Katana was developed from the ground up to address the problems of scalability and flexibility. Solving both
problems was essential for dealing with the demands of highly complicated modern productions.

When it comes to rendering, Katana’s renderer-agnostic nature provides the flexibility to allow CG
supervisors and pipeline engineers to select the appropriate renderer for the show or shot. The renderer
connects to Katana through a renderer-specific plug-in. Currently, Katana ships with the 3Delight renderer
and accompanying renderer plugin, and an API that allows developers to support other renderers.

Scalability is also at the heart of rendering in Katana. Many renderers support procedurals that can be
evaluated on demand. These are often called deferred evaluation and are able to recursively call other
procedurals. At render time, they are passed scene descriptions in the form of a procedural recipe to be run
inside the renderer. Through this approach, very large scenes are easier to manage, and the resources
needed to deal with them are reduced. In addition, deferred evaluation significantly simplifies pipelines by
removing the need to write large scene data files such as RenderMan .rib and Arnold .ass files, for each
frame before rendering starts. Renderers that don’t support these features are still usable with Katana, but
they don’t leverage its full benefit.

Render Types

Discover Katana's render options including Preview Rendering, Live Rendering, Disk Rendering, and
rendering using Render Farms.

519

USER GUIDE
520

Performing a Render

Learn how to start each render type and in Katana and integrate them into your workflow.

Configuring a Render

Learn how to configure your renders to suit your requirements.

Viewing Your Renders

Find out how to view your renders using the Monitor, Catalog or Hydra Viewer tabs.

Custom Render Resolutions

Discover how to define custom render resolutions to supplement or replace Katana’s pre-defined
resolutions.

Influencing a Render

Learn what key nodes you can use to influence your renders by setting the render camera, resolution, render
outputs and more.

Controlling Live Rendering

Discover how you can control Live Rendering behavior.

Setting up a Render Pass

Learn how to set up render passes in Katana using the RenderOutputDefine node.

Instancing

Find out how instancing can help you when needing to render a single piece of geometry multiple times in a
scene.

OpenEXR Header Metadata

Learn how you can add arbitrary metadata to OpenEXR headers.

Batch Mode

Discover how to batch render sequences of frames from a Katana scene all at once through a command line.

Rendering Your Scene |

USER GUIDE
521

Render Types
Katana has a number of context-sensitive render options, available through the right-click menu on nodes.
Renderer plug-ins advertise the methods they support, so the right-click menu render options shown
depend on the node selected and the methods advertised in the renderer plug-in.

Note: For more information about which options are available from which nodes, see Render Type
Availability.
For more information about how to start a render, see Performing a Render.

All render options send the scene graph, as generated at the selected node, to the selected production
renderer. The exact options you see may vary, depending on the configuration of your studio’s plug-ins, but
the default set is:

Preview Rendering
l Preview Render - The render is a static image, displayed in the Monitor tab, Monitor Layer and

Catalog tab. The image is not written to disk.

Live Rendering
l Live Render - Similar to Preview Render, except that under Live Render, changes to the camera,

lights, materials, or geometry transformations result in updates to the image displayed in the Monitor
tab Monitor Layer and Catalog tab. See Changing How to Trigger a Live Render for more on which
activities trigger a Live Render, and how to edit them.

Note: Motion blur in Live Rendering is not supported for interactive cameras. To enable motion
blur in a live render session, set the camera’s makeInteractive parameter to No.
If you bring in an animated camera through an Alembic or other external file, the camera keeps its
animation, even when makeInteractive is set to No.

Rendering Your Scene | Render Types

USER GUIDE
522

Tip: To stop any current render, including Live Rendering, either press Esc or select Render >
Cancel Current Render in the menu bar. To stop all renders, press Shift + Esc or select Render
> Cancel All Renders.

Alternatively, starting a new Live Render automatically stops the previous Live Render and doesn't
need to be specifically canceled using either of the methods above. It is possible to perform
multiple Live Renders simultaneously using the experimental option in the Start Multiple Renders
script for the Katana Queue. For more information, see Katana Queue.

Profile Rendering
l Preview Render with Profiling - This performs a normal Preview Render, but also captures

information about which Ops have run, the amount of CPU used by them to cook locations, and the
amount of memory used for attributes and Lua scripts.

Note: For more information, see Geolib3-MT Profiling.

Disk Rendering
l Disk Render - the scene is written to disk, at the location specified in a Render node, and for this

reason, is only available from Render nodes.
l Disk Render with Dependencies - writes a Disk Render, along with any dependencies of the Render

node, to disk.
l Render Dependencies Only - renders just dependencies to disk.

Render Farms
Any render farm plugins that you have set up in Katana can be accessed here from any 3D node. Katana
ships with a render queue system called Katana Queue.

l Katana Queue - Send a Preview, Live or Disk Render to the Katana Queue. Renders sent to Katana
Queue can be viewed in the Katana Queue tab.

Note: For more information, see Katana Queue.

Rendering Your Scene | Render Types

USER GUIDE
523

Disk Render Dependencies
Katana offers the option of rendering any dependencies before either Preview or Live Rendering. See Setting
up Render Dependencies for more on dependencies.

3D nodes have a right-click menu sub-heading, Disk Render Dependencies that holds the following
options:

l Before Preview Renders - when selected, render dependencies (such as shadow maps) are rendered
to disk before performing a Preview Render.

l Before Live Renders - when selected, render dependencies are rendered to disk before Live
Rendering.

l Before Profiling Renders - when selected, render dependencies are rendered to disk before Profile
Rendering.

Disk Render Upstream Render Outputs
Nodes that have rendered 2D images from other Katana nodes as dependencies have a right-click menu
sub-heading, Disk Render Upstream Render Outputs that holds the following options:

l Preview Renders: Unless Already Cached - when selected, during a Preview render all incoming
image dependencies are rendered to disk, unless they have already been rendered to disk and cached.

l Preview Renders: Always - when selected, during a Preview render all incoming image
dependencies are rendered to disk, regardless of whether they are already cached or not.

l Disk Renders: Always - this is for information only. This option cannot be changed. During a disk
render, all incoming image dependencies are rendered to disk, regardless of whether they are already
cached or not.

Debugging
3D nodes have a right-click menu sub-heading Debugging, which offers options to view debug information
in a text editor. The options are:

l Debugging > Open Filter Text Output in <your text editor> - displays the Katana filters used to
traverse the scene graph.

l Debugging > Open <your renderer’s debug file type> Output in <your text editor> - displays the
debug file type of your selected renderer.

Rendering Your Scene | Render Types

USER GUIDE
524

Render Type Availability
This topic lists the available render options from different node types. For more information about the
render options, see Render Types.

2D Image Nodes
For 2D image nodes (such as ImageGamma or ImageCrop) the right-click menu render options are:

l Preview Render
l Unless Already Cached (specific to disk rendering upstream)
l Always (specific to disk rendering upstream)

2D ImageWrite Nodes
The render types available from an ImageWrite node are:

l Preview Render
l Disk Render
l Preview Renders: Unless Already Cached (specific to disk rendering upstream)
l Preview Renders: Always (specific to disk rendering upstream)
l Disk Renders: Always (specific to disk rendering upstream)

Rendering Your Scene | Render Types

USER GUIDE
525

3D Nodes
The render types available from 3D nodes (such as a PrimitiveCreate, CameraCreate, or Material nodes) are:

l Preview Render
l Live Render
l Preview Render with Profiling
l Katana Queue
l Before Preview Renders
l Before Live Renders
l Before Profiling Renders

Rendering Your Scene | Render Types

USER GUIDE
526

.

Render Node
The render types available from Render nodes are:

l Preview Render
l Live Render
l Preview Render with Profiling
l Disk Render
l Disk Render with Dependencies
l Render Dependencies Only
l Katana Queue
l Before Preview Renders
l Before Live Renders
l Before Profiling Renders

Rendering Your Scene | Render Types

USER GUIDE
527

Performing a Render
You can start a render from the Katana UI by clicking Render and choosing a render option, or by right-
clicking a node and choosing a render option. Bear in mind that not all options are available from all nodes.

Note: For more information about the render options, see Render Types.
For more information about which options are available from which node types, see Render Type
Availability.

To cancel the current render, press Esc, or select Render > Cancel Current Render.

Rendering Your Scene | Performing a Render

USER GUIDE
528

To cancel all renders, press Shift + Esc on the keyboard or select Render > Cancel All Renders.

You can repeat the previous render by pressing Ctrl + \ (backslash), or choosing Render > Repeat
Previous Render.

Note: You can also perform Preview Renders, Live Renders and Disk Renders using the Katana
Queue options, for more information on the Katana Queue, see Katana Queue.

Performing a Preview Render
You can perform a Preview Render at any 3D node within your recipe. A scene description is generated up
to that node. The extent that the scene is generated or deferred depends upon the renderer. The scene
description is then sent to the actual production renderer, and the results are visible in the Monitor tab, the
Catalog tab and the Monitor Layer in the Hydra Viewer.

To perform a Preview Render:

1. Right-click on a 3D node within your Node Graph.
2. Select Preview Render.

You can also start a Preview Render from a node currently set with the view flag by selecting Render >
Preview Render View Node, or by pressing Ctrl + P on the keyboard.

Performing Multiple Simultaneous Preview Renders
Multiple Preview Renders can be performed simultaneously in Katana. By default, if a Preview Render is
already running and you start another, both Preview Renders continue until complete or canceled. Katana
does not limit the number of Preview Renders you are able to run simultaneously, you are only limited by
hardware capabilities.

The ability to run multiple Preview Renders simultaneously is useful as it means you don't need to wait until
one render is finished before starting a new one. This can help workflows for lighting artists, for example, as
multiple camera angles can be rendered at once, streamlining the process of ensuring lighting is consistent
across different shots.

Rendering Your Scene | Performing a Render

USER GUIDE
529

Multiple Preview Renders in the Catalog tab

Rendering Your Scene | Performing a Render

USER GUIDE
530

Multiple Preview Renders in the Monitor tab

Note: You can start multiple Preview Renders by using the Start Multiple Renders dialog that
you can find in the KatanaQueue shelf. For more information on the Katana Queue, see Katana
Queue.

Article: If you are experiencing issues when rendering in Katana, please refer to the Knowledge
Base article: Troubleshooting Rendering Issues in Katana.

Article: If you are using Linux and are experiencing issues where your render hangs, please refer to
the Knowledge Base article: Render Hangs or Never Starts on Linux.

Rendering Your Scene | Performing a Render

https://support.foundry.com/hc/en-us/articles/360000662744-Q100391-Troubleshooting-rendering-issues-in-Katana
https://support.foundry.com/hc/en-us/articles/360001341580-Q100446-Render-hangs-or-never-starts-on-Linux

USER GUIDE
531

Performing a Live Render
Live Renders are useful for getting immediate feedback on changes you make to objects, cameras, lights,
and materials. Within a Live Render session, changes to materials and object transformations on specified
scene graph locations are communicated to the renderer.

To start a Live Render:

1. In the Scene Graph tab, check the objects in the Live Render Updates column that you would like
to be able to trigger a Live Render to restart when changes are made to those objects.

2. Right-click on the node that you want to start a Live Render from and select Live Render. You can also
start a Live Render from a node currently set with the view flag by selecting Render > Live Render
View Node, or by pressing Ctrl + Shift + P on the keyboard.

3. Adjust the parameters of any object in your Scene Graph that has been included for Live Render
Updates.

The image in the Monitor tab, Catalog tab and Monitor Layer updates in response to your actions.
3D node parameter values are finalized with all pending changes prior to performing a render.

See Starting Multiple Renders and Multiple Live Renders with Foresight+ for more information on
performing multiple Live Renders simultaneously.

Article: If you are experiencing issues when rendering in Katana, please refer to the Knowledge
Base article: Troubleshooting Rendering Issues in Katana.

Article: If you are using Linux and are experiencing issues where your render hangs, please refer to
the Knowledge Base article: Render Hangs or Never Starts on Linux.

Preview and Live Rendering with Nuke Bridge
Nuke Bridge allows lighting and look development artists to see their work in the context of a Nuke render.
You can stream your Katana Preview and Live renders to Nuke running either on your local machine or
sitting on the render farm.

Nuke Bridge offers three modes of operation depending on how you want to work with your render and
composite:

Rendering Your Scene | Performing a Render

https://support.foundry.com/hc/en-us/articles/360000662744-Q100391-Troubleshooting-rendering-issues-in-Katana
https://support.foundry.com/hc/en-us/articles/360001341580-Q100446-Render-hangs-or-never-starts-on-Linux

USER GUIDE
532

l Preview Comp mode - Sends a Katana render to Nuke, then streams a comp back for a quick and
easy snapshot of the render in the composite. This mode runs Nuke as a background process (locally
or remotely).

l Live Comp mode - Allows you to make changes in the Katana project, such as change the render fed
into the Nuke Input Points panel in the Nuke Bridge tab, and see those changes come back from
Nuke. This mode also runs Nuke as a background process (locally or remotely).

When used together with live rendering, you can adjust scene properties such as lighting, materials or
cameras and receive the updated render back through Nuke.

l Interactive Comp mode - Launches Nuke so you can make edits to both your Katana scene and Nuke
script simultaneously.

See See a Nuke Comp of Your Project in Katana Using the Nuke Bridge for more information.

Executing a Disk Render
Disk Renders can only be performed from a Render node. Render nodes acts as a render point within a
Katana recipe.

To write a render pass to disk:

1. Create a Render node and add it to the recipe.

Add the Render node at the point in the recipe where you are happy with the interactive render.

Tip: Add a RenderOutputDefine node above the Render node to define the output name,
format, and file location.

2. Right-click on the Render node and select Disk Render or Disk Render with Dependencies.

The scene graph is generated up to that node and sent to the renderer. The render is saved to your
temp directory or, if your recipe has a RenderOutputDefine node upstream of the Render node, the
rendered output is saved to the locations specified there.

Note: Unlike a Preview Render or Live Render, which show renders in the Monitor tab as they’re
generated, the results of a Disk Render are only visible after the render is complete.

Rendering Your Scene | Performing a Render

USER GUIDE
533

Warning: Progressive interactive renders, when configured to send image updates (buckets) with
high frequency, may flood the message queue of the renderer plug-in's display driver. To prevent
this from consuming unreasonable amounts of memory, the queue is limited in size and, when full,
results in delays in updates being sent to Katana. A warning is then printed to the Render Log. The
size of the queue (as a number of messages) can be specified using the environment variable
KATANA_PIPE_MAX_QUEUE_SIZE. The default size is 16384.

Rendering From the Command-Line
To render a scene from the command-line, you can use both Katana’s Batch and Script modes:

l Batch mode - You must provide a filename or asset ID specifying the Katana project to render, the
name of the Render node in the specified Katana project from which to render, and the frame range to
render. For example, the following command renders the specified Katana project from the
MyRenderNode node for frames 1 to 10:

katana --batch --katana-file=/path/to/myscene.katana --render-node=MyRenderNode -t 1-10

l Script mode - This mode allows you to execute a Python script in Katana’s Python environment, so
you can perform more complex actions such as changing parameters, creating nodes, or modifying
node connections, as well as launching renders.

Note: For more information on how to use Batch and Script modes, see Command-line Interface.

Starting Multiple Renders
The Start Multiple Renders dialog allows users to start multiple Preview or Live Renders by selecting
various combinations of global Graph State Variables (GSV). The ability to start multiple renders at once and
have them render simultaneously can greatly improve efficiency as you don't have to wait for one render to
finish before starting another. This can be very useful to compare lighting adjustments across multiple shots,
or material and asset variations, for example.

Rendering Your Scene | Performing a Render

USER GUIDE
534

Note: Multiple simultaneous Live Renders are not allowed by default. Starting a new Live Render
cancels any currently active Live Render. To enable simultaneous Live Renders, go to Preferences
> application > rendering and enable allowConcurrentRenders.

Using the Start Multiple Renders Dialog
To use the Start Multiple Renders dialog:

Rendering Your Scene | Performing a Render

USER GUIDE
535

1. Click the Shelf Actions button at the top of the Katana UI.
2. Select (Other) KatanaQueue from the Shelf dropdown.

3. Select Start Multiple Renders...

The Start Multiple Renders dialog opens.

4. Choose the Render Nodes, Global GSVs, and individual GSV options you want to render.

All available options are selected by default.

Rendering Your Scene | Performing a Render

USER GUIDE
536

The total number of renders that result from the current selections of Render nodes and GSVs is
shown and updated in a label at the bottom left of the dialog.

5. Enter the frames you want to render in the Frame Range text field.

You can enter individual frames, or frame ranges by separating them with commas, for example: 1-10,
20, 30-45.

You can also use the Presets dropdown to select from Current Frame, Working In/Out Frame and
First/Middle/Last Frame of the timeline of the current Katana project.

Rendering Your Scene | Performing a Render

USER GUIDE
537

6. In the Send To dropdown menu, choose the render farm you want to send the render jobs to or
choose Local Machine to use your local machine to perform the renders.

7. Click Preview Render or Live Render.

A Preview Render or Live Render dialog appears while the renders are starting.

The images begin rendering and can be viewed in the Catalog tab, the Monitor tab and the Monitor
Layer in the Hydra Viewer.

Rendering Your Scene | Performing a Render

USER GUIDE
538

Render jobs are displayed in the Katana Queue tab.

See Multiple Live Renders with Foresight+ for more information on Live Renders.

Rendering Your Scene | Performing a Render

USER GUIDE
539

Multiple Live Renders with
Foresight+
Foresight+ gives you the ability to dispatch multiple Live Renders to any machine, whether local or on the
farm using Katana Queue. You can work on as many shots as you like from one Katana scene and see every
change you make that influences all the shots in a sequence, live, inside Katana. Working on shots in a
sequence concurrently raises the quality of all shots simultaneously and helps to avoid surprises when
lighting conditions change.

Foresight+ includes a significant restructuring of how live rendering is handled inside Katana. As part of this
restructure, attribute changes are now communicated to individual render processes, meaning that any
changes only trigger updates for the affected renders. This means your shot-specific lighting or look-dev
changes only trigger updates for the affected live renders so you don’t need to worry about inaccuracies or
being slowed down by unnecessary render updates.

Instead of accessing Graph State Variable (GSV) values from the parameters inside the Project Settings, the
new expressions grab the values from Catalog items.

Rendering Your Scene | Performing a Render

USER GUIDE
540

The old project.variable.shot.value
variable

The new getVar('shot') variable that references
Catalog items

This means that for each render, the expressions are evaluated to the values in the Catalog items, rather
than GSV values. As a result, switching between different GSVs and scrubbing through the timeline doesn't
trigger a live render update unless you want it to.

See Graph State Variables for more information on setting GSVs and Using the Catalog Tab for more details
on the Catalog tab.

Pinning Shots in the Catalog to Control Live Renders
Pinning renders in the Catalog tab allows you to control what changes in the scene trigger an update to Live
Renders currently in the catalog. When values are pinned, any changes made to the GSVs or current frame
won’t trigger an update. Once a parameter is unpinned from a Catalog item, the value can be overridden by
making changes to the global settings. Once changed, the unpinned value turns yellow to indicate an
override.

In this example, unpinning the avo_shirt_type variable, shown in yellow, means that any change to that
variable triggers a Live Render update. Changing the shot or frame does not update the Catalog for this
pinned entry.

Rendering Your Scene | Performing a Render

USER GUIDE
541

A live render catalog render that only updates when the avo_shirt_type variable is changed

Note: All parameters in the Catalog tab are unpinned unless the renders were started using the
Start Multiple Renders dialog. See Starting Multiple Renders for more information.
Pinning can be enabled by default in the Preferences under application > rendering >
renderVariablesPinnedByDefault.

You can choose to unpin all parameters using the tickbox at the front, or make individual choices for each
parameter. This is a really useful feature as you may want to switch between a few different shots for one live
render, while the others remain on a specific shot. Similarly, you may want you scrub through the timeline for
one specific shot and ensure that your lighting is consistent across its entire length. This may be unnecessary
for other shots that don’t involve as much range.

Overriding Global GSVs with Catalog Entries
You can work with multiple shots and avoid mismatches between the geometry in the Viewer and your live
renders by syncronizing the global GSVs in the Project Settings with a selected catalog render. The global
GSVs are overridden by the catalog render marked as the Front buffer item, indicated by the icon.

To override the global GSVs with a catalog render:

1. Left-click the catalog render you want to work with to set it as the Front buffer.

The catalog render is marked with the icon.

2. Enable the Sync to Project Settings checkbox in the Catalog tab menubar.

Rendering Your Scene | Performing a Render

USER GUIDE
542

The global GSVs in the Project Settings are overridden by those selected for the catalog render
marked with the Front buffer icon.

3. Toggling the Monitor Layer button off and on in the Viewer now allows you to confirm that there
are no mismatches between your live render and scene graph geometry.

A live render overlaying scene geometry with the
Monitor Layer enabled

The scene geometry with the Monitor Layer
disabled for comparison

Foresight+ makes multi-shot workflows even quicker and more efficient inside Katana by improving the
iterative process. You no longer need to work on one single shot, without knowing if their lighting looks
consistent in the other shots. Katana makes it easy to work on an entire sequence inside one Katana project
while making per-shot overrides, and seeing every change you make live, inside Katana.

Rendering Your Scene | Performing a Render

USER GUIDE
543

Katana Queue
Katana Queue is a minimal render farm implementation, integrated with Katana using a custom render farm
plug-in. The Katana Queue system can be used for the management of multiple renders across your local
machine, or a set of machines on the same network, boosting rendering capabilities and increasing
productivity.

Note: For more information, refer to the FarmAPI documentation in the Katana Developer Guide.

To start a render using Katana Queue:

Rendering Your Scene | Performing a Render

https://learn.foundry.com/katana/dev-guide/Scripting/RenderingAScene/FarmAPI.html

USER GUIDE
544

1. Right-click the 3D node that you would like to start your render from.
2. Hover over the Katana Queue option and choose the type of render you would like to start.

The render starts and can be viewed in the Monitor tab, the Catalog tab and the Monitor Layer.

Render jobs that are running through the Katana Queue system can be viewed in the Katana Queue
tab.

The Katana Queue Tab
The Katana Queue tab provides a process control interface where you can view each render job which has
been run using the Katana Queue system.

To access the Katana Queue tab:

Rendering Your Scene | Performing a Render

USER GUIDE
545

1. Click the Add Tab button in the pane to which you would like to add a Katana Queue tab.
2. Click Katana Queue.

The Katana Queue tab opens.

Rendering Your Scene | Performing a Render

USER GUIDE
546

The Katana Queue tab is divided into two sections:

l Jobs - A list of render jobs that are being processed using Katana Queue.
l Log - A render log of the selected Job.

The Jobs section provides the following information about each render job:

l Name - The name of the node from where the render was started.
l State - The status of the render. The possible states are: Waiting, Running, Completed, Cancelled,

Failed.
l Submitted - The time that the render was submitted to the Katana Queue.
l Completed - The time that the render was completed. If the render did not finish due to failing or

being canceled, this field remains empty.
l Log File - The file path of the render log file.

The Start button can be used to restart any renders from the Katana Queue render jobs list
that had previously failed or been canceled.

The Stop button can be used to cancel any renders from the Katana Queue render jobs list
that are currently running or waiting to start.

Rendering Your Scene | Performing a Render

USER GUIDE
547

The Log section provides all render log information, and an Action button, from which you can open your
Job Render Log, KQ Log or Agent Log externally.

Note: The external text editor application can be specified in the Katana Preferences.
Open the Preferences dialog by choosing Edit > Preferences from the main menu, and navigate
to externalTools > editor to select your text editor.

Working with Katana Queue Jobs
The render jobs can be filtered and sorted in the Katana Queue tab the following ways:

l Click on the filters at the top of the Katana Queue tab to choose which states you want to be visible in
the render jobs list.

When all filters are turned on, all render jobs are visible in the list.

Filters can be applied to show only the render jobs you are interested in seeing.

Rendering Your Scene | Performing a Render

USER GUIDE
548

l Click on a column name, such as State or Submitted, to order the render jobs according to the
selected information. Click again to toggle whether the jobs are arranged in ascending or descending
order.

Rendering Your Scene | Performing a Render

USER GUIDE
549

l Click the empty square in the top left of the Jobs list to select all jobs in the list.

This can be useful if you want to restart all Cancelled renders. You can use the filters to show only the
canceled jobs then select all and click the Start button.

Rendering Your Scene | Performing a Render

USER GUIDE
550

Configuring a Render
These pages explain how rendering can be configured in Katana to suit your requirements.

Render Dependencies

How to find which nodes the Render node depends on.

Rendering only Selected Locations

How to render only selected objects.

Setting up Interactive Render Filters

How to easily set up common recipe changes for interactive and live renders.

Managing Color

Using the OpenColorIO standard to manage color data.

Render Dependencies
The function GetSortedDependencyList() provides the information needed to obtain the names of any
other nodes a Render node depends on. For example, the following script returns the names of a Render
node’s dependencies, as a sequence:

def dependencyList(nodeName):
"""
Use GetSortedDependencyList to retrieve the entire dependency tree for a
render node.
Each entry is ordered so that render nodes are sorted by number of
dependencies, in descending order.
"""
Get hold of the node and all of its dependencies as a sequence of
dictionaries
node = NodegraphAPI.GetNode(nodeName)
info = FarmAPI.GetSortedDependencyList([node])
Extract the 'deps' for each entry in the sequence

Rendering Your Scene | Configuring a Render

USER GUIDE
551

to produce a flat list.
allDeps = [dep for i in info for dep in i["deps"]]
return allDeps

Rendering only Selected Locations
For speed it is sometimes preferable to only render a subset of the objects within a scene. To limit the
objects being sent to the renderer, select the objects in the scene graph and click the Render only Selected

Objects icon.

Note: This is only for preview renders. Performing a disk render uses the entire scene graph.

Setting up Interactive Render Filters
Interactive render filters enable you to set up common recipe changes for interactive render and live renders
without having to add them at each point in the recipe you want to test. These filters are ignored for disk
renders.

For example, you can set up an interactive render filter to reduce the render image size, thus making
debugging and light tests much quicker. Other examples might include anti-aliasing settings, shading rate
changes, or the number of light bounces. A filter can consist of more than one change to the recipe and it is
the equivalent of appending the filter nodes to the end of the node you selected to render.

These filters are bundled together inside the InteractiveRenderFilters node and toggled using at the top
of the interface.

Creating Interactive Render Filters
1. Create an InteractiveRenderFilters node and place it anywhere within the Node Graph.
2. Select the InteractiveRenderFilters node and press Alt+E.

The InteractiveRenderFilters node becomes editable within the Parameters tab.

3. Click below RenderFilters in the Parameters tab.

Rendering Your Scene | Configuring a Render

USER GUIDE
552

A new RenderFilter is created.
4. To help you remember what this filter does, type a name in the name parameter.
5. To create a group of filters, type a group name in the category parameter.
6. Click Add Node and select a node from the list.

Filter the list using the Categories dropdown or the Filter field.
7. Make any changes to the node.

8. Repeat steps 6 and 7 for any additional nodes for this filter.
9. Repeat steps 3 to 7 for any additional filters.

Note: The InteractiveRenderFilters node doesn’t need to be connected into a recipe to work.

Tip: It is also possible to middle-click and drag nodes from the Node Graph tab into the Add
Node list of the InteractiveRenderFilters node.

Activating and Deactivating a Render Filter

By default, render filter nodes aren’t active. To toggle whether a render filter is active:

Rendering Your Scene | Configuring a Render

USER GUIDE
553

1. Click at the top of the interface.

2. Middle-click and drag filters from one side to the other to toggle whether they are active. (You can
remove all the active filters by clicking the clear button.)

Managing Color
As well as communicating with one or more renderers, Katana also reads in image data from a number of
different formats. Managing the color of the data within Katana is accomplished through the OpenColorIO
standard, originally developed by Sony Pictures Imageworks.

A typical workflow within Katana involves:
1. Reading in the images from various formats, such as DPX, TIFF, or OpenEXR.
2. Converting those images into the scene-linear colorspace.

This is handled automatically by Katana as long as the filenames use the OpenColorIO naming scheme.
Files should use a suffix denoting the file’s colorspace, for instance: beautypass_lnf.exr (for a 32-bit linear
file). For further details, see the OpenColorIO standard at:
http://opencolorio.org/

3. Rendering within the scene-linear colorspace.
4. Compositing and manipulating the images in scene-linear colorspace.

Note: Compositing with image data that has not been converted yields inconsistent results.

5. Viewing the scene-linear image data through a device-specific look-up-table (LUT) in the Monitor tab.
The LUTs can include additional manipulations to show the image data converted to film or log (or any
other potential output if you have the correct LUT) so you can see the image as it would display in that
target’s colorspace.

6. Writing the file out, specifying the colorspace to use in the relevant node. Use the
rendererSettings.colorSpace parameter in the RenderOutputDefine node for 3D renders and the
image.colorspace parameter in the ImageWrite node for 2D composites. Make sure colorConvert is
enabled in both cases.

This is a best practice guide on how to work within Katana. That said, it is perfectly possible for you to work
outside the OpenColorIO standard or even manipulate your images within log or some other colorspace.
However, doing so forces you to manage all image manipulations manually.

Rendering Your Scene | Configuring a Render

http://opencolorio.org/

USER GUIDE
554

Viewing Your Renders
Viewing your renders can be done through either the Monitor tab, the Hydra Viewer tab, or the Catalog
tab. The Monitor tab is a viewer for current and previous renders. The Hydra Viewer features a Monitor

Layer which can be toggled to view your renders over the top of the geometry in the viewer. The
Catalog tab acts as an archive for renders and imported images. Within the Catalog tab you can manage
images by placing them into different slots for later comparison or reference.

When a slot is active (its slot number is displayed beneath the Front image in the Monitor tab), new renders
are placed at its top. If the cuSrrent slot’s top image is not locked, it is replaced by any new renders. If the top
image is locked, a new render is placed above it in the slot.

Using the Monitor Layer and Monitor Tab

Learn to view your renders using Katana's Monitor tab and Monitor Layer in the Hydra Viewer.

Using the Catalog tab

Use the Catalog tab to organize and view your renders.

Using the Histogram

Find out how to check RGBA levels within an image using the Histogram tab.

Article: If you are experiencing issues when viewing renders in Katana, please refer to the
Knowledge Base article: Troubleshooting Rendering Issues in Katana

Using the Monitor Layer and
Monitor Tab
Both the Monitor Layer and Monitor tab can be used to view your renders inside Katana.

Rendering Your Scene | Viewing Your Renders

https://support.foundry.com/hc/en-us/articles/360000662744-Q100391-Troubleshooting-rendering-issues-in-Katana

USER GUIDE
555

Monitor Layer
The Monitor Layer allows you to toggle a render view directly in the Hydra Viewer, overlaying the geometry.

For a full overview of the Monitor layer, see The Monitor Layer in the Hydra Viewer.

Monitor Tab
If more than one Monitor tab is open, Katana always sends the preview render results to the first Monitor
tab that was opened in a scene. If another instance of the Monitor tab is opened, the image rendered in the
first instance is shown, or if nothing was rendered, then nothing is shown in the preview. Any consequent
renders are shown only in the first instance of the Monitor tab, and any additional tabs opened cannot be
considered the primary instance.

To toggle whether the Monitor tab is maximized, press Ctrl+Spacebar, double-click on the tab name, or
hold the mouse pointer over the borders of the Monitor tab (outside of the image display area) and press
Spacebar.

To switch the front and back images, hold the mouse pointer inside the image display area of the Monitor
tab and press S.

To change which catalog slot to use, press the number that corresponds to the slot, for instance 3, or change
the current Front image using the Catalog tab, see Changing the Catalog Renders Displayed in the Monitor
tab.

To view the catalog from inside the Monitor tab, press the Tab key. (Pressing the Tab key again returns to
the Monitor view.)

Changing the Image Size and
Position
There are numerous ways to get the image to the right size and location within the Monitor tab.

To move the image around the Monitor tab, middle-click and drag.

Rendering Your Scene | Viewing Your Renders

USER GUIDE
556

To fit an image to the Monitor tab, at the top of the tab, select [Current display ratio] (for instance 1.23 :
1) > Frame Display Window (or press F).

To viewing the image at a 1:1 ratio, select [Current display scale] > Reset Viewport (or press Home). The
image changes size so the displayed image is one image pixel to one screen pixel, the bottom-left of the
image moves to the bottom-left of the Monitor tab.

Changing the Size of the Image Within the Monitor Tab

To change the displayed image size:
• Scroll the mouse-wheel up to zoom in (or press +) or scroll the mouse-wheel down to zoom out (or press

-). The image size changes by a factor of two, for example: 1:8, 1:4, 1:2, 1:1, 2:1, 4:1, 8:1, and the change is
reflected in the display scale at the top of the tab, or

• Press Alt+middle-click and drag (drag right to zoom in, drag left to zoom out).

Tip: Katana zooms in and out around the location of the cursor.

Note: In many Linux windows managers, the Alt key is used by default as a mouse modifier key.
This can cause problems in 3D applications where Alt is used for camera navigation in 3D
environments.

You can use key mapping to assign the mouse modifier to another key, such as the (Super or
Meta) key, but the method changes depending on which flavor of Linux you're using. Please refer
to the documentation on key mapping for your particular Linux distribution for more information.

Overlay Masking
The Monitor tab supports the application of custom overlay masks with different framing options, based on
a supplied configuration file. The masks allow for semi-transparent region rendering and, when this
configuration file is provided, it populates the Monitor > Display > Masks menu, so that you can choose
from a dropdown of pre-configured overlays. Providing masks for use in Katana allows you to apply a mask
on a specified frame size in the Monitor.

To set up a configuration file so that you can choose overlays from the Monitor > Display > Masks menu,
place a monitor_mask.xml file in your KATANA_RESOURCES path. The K keyboard shortcut can be used to
toggle the mask, and Alt+K cycles through the available masks.

Rendering Your Scene | Viewing Your Renders

USER GUIDE
557

Formatting an XML File

An example for a properly formatted .xml files for use with Katana masks can be found under $KATANA_
ROOT/plugins/Resources/Examples/monitor_mask.xml. This file is loaded into Katana so that, by default,
two monitor masks are available: Mask Aspect + Safe Areas and Mask Aspect (no labels).

Tip: For more technical users, the information below on further formatting instructions for
an XML file, may come in useful.

Masks should be defined in XML using a mask element:

<mask name="myMask" window="(x1,y1,x2,y2)"/>
 ...
</mask>

The window defines the mask dimensions in pixels. By default, masks (and their drawings) are scaled
to fit the Display Window of the viewed image. If the aspect ratio of the mask definition does not
match that of the image, the image is anchored to the lower-left corner of the mask, and the overlay
scaled such that it covers the longest edge of the image. This scaling can be disabled in the Display >
Masksmenu in the monitor.

Within each mask, there must be one or more drawable elements:

<rect window="(x1,y1,x2,y2)"
 fillColor="(r,g,b,a)"
 outlineColor="(r,g,b,a)"
 outlineStippleSize="px"
 outlineWidth="px"
 holdoutWindow="(x1,y1,x2,y2)"
 labelColor="(r,g,b,a)"
 labelSize="f" />;
<line p1="(x,y)" p2="(x,y)" lineColor="(r,g,b,a)" lineWidth="px" />;

In this example:

• x, y are pixel coordinates.
• r, g, b, and a are all normalized color components between 0-1.
• f is a multiple on the drawn size of text (best experiment to find the right size, but its a scale on 24pt text

@72dpi as per FTGL).
• px is a GlLineWidth relative to the mask window definition.

Rendering Your Scene | Viewing Your Renders

USER GUIDE
558

• rect elements require the window attribute and one or more of fillColor or outlineColor. Other attributes
are optional.

• line elements require p1 and p2.

Once selected, these are drawn on top of renders displayed in the monitor.

Changing How to Trigger a Render
By default, you have to manually start a render by:
• right-clicking on a node and selecting one of the render options in the dropdown menu,
• using one of the menu options under Render, or
• clicking the 2D Update Mode on the Monitor tab.

Note: Using the 2D Update Mode only works on previously rendered 2D nodes, and not the
currently viewed 2D node.

There are three different ways of triggering a render update. You can select your preferred method from the
2D Update Mode on the Monitor tab. The options are:
• Manual - changes to materials, lights, or geometry transformations don’t trigger a render update. To have

the changes take effect, click the Trigger 2D Update button.
• Pen-Up - changes to materials, lights, or geometry transformations trigger a render update only when the

mouse button is released or a parameter change is applied.
• Continuous - changes to materials, lights, or geometry transformations, including some manipulations in

the Viewer tab, continuously trigger a render update.

2D Update Mode Indicators

Manual mode

Pen-up mode

Continuous mode

There is also a 3D Update Mode on the Monitor tab UI, used for live rendering 3D nodes. For 3D updates,
please see the information on Live Rendering in Rendering Your Scene.

To change when Katana starts a render:

Rendering Your Scene | Viewing Your Renders

USER GUIDE
559

• Select Render > Manual Render to only start a render manually.
• Select Render > Pen-Up Render to start a render when you release the mouse after changing a parameter

or the current time.
• Select Render > Drag Render to start a render while you are changing a parameter or the current time.

Tip: These options are also available at the top of the Monitor tab.

Rendering a Region of Interest (ROI)
To reduce the render time while making changes, you can render a smaller section of the image - this section
is called a Region of Interest (ROI). The Region of Interest is only used for interactive renders and is ignored
when performing a Disk Render or Disk Render with Dependencies. You can turn on Region of Interest
rendering from the Monitor tab and the Monitor Layer in the Hydra Viewer.

If the ROI is enabled in either one of the Monitor or the Hydra Viewer, it is automatically enabled in both.

ROI in the Monitor Tab
You can turn on Region of Interest rendering in the Monitor by selecting [ROI menu] > ROI On or ROI On
(visible). If you then want to turn it off again, select [ROI menu] > ROI Off or ROI Off (visible). You can
also toggle the state of the ROI by pressing Shift+RMB. This toggles between ROI Off and ROI On (visible).
Alternatively, select an area for the region of interest by Shift+RMB and dragging the mouse to create a
selection box.

Note: If the region of interest’s bounding rectangle is visible, you can change the bounds by
dragging the edges.

Tip: Should you need to access the values of the ROI for scripting purposes, they are stored as
parameters on the project root node.

Rendering Your Scene | Viewing Your Renders

USER GUIDE
560

ROI in the Monitor Layer
To turn on Region of Interest rendering in the Monitor Layer:

1. Click the Region of Interest (ROI) button to enable Region of Interest rendering.
2. Click the drop-down arrow next to the Region of Interest (ROI) button and select Show Handle.

By default, the handle is set to the size of the camera screen window.

Rendering Your Scene | Viewing Your Renders

USER GUIDE
561

3. Click and drag an edge or corner of the handle to resize the ROI.

Note: You can also hold Shift, Right-Click and drag to draw the ROI.

4. Click and drag the center cross to move the handle.

Rendering Your Scene | Viewing Your Renders

USER GUIDE
562

5. Start a Preview or Live Render.

The Region of Interest is rendered.

Note: Different renderers mange ROI rendering differently. Some may continue rendering
the rest of the image, others may stop rendering once the ROI is complete.

To reset the Region of Interest handle, you can either:

l Click the Reset button next to the Region of Interest handle, or
l Click the drop-down arrow next to the Region of Interest (ROI) button and select Reset.

Rendering Your Scene | Viewing Your Renders

USER GUIDE
563

Changing the Displayed Channels
To change the displayed channel:
1. Click the channel display dropdown (labeled Color by default) towards the bottom of the Monitor tab.
2. Select the channel to display:

• Color (or press C)
• Luma (or press L)
• Red (or press R)
• Green (or press G)
• Blue (or press B)
• Alpha (or press A)

Tip: If you are viewing a channel other than the color channel, press the key that corresponds to
that channel to toggle back to color. For instance, click R once to view the red channel, click R
again to go back to the color channel.

Changing How the Alpha Channel is
Displayed
The alpha channel menu is located next to the color display menu at the bottom of the Monitor tab.

To toggle premultiply in the Monitor tab, select [Alpha display] > Premult (xA).

It is possible to display the alpha channel as an overlay (either as a mask or a matte). Using the alpha channel
menu the overlay is set to one of three states:
• None - No alpha overlay is displayed.
• Mask - The area of the image with no alpha channel becomes the overlay color.
• Matte - The area of the image with an alpha is overlayed with the overlay color.

Rendering Your Scene | Viewing Your Renders

USER GUIDE
564

To change the color used for alpha overlays:
1. Select [Alpha display] > Set Overlay Color... .

The color picker dialog displays.
2. Select a color with the color picker.
3. Press OK.

Selecting Which Output Pass to
View
When more than just the primary pass is output during an interactive render, you can view all the outputs
within the Monitor tab. To view outputs other than the default (primary) pass, select the output from the
outputs dropdown towards the bottom of the Monitor tab. By default it is default or primary (depending
on the render settings).

For details on setting up multiple outputs, see Defining an AOV Output. For more on sending those outputs
to the Monitor tab, see Previewing Interactive Renders for Outputs Other than Primary.

Viewing the Pixel Values of the
Front and Back Images
To turn on the pixel probe, click or press . (period). The pixel probe toolbar displays.

To change the colorspace for the displayed pixel values, select from the top dropdown in the pixel probe
toolbar.

To change what type of pixel value you want displayed, click the lower dropdown in the pixel probe toolbar
and select:
• ave - the mean average of the area selected.
• min - the lowest value for each channel from the area selected.

Rendering Your Scene | Viewing Your Renders

USER GUIDE
565

• max - the highest value for each channel from the area selected.
• stdDev - the standard deviation of the area selected.

To change where the pixel probe samples:
• Ctrl+click to change the sample center point.

• Click to sample an area and to change back to sampling a point.

• Click and drag the center point.
• Click and drag the vertical bar to move the sample’s center left and right.
• Click and drag the horizontal bar to move the sample’s center up and down.
• When sampling an area, click and drag the bounding border lines to change the area’s bounding rectangle.

If you are viewing an image render in the Monitor tab and you want to identify geometry, you can use the
pixel probe to do this:
1. In the Monitor tab, turn on the pixel probe following the instructions above.
2. Pick a pixel on the object in the Monitor.

Katana's internal 'id' channel mapping identifies the geometry that this color originates from.

3. Click on the scene graph locations widget that appears next to the geometry name in the pixel probe
toolbar, and click Select in Scenegraph from the dropdown menu.
The scene graph location is highlighted in the Scene Graph tab.

Note: For more information on the Monitor tab, refer to Using the Monitor Layer and Monitor
Tab .

To turn off the pixel probe, click or press . (period). The pixel probe toolbar is hidden.

Comparing Front and Back Images
If you need to compare the Front and Back images from the Catalog tab, for instance, to see how changes
are affecting an image or to ensure that colors are consistent across shots, you can use the Multi View
feature within the Monitor tab.

Rendering Your Scene | Viewing Your Renders

USER GUIDE
566

Note: For more information about Front and Back images, see the Changing the Catalog Renders
Displayed in the Monitor tab section of the Catalog tab topic.

Multi View Options
Click the Multi View Off drop-down to select a Multi View mode.

l Horizontal Split - Divides the Monitor tab horizontally into two sections. The Front image is
displayed at the top and the Back image is displayed at the bottom.

Rendering Your Scene | Viewing Your Renders

USER GUIDE
567

l Vertical Split - Divides the Monitor tab vertically into two sections. The Front image is displayed on
the left and the Back image is displayed on the right.

l Sync Pan/Zoom - If this option is enabled when using Horizontal Split mode or Vertical Split mode,
panning and zooming on any one image is synchronized to both images.

l Swipe Line - A line handle acts as a curtain from one image to the next. Click and drag the center of
the handle to move its origin. Click and drag the lines either side of the handle's center to change the
swipe angle.

Rendering Your Scene | Viewing Your Renders

USER GUIDE
568

The names for the Front and Back images become A and B respectively.
l Swipe Rect - A bounding rectangle displays the Back image inside the rectangle and Front image

outside the rectangle. Click and drag the center of the handle to move its origin. Click and drag the
bounding box lines to resize the swipe rectangle.

The names for the Front and Back images become Outside and Inside respectively.

Rendering Your Scene | Viewing Your Renders

USER GUIDE
569

l Red/Cyan 3D - A mix between the Front and Back images.

Toggling 2D Manipulator Display
Some 2D nodes, such as Transform2D, provide a manipulator within the Monitor tab. It is possible to

toggle the display of these manipulators. To toggle the display of 2D nodes’ manipulators, click or .

Underlaying and Overlaying an
Image
The Monitor tab within Katana has the ability to overlay or underlay an image with the current render. The
underlay and overlay can be composited with either the Over or Add function. In order to display the

underlay and overlay controls, click . The Underlay/Overlay toolbar is added to the Monitor tab.

If you want to add an image to the underlay or overlay fields, middle-click and drag from either the
Front/Back images in the Monitor tab or one of the renders from the Catalog tab. The checkbox toggles on

Rendering Your Scene | Viewing Your Renders

USER GUIDE
570

and the underlay/overlay function becomes active. To remove an image from the underlay or overlay fields,
click to the right of the image.

To turn off the underlay or overlay composition, uncheck the checkbox to the left of the field name. Whereas
if you want to change the compositing function used:
1. Click the dropdown on the left of the toolbar.
2. Select the compositing function, the options are Add or Over.

If you want to remove the underlay/overlay toolbar altogether, click .

Using the Catalog Tab
The Catalog tab acts as an archive for your renders. It has a number of slots where you can place each
render. Each slot acts as a stack, you replace the top render in the stack by starting a new render. If the top
item is locked, any new renders become the new head of the stack.

Note: For more on changing which slot to use, see Using the Monitor Layer and Monitor Tab .

The Catalog tab allows you to view and organize your renders. The Catalog tab also displays render
settings, such as the frame, render time, Graph State Variables or Interactive Render Filters. The thumbnails
display both complete and running renders, and can be resized by scaling the column size.

Resizing thumbnails in the Catalog tab

Rendering Your Scene | Viewing Your Renders

USER GUIDE
571

Customizing the Catalog Columns
The Catalog tab displays the following information by default:

l name - The name of the node from where the render was started.
l frame - The frame time that the render was started.
l elapsed - The time taken for the render to complete (h:mm:ss).
l start - The time at which the render started.
l bounds - The full image resolution of the render.
l layers - The Image Layers (AOVs) that have been rendered.
l GSVs - The Graph State Variables used for the rendered image.
l IRFs - The Interactive Render Filters used for used for the rendered image.
l comment - Click to type a comment about a rendered image stored in the Catalog tab.

Note: For more information, see Manipulating Catalog Entries.

To customize what is displayed:

1. Right-click the header bar in the Catalog tab.

Rendering Your Scene | Viewing Your Renders

USER GUIDE
572

2. Deselect/select the required headers of your choice from the menu.

To disable the GSVs and IRFs columns, hover over the Graph State Variables or Interactive Render
Filters option and deselect Combined.

Changing the Catalog View
By default the Catalog tab displays renders under their respective slot. It is also possible to view the renders
in order of when they were rendered. To change the Catalog tab to a Slot-centric view, click Slot View in the
upper-right corner of the tab. To change the Catalog tab to a Time-centric view, click Time View in the
upper-right corner of the tab.

Rendering Your Scene | Viewing Your Renders

USER GUIDE
573

Manipulating Catalog Entries
Below are a list of features you can use to manipulate the Catalog entries:

l To move Catalog entries from one slot to another, middle-click and drag.
l To toggle the lock status of a render, click / next to the image’s thumbnail. Locked images are

not overridden by a subsequent render to the same slot.
l To toggle whether an image is saved within this Catalog, click / next to the image’s thumbnail.

The first time the icon is pressed a file is saved to the directory specified by the KATANA_
PERSISTENT_IMAGES_PATH environment variable (if not set, it defaults to /tmp/katana_persist). To
add a prefix to the filename, use the KATANA_PERSISTENT_IMAGES_PREFIX environment variable.

l To change the Region of Interest (ROI) to match the ROI of the render, right-click the area to the right
of the render thumbnail, and select Adopt Render ROI.

l To change the current frame to match the frame of the render, right-click the area to the right of the
render thumbnail, and select Adopt Frame Time.

l To select the node the Catalog render was generated from, right-click the area to the right of the
render thumbnail, and select Find in Node Graph.

l To regenerate the thumbnail within the Catalog tab, right-click the area to the right of the render
thumbnail, and select Regenerate Thumbnail.

l To create a copy of a Catalog item, right-click the area to the right of the render thumbnail, and select
Duplicate Catalog Item.

l To make a comment for a Catalog render, type under the comment heading in the same row as the

relevant thumbnail, or if the image is the current Front or Back image, click at the top of the
Monitor tab and type the comment in the Front or Back field.

l To toggle the lock for new 2D renders, click the checkbox marked Lock 2D. When ticked, any new
renders automatically have the lock icon. Being locked prevents the image being overridden by a
subsequent render to the same slot.

Changing the Catalog Renders Displayed in the Monitor
tab
To change the Front and Back images within the Monitor tab:

l Left-click a thumbnail to make it the Front image,
l Right-click a thumbnail to make it the Back image, or
l Ctrl-click a thumbnail to pin the image to the Front buffer. Pinning a thumbnail prevents subsequent

renders updating the Front buffer.

Rendering Your Scene | Viewing Your Renders

USER GUIDE
574

Click the thumbnail again to unpin the image.

Importing and Exporting Catalog Entries

Importing an Image or File Sequence to the Catalog
1. Select File > Import Image / Sequence (from the Catalog tab).

The Import Image / Sequence dialog displays.
2. Select whether you want an individual frame or a sequence by toggling Sequence Listing.
3. Select the image or sequence to import.
4. Click Accept.

Note: During import only a single AOV, the primary pass, is read into the Catalog and becomes
available for preview within the Monitor tab.

Exporting an Image or File Sequence from the Catalog
1. Select File > Export Catalog and:

• All Images - all entries in the Catalog tab.
• Locked Images - only those entries in the Catalog tab that are locked.

Rendering Your Scene | Viewing Your Renders

USER GUIDE
575

• Selected Images - only selected entries in the Catalog tab.

The Export Catalog dialog displays.
2. Choose one of the export methods below:

• Specify the full path to the directory where your files are exported. File names are automatically
generated and begin with catalog_export.

• Specify the full path for a sequence. The sequence must follow the pattern
sequenceName.#.fileFormat, where # is the amount of padding for image numbers.

The supported export formats are .exr, .tif, .jpg, and .png.
3. Click Accept.

Note: When manually entering in a directory path, you must include the file path and name of the
directory in order to click Accept.

Removing Renders from the Catalog
To remove all unlocked images from the Catalog, select Edit > Flush Unlocked Images (from within the
Catalog tab).

To delete the selected images from the Catalog:

1. Select the image(s) to delete.
2. Select Edit > Delete Selected Images (or press Delete on the keyboard).
3. If the images are locked, confirm deletion by clicking Accept.

To clear the entire Catalog:

1. Select Edit > Clear Catalog.
2. Click Delete to confirm.

Viewing the Render Log for a Catalog Entry
The Render Log output for renders during this session of Katana are saved as part of its catalog entry.
Catalog entries saved with a project do not include their Render Log.

To view a Catalog entry’s Render Log output, click its thumbnail. The entry becomes the Front render in the
Monitor tab and its Render Log entry is displayed within the Render Log tab.

Rendering Your Scene | Viewing Your Renders

USER GUIDE
576

Using the Histogram
Katana comes equipped with a Histogram tab for checking RGBA levels within an image.

Note: The Histogram tab works in conjunction with the Pixel probe in the Monitor tab. To view
anything within the Histogram tab you must have a point or area selected with the probe.

The image’s channels are plotted with the value along the horizontal axis and the count for that value along
the vertical axis. The top histogram matches the Front image and the bottom histogram matches the Back
image.

To view the count at a particular value, click anywhere within either histogram. The RGBA channel’s count for
that value displays towards the top of each histogram. The format of the display is <value> : <red count>
<green count> <blue count> <alpha count> .

To change the colorspace used for plotting values within the histogram, click the colorspace dropdown and
select one of the provided options - these options come from the current OpenColorIO profile. For more on
OpenColorIO, see Managing Color.

To change the scale of the plotted values in the Y axis, enter a new value within the vScale field.

To toggle a channel's display within the Histogram tab, click the letter that represents the channel at the
top-right of the tab.

Tip: Along the bottom of each histogram a colored dot shows the lowest and highest value for
each channel displayed.

Note: The plotted value does not necessarily correspond to an actual value. For instance, the
range for the lnf colorspace within the Histogram tab is 0 to 1023 whereas the actual values are
32-bit floating point. Katana maps the colorspace values to a range for display purposes.

Rendering Your Scene | Viewing Your Renders

USER GUIDE
577

Custom Render Resolutions
You can define custom render resolutions to supplement or replace Katana’s pre-defined resolutions. You
can define resolutions through the UI, using Python, or with XML files.

Using the UI
You can set the render resolution through any node with a resolution field, such as a RenderSettings or
ImageColor node. Each node with a resolution field has a dropdown menu of pre-defined resolutions, and
text entry boxes for manual definition.

Resolutions defined manually are saved - and recalled - with the Katana project, but are not saved for use in
other Katana projects. If you select a pre-determined resolution, that selection is saved - and recalled - with
the Katana project.

Note: The resolution field in the Tab > Project Settings window specifies the resolution for 2D
image nodes, not 3D renders.

Influencing a Render
Some key nodes for influencing a render are:
• RenderOutputDefine - used for setting the primary output, or adding secondary render outputs (such as

color, point cloud, shadow), the channel (including arbitrary output variables - AOVs), the colorspace, the

Rendering Your Scene | Custom Render Resolutions

USER GUIDE
578

pass name, and the final render destination. The node changes attributes under renderSettings.outputs at
the /root location. See Setting up a Render Pass for more on this.

• RenderSettings - sets the render camera, the choice of renderer, and the resolution. This node changes
the renderSettings attribute at the /root location.

• Renderer-specific node types, such as DlSettings or PrmanObjectStatements, can be used to fine-tune
renderer-specific configuration. These nodes typically set attributes on relevant scene graph locations, such
as the targeted object, or /root for global settings.

Controlling Live Rendering
You can control Live Rendering behavior in a number of ways using several options in the Scene Graph,
Monitor, and Viewer tabs as well as in the menu bar. For example, you can change which material and light
edits trigger a Live Render, and when Live Render updates should take place. To start the Live Render, right-
click on any node and select Live Render.

Live Rendering options can be found in the following places:
• In the Scene Graph tab, you can select which location generates Live Rendering updates when their

attributes change.
• In the Monitor and Scene Graph tabs as well as in the menu bar, you can choose how Live Rendering

should take place with the 3D Update Mode.
• In the Viewer tab, you can change from which render view point to Live Render.

Note: Not all nodes have an immediate effect on the Live Render. For example adding a
PrimitiveCreate node does not cause the new primitive to appear because adding new geometry is
not supported in the render plug-ins.

Note: The view node changes in the Node Graph tab are not reflected in the Scene Graph tab
when the 3D Update Mode is set to Manual.

Rendering Your Scene | Controlling Live Rendering

USER GUIDE
579

Global Options
Selecting the Live Render Camera
You can change the render view point at any stage in the Live Render process using the Look Through
Lights and Cameras menu in the Viewer tab.

To activate the Live Render from viewer camera option, do the following:

1. In the Viewer tab, click on the toggle button .

The toggle button is now blue indicating that the Live Render from viewer camera option is
activated.

2. In the Look Through Lights and Cameras menu, select the camera or light you want the Live Render to
render from.
The image in the Monitor tab is updated in response to your actions in the Viewer tab.

Note: The Live Render from viewer camera option supports Continuous and Pen-up modes at
the moment but not Manual mode.

Selecting Which Lights Trigger Updates
To specify which light changes you want to send to the renderer, do the following:

In the Scene Graph tab, tick the relevant boxes in the Live Render Updates column depending on which
light changes you want to send to the renderer.

Rendering Your Scene | Controlling Live Rendering

USER GUIDE
580

Note: If a light is to be used as the Live Render camera, it is enabled in the Scene Graph Live
column.

Selecting Which Materials Trigger Updates
To specify which material changes you want to send to the renderer, do the following:

In the Scene Graph tab, tick the relevant boxes in the Live Render Updates column depending on which
material changes you want to send to the renderer.

Rendering Your Scene | Controlling Live Rendering

USER GUIDE
581

Note: In the Scene Graph tab, when you want to send changes of a material to the renderer you
must also select the geometry location to which the material is applied for the Live Render to
process it.

Changing How to Trigger a Live Render
There are three different ways of triggering a Live Render update. You can select your preferred method
from the 3D Update Mode dropdown in the Scene Graph, Monitor, and Viewer tabs as well as in the
menu bar. The options are:
• Manual - changes to materials, lights, or geometry transformations do not trigger an update of the scene.

To have the changes take effect, click the Trigger 3D Update button .

• Pen-Up - changes to materials, lights, or geometry transformations trigger an update of the scene only
when the mouse button is released or a parameter change is applied.

• Continuous - changes to materials, lights, or geometry transformations, including some manipulations in
the Viewer tab, continuously trigger an update of the scene.

3D node parameter values are finalized with all pending changes prior to performing a render.

Rendering Your Scene | Controlling Live Rendering

USER GUIDE
582

3D Update Mode on Indicators

Manual mode

Pen-up mode

Continuous mode

Note: Whether or not changes to the node graph topology are supported by a renderer plug-in
depends on the capabilities of that plug-in or the renderer that it represents.

Note: As the Manual 3D Update Mode currently defers all scene graph cooking in response to
3D parameter edits, parameter interfaces that rely on scene graph data, such as GafferThree’ s
scene graph view and shader selection interfaces, don't update whilst certain parameter edits are
pending. This mode is therefore only suggested for use while editing individual parameters in the
Parameters tab or while manipulating objects in the Viewer tab.

Taking a Snapshot of the Current Render
You can create an entry in the Catalog tab for the current render image. To add the entry to the Catalog tab,
click the Create Snapshot in Catalog button in the Live Render menu in the Monitor tab.

Setting up a Render Pass
By default, Katana starts with a primary render output (sometimes called the default pass).

The RenderOutputDefine node is used to define render outputs inside Katana. With it, you can set:
• The type of render output (such as color or point cloud (ptc)).
• The output’s file type, colorspace, and location.
• The output’s name.

All the attributes for a render pass are stored at the /root location under the renderSettings.outputs
attribute. For instance, the primary pass attributes are stored under renderSettings.outputs.primary.

Rendering Your Scene | Setting up a Render Pass

USER GUIDE
583

Defining and Overriding a Color
Output
The RenderOutputDefine node can be used to create a new render output or override the settings for an
existing one.

To define or override a color output:
1. Create a RenderOutputDefine node and add it to the recipe.
2. Select the RenderOutputDefine node and press Alt+E.

The RenderOutputDefine node becomes editable within the Parameters tab.
3. Type the pass name to define or override in the outputName parameter.

The primary pass is the default pass. Setting the pass name to something other than primary results in
more than one pass. Katana provides feedback below the outputName parameter that displays whether
or not you are creating a new pass or editing an existing one.

4. Select the output file’s colorspace using the colorSpace dropdown.

Rendering Your Scene | Setting up a Render Pass

USER GUIDE
584

The output colorspace is ignored if the colorConvert dropdown is set to No. For more on colorspaces
within Katana, see Managing Color.

5. Select the file type to use from the fileExtension dropdown.
The file type should have sufficient bit-depth for the colorspace selected in step 4. For instance, certain
colorspaces require 32-bits and, as such, some file formats aren’t supported. Use the convertSettings
parameter grouping to access the file type specific settings, including bit depth.

6. Select the type of location for the output file using the locationType dropdown. The locationType can
be:
• local - the output is saved to a temporary directory below /tmp. The exact directory is stored in the

KATANA_TMPDIR environment variable.
• file - the locationSettings parameter grouping gains a renderLocation parameter where a file

location can be specified.
• studio’s asset manager - your studio may have an asset manager, which is displayed here, details are

implementation specific.

Rendering Your Scene | Setting up a Render Pass

USER GUIDE
585

Defining Outputs Other than Color
The exact options available in the RenderOutputDefine node’s type parameter depends on the current
renderer. Each renderer plug-in is queried for the list of output types it supports.

The table lists the supported outputs for 3Delight, PRMan, and Arnold.

Rendering Your Scene | Setting up a Render Pass

USER GUIDE
586

3Delight PRMan Arnold Description

color color color Used for most renders.

deep deep Used for deep .exr creation in RIS workflows, and for deep
shadow map creation in legacy REYES workflows.

raw raw Used when no color management is needed.

script script Used to inject a command-line script into the render process
that depends on a previous render (usually for txmake,
ptfilter, or brickmake commands).

prescript prescript Used to inject a command-line script into the render process
that runs before the render is started.

merge merge Used to merge a number of render outputs (usually AOVs)
into a single OpenEXR file.

none none Clears the pass, removing it from the output list.

Defining an AOV Output
Arbitrary output variables (AOVs) allow data from a shader or renderer to be output during render
calculations to provide additional options during compositing. This is usually data that is being calculated as
part of the beauty pass, so comes with little extra processing cost. The ability to define AOVs is fully
supported in Katana and is easy to set up.

Defining and Rendering AOVs with 3Delight
The 3Delight for Katana plugin includes the DlSettings node type, which is a SuperTool that allows you to
define AOVs as well as adjustments to the render settings.

1. While editing the parameters of a DlSettings node in the Parameters tab, navigate to the Image
Layers section and click the Add… button to open the AOV Selector window.

Rendering Your Scene | Setting up a Render Pass

USER GUIDE
587

2. Under Shading Components, select Reflection, and under Auxiliary Variables select Camera space
position and click OK.

3. In the Node Graph tab, right click the DlSettings node and click Preview Render.
4. Once the render has completed, in a Monitor tab, click the text default for a list of available preview

passes.

Note: You will notice that while the Reflection pass displays properly, there is no
information from the Camera space position pass. This is because shading component
passes get their information from material nodes upstream of the DlSettings node, but
Auxiliary Variables need to have their source from the renderer itself.

Rendering Your Scene | Setting up a Render Pass

USER GUIDE
588

5. Click on a pass name to change what you see in the Monitor tab.

Tip: You can cycle through the AOVs in the monitor using Shift+Page Down to move
through the list from first to last, and Shift+Page Up to move from last to first. You can also
use Shift+Home to toggle between the default AOV and the last selected AOV.

6. In the Node Graph tab, add a RenderOutputDefine node and connect it to the output of the
DlSettings node. Set the node's edit flag to bring up its parameters in the Parameters tab.

7. Set the outputName parameter to Camera space position. The channel value changes automatically
to match the selection.

Rendering Your Scene | Setting up a Render Pass

USER GUIDE
589

8. Change variableSource from shader to builtin.

9. Preview render from this node. You will now be able see the position pass render in the Monitor tab.

Defining and Rendering AOVs with Other Renderers
1. Add a RenderOutputDefine node.
2. In the channel parameter of the RenderOutputDefine node, enter the name of the AOV (this is the actual

variable name that is output from the renderer), such as _occlusion or P.
3. Create a renderer-specific OutputChannelDefine node, for instance PrmanOutputChannelDefine, and

add it to the recipe above the RenderOutputDefine node.

Rendering Your Scene | Setting up a Render Pass

USER GUIDE
590

4. Select the <Renderer>OutputChannelDefine node and press Alt+E.
The <Renderer>OutputChannelDefine node becomes editable within the Parameters tab.

5. Enter the same name as the channel parameter in step 2 into the name parameter (such as _occlusion
or P).

6. At this point, the parameters needed by the renderer-specific OutputChannelDefine node vary
depending on the renderer:
• For an PrmanOutputChannelDefine node, select the data type of the AOV from the type dropdown.
• For an ArnoldOutputChannelDefine node, make sure the parameters match the data type of the AOV.

See the Reference Guide for details on the various parameters.

Note: Notes: Please refer to your chosen renderer’s documentation for names and definitions of
AOV channels.

Previewing Interactive Renders for
Outputs Other than Primary
By default, the output displayed in the Monitor tab after an Interactive Render is the output from the
primary pass. When additional outputs are available, such as from AOVs, you can view those in the Monitor
tab alongside the primary pass.

To view additional interactive render outputs:
1. If there isn’t a RenderSettings node below the RenderOutputDefine node then create one and add it.
2. Select the RenderSettings node and press Alt+E.

The RenderSettings node becomes editable within the Parameters tab.
3. Select the outputs to view from the interactiveOutputs parameter’s list.

All outputs selected are available in the Monitor tab the next time you perform an interactive render
downstream of this RenderSettings node. For more on viewing these renders, see Selecting Which
Output Pass to View.

Rendering Your Scene | Setting up a Render Pass

https://learn.foundry.com/katana/Content/reference_guide.html

USER GUIDE
591

Warning: Progressive interactive renders, when configured to send image updates (buckets) with
high frequency, may flood the message queue of the renderer plug-in's display driver. To prevent
this from consuming unreasonable amounts of memory, the queue is limited in size and, when full,
results in delays in updates being sent to Katana. A warning is then printed to the Render Log. The
size of the queue (as a number of messages) can be specified using the environment variable
KATANA_PIPE_MAX_QUEUE_SIZE. The default size is 16384.

Instancing
Instancing is the process of creating identical occurrences (instances) of geometry, at render time. Where a
single piece of geometry is used multiple times in a scene, it can be beneficial to use instances, rather than
copies to reduce the memory overhead of the scene. Rather than individual copies, where each copy has its
own geometry attributes, instances use the geometry of a source location. This means that the memory
overhead of an instance can be greatly reduced compared to a copy. The overhead of the instance location
is limited to bookkeeping, such as maintaining transformation matrices.

The greatest benefits from instancing are seen when rendering many instances of complex source geometry.
As mentioned previously, there is a minor bookkeeping overhead with each instance location, so if the
source geometry is very light (such as a single primitive sphere), the benefits of instancing likely doesn't
outweigh the cost of that additional bookkeeping.

The differing approaches adopted by the available renderers also have an impact on the level of benefit
gained from instancing.

Rendering Instances
As a simple example, create two primitives under a single group location, make the group location the
instance source, and instance the group to three instance locations:
1. Create Primitives Under a Single Group Location, then Make that the Instance Source
2. Create Instance Locations that Reference the Instance Source
3. Add Bounds to the Instance Locations and Force Expand the Instance Source
4. Render the Scene to See the Instances

Rendering Your Scene | Instancing

USER GUIDE
592

Create Primitives Under a Single Group Location, then
Make that the Instance Source
1. Add two PrimitiveCreate nodes, and a Merge node to an empty recipe.

Connect the output of each PrimitiveCreate node to an input on the Merge node.
2. Set one PrimitiveCreate node's type parameter to cube, and the other to cone. Position the two

primitives in the Viewer tab.
3. Change the name parameters of the PrimitiveCreate nodes to read

/root/world/geo/instanceGroup/primitiveCube and
/root/world/geo/instanceGroup/primitiveCone respectively.

Note: Both primitives are grouped under a single group location, in this case named
instanceGroup. You'll make this group location the instance source.

4. Add an AttributeSet node, downstream of the Merge node.
Specify the AttributeSet node to point to the instanceGroup group location in the scene graph.

5. In the AttributeSet node, set the attributeName parameter to type, the attributeType to string, and
the stringValue to instance source.

Note: The scene graph location of the instance source is wrapped in a Katana procedural (•
katana). This is a render agnostic workflow that will also work with Prman and Arnold.

The workflow associated with your preferred renderer may be more efficient. Check their
documentation for details.

Create Instance Locations that Reference the Instance
Source
1. In a separate branch in the recipe, add a LocationCreate node. Edit the type parameter of the

LocationCreate node to read instance.
2. Choose Add Locations > path twice, to add two more locations, and edit the paths to read

/root/world/geo/instances/instance01, /root/world/geo/instances/instance02, and

Rendering Your Scene | Instancing

USER GUIDE
593

/root/world/geo/instances/instance03. This creates three locations of type instance, under a single
group location (named instances in this case).

3. Add a Transform3D node for each instance location, then move them away from the origin, and far
enough from each other that the eventual instanced geometry does not overlap.

4. Point the instance locations to the instance source.
Add an OpScript node, and set the CEL field to collect all instance locations by choosing Add
Statements > Custom and entering - in this case - /root/world/geo/instances//*
Enter the following in the OpScript node's script parameter to set each instance location’s
geometry.instanceSource attribute (in this case /root/world/geo/instanceGroup):

local source = "/root/world/geo/instanceGroup"

local attributeName = "geometry.instanceSource"

local attributeValue = StringAttribute(source)

Interface.SetAttr(attributeName, attributeValue)

Add Bounds to the Instance Locations and Force Expand
the Instance Source
You have created an instance source location, and instance locations that reference that instance source. You
need to make at render time that the instance source location is expanded before any of the instances,
otherwise the geometry attributes required by the instances won't be present. To do this, add bounds to
each of the instance locations to make sure those locations are expanded only as needed, and force expand
the instance source location to make sure it is expanded first.
1. Add an AttributeSet node downstream of the LocationCreate node that creates the instances. Point the

node at the instance locations.

Rendering Your Scene | Instancing

USER GUIDE
594

2. Set the AttributeSet node's attributeName parameter to bound, the attributeType to double, and the
number value to a 6 X 1 array. Enter values for the bounds that you're certain encompass all of the (to be)
instanced geometry. The bounds do not have to be accurate, and can be very large.

Note: Bounds are set using a 6 X 1 array, specifying the minimum and maximum extents of the
bounding box in each of the X, Y, and Z axis. The convention is [mix x, max x, min y, max y, min z,
max z]

3. Add an AttributeSet node downstream of the two PrimitiveCreate nodes, and point it to the instance
source location.
Set the attributeName parameter to forceExpand, the attributeType to integer, and the
numberValue to 1.0.

Render the Scene to See the Instances
Add a camera to your scene, so you can render, and see the instance source location instanced at each of the
instance locations.
1. Add a CameraCreate node, and another Merge node, and connect the outputs of the CameraCreate

node, instances branch, and instance source branch, to inputs on the Merge node. Your Node Graph
should display similar to that shown below.

Rendering Your Scene | Instancing

USER GUIDE
595

2. Position the camera to frame all of your instance locations in the viewer. You'll see the geometry under
the instance source location, and the instance locations (represented by their bounding boxes and
locators).

Rendering Your Scene | Instancing

USER GUIDE
596

3. Right-click on the final Merge node and choose Preview Render. You'll see that the geometry under the
instance source location is rendered, along with instances of the same geometry at each of the instance
locations.

Experiment: Create two materials and assign them to the geometry locations under the instance
source location. Add a GafferThree node, and lights, then Preview Render your scene again.

OpenEXR Header Metadata
Warning: This is only currently supported by PRMan.

You can add arbitrary metadata to OpenEXR headers. The metadata must be set at attribute level - rather
than through the UI - by creating attributes under exrheaders. For example, use an OpScript node targeting
the /root location to set the following:

local EXR_String =
"renderSettings.outputs.primary.rendererSettings.exrheaders.test_string"

Rendering Your Scene | OpenEXR Header Metadata

USER GUIDE
597

local EXR_String_Value = StringAttribute("A String")
Interface.SetAttr(EXR_String, EXR_String_Value)

local EXR_Integer =
"renderSettings.outputs.primary.rendererSettings.exrheaders.test_int"
local EXR_Integer_Value = IntAttribute(1)
Interface.SetAttr(EXR_Integer, EXR_Integer_Value)

local EXR_IntegerArray =
"renderSettings.outputs.primary.rendererSettings.exrheaders.test_intArray"
local EXR_IntegerArray_Value = IntAttribute({1,2,3,4})
Interface.SetAttr(EXR_IntegerArray, EXR_IntegerArray_Value)

local EXR_Float =
"renderSettings.outputs.primary.rendererSettings.exrheaders.test_float"
local EXR_Float_Value = FloatAttribute(1.5)
Interface.SetAttr(EXR_Float, EXR_Float_Value)

local EXR_FloatArray =
"renderSettings.outputs.primary.rendererSettings.exrheaders.test_floatArray"
local EXR_FloatArray_Value = FloatAttribute({2.6,3.8})
Interface.SetAttr(EXR_FloatArray, EXR_FloatArray_Value)

Setting up Render Dependencies
Some renders may require another render to be completed first, for instance the generation of a shadow
map. You can set dependencies between Render nodes by connecting the output from the Render node that
needs to be run first to the large connector at the top of the other Render node.

Dependencies are shown with a dashed line.

Rendering Your Scene | OpenEXR Header Metadata

USER GUIDE
598

Batch Mode
Batch mode allows you to render sequences of frames from a Katana scene all at once. It is started through a
command line, where you specify the file path, frame range and any other necessary options.

Note: You will only be able to access terminal modes, including Batch Mode, if you have a Katana
render license (katana_r). If you're a student, you can access one for free.

Batch mode is useful if you have a large number of frames to render as it will render out each individual file
in the background. You can continue working on a Katana scene file whilst it is being batch rendered as the
command uses the last saved version.

Before starting a batch render, ensure the render settings and the render flag are all set up correctly in
Katana. To set the render flag, select the node you wish you render from and press V on the keyboard. The
render flag can be determined through the command line, however setting it up beforehand simplifies the
string needed to run Batch mode and minimizes any room for error.

Note: When you specify the Image Filename for the output render, ensure you use one or more
hashes as they will be replaced by the frame number in your rendered file name. For example:
fileName_<aov>_###.<ext>

Rendering Your Scene | Batch Mode

USER GUIDE
599

Start a Batch Render

Windows
1. Open the Command Prompt.
2. Navigate to the directory where you have Katana installed using the cd command, for example:

cd C:\Program Files\Katana3.2v1\bin

3. Enter the following command to start a batch render:
katanaBin.exe --batch --katana-file=C:\yourDirectory\yourScene.katana
-t 1-1000

Where:

4. Press Enter to start the render.

You can add more arguments to the command. For example, use --render-node to specify the node you
would like to render from if you haven't set your render flag in the Katana scene or if you would like to
change it:

katanaBin.exe --batch --katana-file=C:\yourDirectory\yourScene.katana --
render-node=renderHere -t 1-1000

Linux
1. Open a Terminal.
2. Navigate to the directory where you have Katana installed using the cd command, for example:

cd /opt/foundry/katana

3. Enter the following command to start a batch render:
./katana --batch --katana-file=/yourDirectory/yourScene.katana -t 1-
1000

Where:

Rendering Your Scene | Batch Mode

USER GUIDE
600

4. Press Enter to start the render.

You can add more arguments to the command. For example, use --render-node to specify the node you
would like to render from if you haven't set your render flag in the Katana scene or if you would like to
change it:

./katana --batch --katana-file=/yourDirectory/yourScene.katana --render-
node=renderHere -t 1-1000

Here is a full list of command line options for Batch Mode:

Option Usage

--katana-file Specifies the Katana recipe to load.

Syntax:
--katana-file=<filename>

Example:
./katana --batch --katana-file=/tmp/test.katana -
-t=1-1000

--render-node=beauty

--asset Specifies the asset ID to resolve.

Syntax:
--asset=<asset ID>

Example:
./katana --asset=mock:///show/shot/name/version

-t or --t Specifies the frame range to render.

Syntax:
-t <frame range>

OR
--t=<frame range>

Rendering Your Scene | Batch Mode

USER GUIDE
601

Option Usage

Where <frame range> can take the form of a range (such as 1-5) or
a comma separated list (such as 1,2,3,4,5). These can be combined,
for instance: 1-3,5, which would render frames 1, 2, 3, and 5.

Example:
./katana --batch --katana-file=/tmp/test.katana

--t=1-5,8 --render-node=beauty

--var Sets the value of an existing Graph State Variable. This command-
line option can be specified multiple times to override the values of
multiple Graph State Variables.

Syntax:
--var <GSV name>=<GSV value>

Example:
./katana --batch --katana-file=/tmp/test.katana -
-t=1 --var Shot=Sh1 --var timeOfDay=night --var
variant=B --render-node=beauty

--threads2d Specifies the number of additional processors within the
application. An additional processor is also used for Katana's main
thread.

This means that Katana uses 3 processors when --threads2d=2.

Syntax:
--threads2d=<num threads>

Example:
./katana --batch --katana-file=/tmp/test.katana

--t=1-1000 --threads2d=2 --render-node=beauty

--threads3d Specifies the number of simultaneous threads the renderer uses.

Syntax:
--threads3d=<num threads>

Example:
./katana --batch --katana-file=/tmp/test.katana

--t=1-1000 --threads3d=8 --render-node=beauty

Rendering Your Scene | Batch Mode

USER GUIDE
602

Option Usage

--render-node Specifies the Render node from which to render the recipe.

Syntax:
--render-node=<node name>

Example:
./katana --batch --katana-file=/tmp/test.katana

--t=1-1000 --render-node=beauty

--render-internal-dependencies Allows any render nodes that don't produce asset outputs to be
rendered within a single katana --batch process. Asset outputs are
determined by asking the current asset plug-in if the output
location is an assetId, using isAssetId(). The default file asset plug-
in that ships with Katana classes everything as an asset. So at
present it is not possible to render any dependencies within one
katana --batch command without customizing the asset plug-in.

--crop-rect Specifies which part of an image to crop. The same cropping area is
used for all renders.

Syntax:
--crop-rect="(<left>,<bottom>,<width>,<height>)"

Example:
./katana --batch --katana-file=/tmp/test.katana -
-t=1-1000

--render-node=beauty --crop-rect="(0,0,256,256)"

--setDisplayWindowToCropRect Sets the display image to the same size as the crop rectangle set by
--crop-rect.

--tile-render Used to render one tile of an image divided horizontally and
vertically into tiles. For instance, using
--tile-render=1,1,3,3 splits the image into 9 smaller images (or
tiles) in a 3x3 square and then renders the middle tile as the index
for tile renders starts at the bottom-left corner with 0,0. In the case
of 3x3 tiles, the indices are:

0,2 1,2 2,2

Rendering Your Scene | Batch Mode

USER GUIDE
603

Option Usage

0,1 1,1 2,1

0,0 1,0 2,0

The results are saved in the same location as specified by the
RenderOutputDefine node but with a tile suffix. For instance: tile_1_
1.beauty.001.exr

Syntax:
--tile-render=<left_tile_index>, <bottom_tile_
index>, <total_tiles_width>, <total_tiles_height>

Example:
./katana --batch --katana-file=/tmp/test.katana -
-t=1-1000

--render-node=beauty --tile-render=0,0,2,2

./katana --batch --katana-file=/tmp/test.katana -
-t=1-1000

--render-node=beauty --tile-render=0,1,2,2

./katana --batch --katana-file=/tmp/test.katana -
-t=1-1000

--render-node=beauty --tile-render=1,0,2,2

./katana --batch --katana-file=/tmp/test.katana -
-t=1-1000

--render-node=beauty --tile-render=1,1,2,2

--tile-stitch Used to assemble tiles rendered with the --tile-render flag into a
complete image.

When stitching, you must still pass the --tile-render argument,
with the number of x and y tiles, so that the stitch knows how many
tiles to expect, and their configuration.

Syntax:
--tile-render=<left_tile_index>, <bottom_tile_
index>, <total_tiles_width>, <total_tiles_height>
--tile-stitch

Example:
./katana --batch --katana-file=/tmp/test.katana -

Rendering Your Scene | Batch Mode

USER GUIDE
604

Option Usage

-t=1-1000 --render-node=beauty --tile-
render=0,0,2,2 --tile-stitch

--tile-cleanup Used to clean up transient tile images. Can be used in conjunction
with --tile-stitch to assemble a complete image, and remove
transient tiles in a single operation.

When using --tile-cleanup you must still pass the --tile-render
argument with the number of x and y tiles, so that cleanup knows
how many tiles to remove.

Syntax:
--tile-render=0,0,<total_tiles_width>,<total_
tiles_height> --tile-cleanup

Example:
./katana --batch --katana-file=/tmp/test.katana -
-t=1-1000 --render-node=beauty --tile-
render=0,0,2,2 --tile-stitch --tile-cleanup

--prerender-publish In Batch mode, it executes the Pre-Render Publish Asset action on
the outputs but doesn't render images.

The value specifies the filename for dumping render pass
information.

Note: This can be used together with --versionup.

Syntax:
--prerender-publish=<pass info>

Example:
./katana --batch --katana-file=/tmp/test.katana -
-t=1-1000 --render-node=beauty --prerender-
publish=/tmp/pass_info.xml

--make-lookfilebake-scripts Used to write out a number of Python files that can be executed in
Batch mode to write look files.

Syntax:

Rendering Your Scene | Batch Mode

USER GUIDE
605

Option Usage

--make-lookfilebake-scripts=<script directory>

Example:
./katana --batch --katana-file=/tmp/bake.katana -
-t=1

--make-lookfilebake-scripts=/tmp/bake_scripts

./katana --script /tmp/bake_scripts/preprocess.py

./katana --script /tmp/bake_scripts/lf_bake_
default.py

./katana --script /tmp/bake_
scripts/postprocess.py

--postrender-publish In Batch mode, it executes the Post-Render Publish Asset action
on the outputs but doesn't render images.

The value specifies the filename for dumping render pass
information.

Note: This can be used together with --versionup.

Syntax:
--postrender-publish=<pass info>

Example:
./katana --batch --katana-file=/tmp/test.katana -
-t=1-1000 --render-node=beauty --postrender-
publish=/tmp/pass_info.xml

--versionup Used to specify that you want to version up assets when publishing
to the asset management system.

Syntax:
--versionup

Example:
./katana --batch --katana-file=/tmp/test.katana -
-t=1-1000 --render-node=beauty --versionup

--reuse-render-process Iterates over the sequence of frames to render, and exports Op

Rendering Your Scene | Batch Mode

USER GUIDE
606

Option Usage

Tree files for all frames, then starts the renderer (/renderboot
process) only once on a sequence of exported Op Tree files.

Syntax:
--reuse-render-process

Example:
./katana --batch --katana-file=/tmp/test.katana -
-t=1-1000 --render-node=beauty --reuse-render-
process

Note: Setting threads3d or threads2d through Batch mode takes precedence over the
interactiveRenderThreads3D, and interactiveRenderThreads2D settings in Katana's Edit >
Preferences > application menu.

Article: How to render an image in multiple tiles in Batch Mode.

Rendering Your Scene | Batch Mode

https://support.foundry.com/hc/en-us/articles/115001671184

USER GUIDE

Advanced Workflow & Extensions
Nuke Bridge

Katana’s Nuke Bridge lets you stream a render to Nuke for compositing, and then streams the comped pixels
back to Katana for review or refinement.

Asset Management

An asset is an item of data that contributes to a Katana project.

LiveGroups

How to import another Katana project in to the current project and reload it every time the current project is
updated.

Graph State Variables

Control which nodes in the node graph contribute to scene graph processing, based on the values of user-
set variables.

Scripting and Programming

Get started scripting and programming in Katana using Python, Lua or C++.

Groups, Macros and Super Tools

An introduction to Groups, Macros and Super Tools.

Customizing GafferThree

Learn how to create custom package classes for GafferThree node types.

607

USER GUIDE
608

See a Nuke Comp of Your Project in
Katana Using the Nuke Bridge

Why Get a Comp from Nuke?
It’s important for artists to be able to assess that Katana scenes are accurate for the next stages in the
pipeline. However, as the work progresses down the pipeline and iterations are applied, elements of the
scene such as lighting or materials may need to be changed to make them fit more accurately with the
results of the composited image.

This process is usually done by producing offline/disk renders from Katana and passing them on to the next
stage of the pipeline. Only once these renders were imported and set up in Nuke, would Artists be able to
review the results. In some cases, this is a lengthy and manual process, adding time to the overall production
process.

Katana’s Nuke Bridge is a game-changing feature that lets you stream a render to Nuke for compositing, and
then streams the comped pixels back to Katana for review or refinement. You see the results of the comp
within Katana’s render window, eliminating the need for viewing offline and waiting for renders.

AdvancedWorkflow & Extensions | See a Nuke Comp of Your Project in Katana Using the Nuke Bridge

USER GUIDE
609

In the Nuke Bridge a Katana render is streamed to Nuke, composited using a Nuke script, and the result
streamed back to Katana as a new render.

What Do I Need to Use Nuke Bridge?
To get Nuke Bridge up and running you’ll need the following:

l Katana 4.5 or later.
l Nuke 13.0 or later.
l A nuke_i (interactive) and nuke_r (render) license to run all three comping modes, though a nuke_i

license can support all three with additional configuration. See below for details on license
compatibility.

l A custom Nuke launcher script with a variable set to load the Katana Nuke plug-ins.
l A Nuke script containing KatanaReader and KatanaWriter nodes.
l A Katana launcher script with a variable set to your version of Nuke.

Full instructions for creating the scripts are given in the following sections.

You can download a Nuke test script and a simple Katana project to try the Nuke Bridge from here.

Nuke and Katana are available for download on the following pages:

l Download Nuke from here.
l Download Katana from here.

Which Nuke Licenses do I Need to Use Nuke Bridge?
The table below shows you which comping modes are available depending on your Nuke license, nuke_i
(interactive GUI) or nuke_r (render only).

nuke_i and nuke_r nuke_i nuke_r

Preview Comp Yes Yes (with extra
configuration*)

Yes

Live Comp Yes Yes (with extra
configuration*)

Yes

Interactive Comp Yes Yes (with extra
configuration*)

No

AdvancedWorkflow & Extensions | See a Nuke Comp of Your Project in Katana Using the Nuke Bridge

https://thefoundry.s3.amazonaws.com/products/katana/releases/5.0v1/nukeBridgeExample.zip
https://www.foundry.com/products/nuke-family/try-nuke
https://www.foundry.com/products/katana/try-katana

USER GUIDE
610

Note: *If you only own a nuke_i license, you need to create a custom launcher script for Nuke and
customize the Katana launcher script to reference this additional Nuke launcher script. Instructions
on how to write a launcher script for a nuke_i license are outlined in Additional Steps for Setting up
the Nuke Bridge With Only a nuke_i License, however you should still follow all preceding set-up
instructions given in the following sections.

l To check which licenses you have, user the Foundry Licensing Utility, available here.

Choose How to Work With Nuke Using Three Comp
Modes
Nuke Bridge offers three modes of operation depending on how you want to work with your render and the
comp.

Preview Mode

Preview mode allows you to send preview renders from Katana, to a headless version of Nuke and then view
a composited version of the preview render within Katana, allowing for a quick snapshot of how your final
image may look. Whenever a new preview render is created, preview mode will need to be manually re-
triggered so that the updated render is comped.

AdvancedWorkflow & Extensions | See a Nuke Comp of Your Project in Katana Using the Nuke Bridge

https://www.foundry.com/licensing/tools

USER GUIDE
611

This mode runs Nuke as a background process, meaning you cannot interact with Nuke once the Preview
Comp process has been triggered.

The version of Nuke launched by Preview Comp can be installed on a local machine or on a network.

Live Mode

Live mode allows you to send a live render from Katana to a headless version of Nuke, so a comped version
of your live render can be viewed in Katana, while still being able to edit your lights and materials. Any edits
to your live render are automatically streamed into Nuke and the comped render will update in real time.

This allows you to be able to edit your scene in the context of a Nuke script and make sure that your lighting
setup is compatible with a final grade or composite that your project may be using.

As with preview comp, Nuke is run as a background process and cannot be interacted with.

The version of Nuke launched by Live Mode can be installed on a local machine or on a network.

Note: For information on the differences between Live and Preview renders in Katana, see
Rendering Types

AdvancedWorkflow & Extensions | See a Nuke Comp of Your Project in Katana Using the Nuke Bridge

USER GUIDE
612

Interactive Mode

Interactive mode can be used with Live or Preview renders, and when triggered the Nuke application opens.
The most flexible of the three modes, Interactive allows you to continue to edit your Katana scene, whilst
also being able to adjust your Nuke script within Nuke.

When working with live renders, edits made in Katana are automatically streamed to Nuke, while edits to
your Nuke script are automatically streamed back into Katana. When working with preview renders, any edits
made to your scene need to be re-rendered and interactive mode needs to be re-triggered for the new
render to be seen in Nuke. However, any changes to your Nuke script are reflected automatically in Katana,
regardless of the type of render that is being streamed to nuke.

The version of Nuke launched by Interactive Mode must be installed locally and is not able to be used with
versions of Nuke installed across a network

AdvancedWorkflow & Extensions | See a Nuke Comp of Your Project in Katana Using the Nuke Bridge

USER GUIDE
613

Set Up Nuke Bridge for Katana
This section assumes you’re setting up Nuke Bridge on a single machine to work in any of the three comp
modes. To set up Nuke Bridge across a network or render farm, each machine in your network will need to
point to the same file path destinations set in the scripts and environment variables.

There are three main stages to the setup:

1. Configure a custom launcher script for Nuke to launch standalone so that you can create a compatible
Nuke Script with the Katana plug-ins.

2. In Nuke, create a script including at least one KatanaReader and KatanaWriter node, which allows
Nuke Bridge to stream renders to and from Katana.

3. Configure a custom launcher script to launch Katana with the correct settings.

Configuring a Nuke Launcher Script for the Katana Nuke Plug-in
For Nuke Bridge to work, you must create, or have access to, a Nuke Script that includes at least one
KatanaReader and KatanaWriter node. To create these nodes in a standalone Nuke session, a custom
launcher script should be created with a variable to define the location of the Katana Nuke plug-in. You can
then use this script to run Nuke and add the Katana nodes.

The script performs the following actions:

1. Set the location of the Katana Nuke Plug-in
2. Launch Nuke
3. Allow users to create KatanaReader and KatanaWriter nodes in a Nuke script

Configure a Nuke Launcher Script for Windows

You can copy and edit the template from the code below:

Nuke Launcher script for Nuke Bridge

@echo off

set "NUKE_PATH=%NUKE_PATH%;C:\<PathToKatana>\<KatanaVersion>\plugins\Resources\Nuke\<NukeVersion>"

"C:\<PathToNuke>\<NukeVersion>\<NukeApplication>.exe"

AdvancedWorkflow & Extensions | See a Nuke Comp of Your Project in Katana Using the Nuke Bridge

USER GUIDE
614

To use KatanaReader and KatanaWriter nodes in Nuke standalone sessions, Nuke must be launched using a
script that specifies the NUKE_PATH.

Tip: A quick way to get file paths is to navigate to the directory using your file explorer and copy
the path from the explorer bar.

1. Edit the Katana installation location to include the versions of Katana and Nuke being used:

set "NUKE_PATH=%NUKE_
PATH%;C:\<PathToKatana>\<KatanaVersion>\plugins\Resources\Nuke\<NukeVersio
n>"

For example:

set "NUKE_PATH=%NUKE_PATH%;C:\Program
Files\Katana5.0v1\plugins\Resources\Nuke\13.1"

2. Edit the launcher variable With the version of Nuke and Nuke application you’re using:

"C:\<PathToNuke>\<NukeVersion>\<NukeApplication>.exe"

This should match the version added to previous variable. For example:

C:\Program Files\Katana5.0v1\plugins\Resources\Nuke\13.1
3. Save the file with a .bat extension.

For example, KatanaNuke.bat would be an appropriate filename for a launcher script.

Configure a Nuke Launcher Script for Linux

You can copy the example below to create a template:

Nuke Launcher script for Nuke Bridge

#!/bin/bash

export NUKE_PATH="/<katana installation directory>/plugins/Resources/Nuke/<nuke version>"

"/<path to nuke installation directory>/<version of nuke>/<nuke application>"

Set an environment variable on Linux in the terminal, or in your own custom launcher script for Katana:

AdvancedWorkflow & Extensions | See a Nuke Comp of Your Project in Katana Using the Nuke Bridge

USER GUIDE
615

export NUKE_PATH="/<katana installation directory>/plugins/Resources/Nuke/<nuke
version>"

For example, if you’re running Katana 5.0v1 and Nuke 13.1:

export NUKE_PATH="/opt/Foundry/Katana5.0v1/plugins/Resources/Nuke/13.1"

If you're using a script, also edit the path to the Nuke application.

Warning: If you set the environment variable using the terminal, Nuke must launch from the same
terminal.

Configure a Katana Launcher Script for Nuke Bridge
To use Nuke Bridge you need to launch Katana with a launcher script that sets the file path of the custom
Nuke launcher. The script performs the following actions:

1. Sets the location of the Nuke executable for Nuke Bridge to use.
2. Launches Katana.

Windows and Linux sample launcher scripts for Katana containing the Nuke Bridge environment variable are
available for download here.

To Configure a Katana Launcher Script for Windows:

You can use the template given below:

@echo off

rem --------------------------------------
rem -------- KATANA Specific ------------
rem --------------------------------------

set "KATANA_ROOT=C:\<KatanaInstallationDirectory>\Katana<version>"
set "PATH=%PATH%;%KATANA_ROOT%\bin"

rem --------------------------------------
rem ----------- NUKE BRIDGE --------------
rem --------------------------------------

set KATANA_NUKE_EXECUTABLE=C:\<NukeFolderLocation>\<NukeVersion>\<NukeApplication>.exe

rem -------- Start KATANA ------------
"%KATANA_ROOT%\bin\katanaBin.exe"

AdvancedWorkflow & Extensions | See a Nuke Comp of Your Project in Katana Using the Nuke Bridge

https://thefoundry.s3.amazonaws.com/products/katana/releases/5.0v1/nukeBridgeExample.zip

USER GUIDE
616

1. Edit the Katana installation location to include the version of Katana:

set "KATANA_ROOT=C:\<KatanaInstallationDirectory>\Katana<version>"

For example:

set "KATANA_ROOT=C:\Program Files\Katana5.0v1”
2. Set and/or edit the Nuke executable location to include the file path of the custom Nuke launcher

script:

set KATANA_NUKE_
EXECUTABLE=C:\<NukeFolderLocation>\<NukeVersion>\<NukeApplication>.exe

For example:

set KATANA_NUKE_EXECUTABLE=C:\Program Files\Nuke13.1v1\Nuke13.1.exe

Tip: If you are already using your own custom Katana launcher script, you can simply add
this variable to your script and set the variable to the correct location.

To Configure a Katana Launcher Script for Linux

If you're using a script, you can copy and edit the template:

#!/bin/bash

export KATANA_NUKE_EXECUTABLE="/<nuke installation directory>/<version of nuke>/<nuke application>"

"/<katana installation directory>/<version of katana>/<katana application>"

You can set this variable in the terminal, or in your custom launcher script for Katana.

export KATANA_NUKE_EXECUTABLE="/<nuke installation directory>/<version of
nuke>/<nuke application>"

Add the file path of the Nuke executable file.

For example:

export KATANA_NUKE_EXECUTABLE="/opt/Foundry/Nuke13.1v1/Nuke13.1"

AdvancedWorkflow & Extensions | See a Nuke Comp of Your Project in Katana Using the Nuke Bridge

USER GUIDE
617

Note: If the KATANA_NUKE_EXECUTABLE variable in your Katana launcher script has been
incorrectly set, a warning message at the top of the window will appear with a diagnostic.

If you're using a script, edit the path to the Katana executable.

Additional Steps for Setting up the Nuke Bridge With Only a nuke_i
License
If you only have a nuke_i license, you can use all the feature of Nuke Bridge, with the following additional
steps:

1. Create a custom launcher script for Nuke, in addition to the one that has been set up for standalone
sessions.

2. Customize your Katana launcher script to reference this additional Nuke launcher script.

AdvancedWorkflow & Extensions | See a Nuke Comp of Your Project in Katana Using the Nuke Bridge

USER GUIDE
618

Creating an Additional Custom Launcher Script for nuke_i Licenses

Users will need to create a Nuke launcher script that contains an instruction to run the Nuke application with
the correct flags.

l Windows: "C:\<PathToNuke>\<NukeVersion>\<NukeApplication>.exe" -i %*
l Linux: "/<path to nuke installation directory>/<version of nuke>/<nuke application>" -i "$@"

Setting a Custom Environment Variable for Katana’s Launcher Script for nuke_i
Licenses

The environment variable for set KATANA_NUKE_EXECUTABLE in Katana’s launcher script will then need to
point to the additional custom launcher created for Nuke, instead of the Nuke application.

l Windows: set KATANA_NUKE_EXECUTABLE=C:\<path to launcher>\nuke_launcher.bat
l Linux: export KATANA_NUKE_EXECUTABLE="<path to launcher>/nuke_launcher"

Launch Nuke and Prepare a Script for Nuke Bridge
A Nuke script used by Nuke Bridge must contain at least one of the following nodes:

l KatanaReader - This node indicates to Nuke Bridge at which point the rendered image from Katana
should be going into the Nuke script.

l KatanaWriter - This node indicates to Nuke Bridge at what point the composite should be fed back
into Katana.

KatanaReader and KatanaWriter nodes work much like normal Read and Writer nodes but instead allow you
to bring in renders from Katana and export them back out, and work with multiple renders and outputs at
once.

Note: When performing an interactive comp, any KatanaWriter nodes in your Nuke Script must be
connected to an active viewer node in Nuke in order for the comp to be streamed properly across
both Katana and Nuke.

AdvancedWorkflow & Extensions | See a Nuke Comp of Your Project in Katana Using the Nuke Bridge

USER GUIDE
619

A node graph example for a simple composite of a backplate image set up for Nuke Bridge.

You can download the script of this node graph in the sample project.

Launch Katana and Test Nuke Bridge is Working
To test Nuke Bridge in Katana you can use our sample Katana scene or use your own project.

To test Nuke Bridge is operational:

1. Double-click on your Katana launcher script to run Katana.
2. In Katana, select Tabs > Nuke Bridge to open the Nuke Bridge window.

AdvancedWorkflow & Extensions | See a Nuke Comp of Your Project in Katana Using the Nuke Bridge

https://thefoundry.s3.amazonaws.com/products/katana/releases/5.0v1/nukeBridgeExample.zip

USER GUIDE
620

3. Specify a Nuke Script for Nuke Bridge to use, select a render in the Nuke Input Points section, the
correct Output Node and Destination for your comp. Information on how to perform these steps can
be found inUsing Nuke Bridge .

4. Perform a Preview, Live or Interactive comp.
5. If something in this process has been performed incorrectly, or the connection across your machine

network has failed the State will change from In Progress to Error.

You can see an example in the image below:

6. Additional diagnostic information on the failed session can then be accessed in the Render Log tab
for troubleshooting.

Using Nuke Bridge
The workflow for using Nuke Bridge has the same initial steps for all three comp modes:

1. Create a render, or multiple simultaneous renders using the Katana Queue.
2. Choose a Nuke script in the Nuke Bridge panel to list the KatanaReader and KatanaWriter nodes.
3. Choose a render to send to a KatanaReader node.
4. Choose the KatanaWriter node to send the comp back to Katana.

Once you’ve done this, you’re ready to choose a comp mode to work with.

For detailed steps, follow these instructions:

1. Trigger a render by right-clicking the Render node in your scene, and selecting either Preview
Render, Live Render, or Disk Render.

AdvancedWorkflow & Extensions | See a Nuke Comp of Your Project in Katana Using the Nuke Bridge

USER GUIDE
621

2. Open Nuke Bridge by going to Tabs >Nuke Bridge, selecting the button in the section of
Katana you want Nuke Bridge to open in.

3. Provide Nuke Bridge with a Nuke script by clicking the dropdown arrow and selecting Browse.

This opens an explorer window where you can find and import the Nuke script.
4. Once the Nuke script has been processed by Nuke Bridge, any KatanaReader nodes in the script then

appear under the Nuke Input Points section.
Renders from Katana can then be fed into these input points through the dropdown menu.

AdvancedWorkflow & Extensions | See a Nuke Comp of Your Project in Katana Using the Nuke Bridge

USER GUIDE
622

5. Any KatanaWriter nodes in the Nuke script appear under the Output Nodes section.
You can toggle between different KatanaWriter nodes for your output by using the dropdown menu.

6. Set the destination of the comp to either your Local Machine, or the Katana Queue. This determines
where the comp is performed.

Note: Interactive Comps are unavailable when Katana Queue is selected as the destination.

7. Click Preview Comp, Live Comp or Interactive Comp.

8. The output of the comp is streamed to the Monitor tab in Katana and added to the catalog.

AdvancedWorkflow & Extensions | See a Nuke Comp of Your Project in Katana Using the Nuke Bridge

USER GUIDE
623

Note: When an Interactive Comp is launched, the output across Nuke’s Viewer tab and Katana’s
Monitor tab are synced.

What’s in the Nuke Bridge Panel?
The Nuke Bridge panel lets you start new comp modes and edit existing ones.

For example, you can see an example of Nuke Bridge’s comp sessions running in the screenshot below:

l Nuke Sessions - Records details (ID, Status, Time, Nuke Script) of all comps started in the Nuke Bridge

l ID - An ID number assigned on the order in which the comp was performed. For example, the 9th
comp performed in Nuke Bridge will be given the ID number 9.

AdvancedWorkflow & Extensions | See a Nuke Comp of Your Project in Katana Using the Nuke Bridge

USER GUIDE
624

l Type - The type of composite mode performed.
l State - Either Completed, Cancelled, In Progress, or Error.
l Elapsed - Runtime of the comp session.
l Start - When the comp session was performed.
l Nuke Script - The Nuke script used for the comp.
l New - Start a new comp in Nuke Bridge.This allows you to run multiple live or interactive comps

simultaneously.
l Edit - Edit an existing ‘in progress’ comp.
l Nuke Script - Input the Nuke script for Nuke Bridge to perform a composite from the dropdown. The

button next to the dropdown allows you to reload the script in the event that changes have
been made to it.

l Nuke Input Points - All KatanaReader nodes in the Nuke Script. Users map renders from Katana
directly into these nodes.

l Output Node - All KatanaWriter nodes in the Nuke Script. These are used to view the output from
Nuke.

l Destination - Determines where the output from the Nuke Bridge comp will be streamed to. Options
are:

l Local Machine - Runs the comp and Nuke locally.
l Katana Queue - Runs the comp across a render farm, or machine network.

Preview Comp Mode: Trigger a Quick Preview of a Render from Nuke
Preview Comp mode is the most basic mode where Katana receives a snapshot of a render from a comp
that’s been made in Nuke.

To see any changes being made to your Katana scene, another render would need to be triggered, or
another preview comp performed.

Nuke is run as a background process either locally, or on the farm.

You would use Preview Comp Mode if you want to get a quick and easy preview of your Katana render after
a compositing process has been performed.

AdvancedWorkflow & Extensions | See a Nuke Comp of Your Project in Katana Using the Nuke Bridge

USER GUIDE
625

A render from Katana composited through Nuke Bridge with a preview comp.

Typical Workflow for Preview Comp Mode with Nuke Bridge

To use Preview Comp mode, Nuke is run in as a background process (headless) on either your local machine
or the render farm. As this comp does not automatically update with changes from Katana, it is
recommended you trigger either a preview or disk render of the scene to use with this mode.

In summary, preview comp mode has the following steps:

1. Set up Nuke Bridge according to the Set Up Nuke Bridge for Katana for Katana section.
2. Perform a preview, disk or live render.
3. Destination is either Local Machine or Katana Queue, depending on where Nuke is running.
4. Perform a Preview Comp.
5. Check the Monitor tab in Katana for the output of the preview comp. Details of the comp will also

appear in the Nuke Sessions tab.

To see how to do this in Katana, follow these instructions:

AdvancedWorkflow & Extensions | See a Nuke Comp of Your Project in Katana Using the Nuke Bridge

USER GUIDE
626

1. With Nuke Bridge set up for Katana, perform a Preview Render, Live Render, or Disk Render.

2. Open Nuke Bridge, set up the comp with Inputs, Outputs, and a Destination. Then click the Preview
Comp button.

3. The results from the composite are then streamed to your Monitor tab, registered as a Catalog entry,
and the comp’s metadata is recorded in the Nuke Sessions field.

AdvancedWorkflow & Extensions | See a Nuke Comp of Your Project in Katana Using the Nuke Bridge

USER GUIDE
627

4. Once the session is registered as complete, you can perform another Preview Comp to view new
changes to the scene or a new render of the scene. To view changes that have been made to a Nuke

script, users can use the Reload button next to the Nuke Script dropdown.

Get Live Updates from a Nuke Process with Live Comp Mode
In Live Comp mode the results of the comp are streamed back to Katana as you make changes to your scene.
Like Preview Comp mode, the results are streamed from a headless Nuke process that is using a Nuke script.
However, unlike Preview Comp, renders or scene edits are updated automatically as you change them in
Katana.

You would use Live Comp Mode to switch between different renders in a comp. What renders you choose to
perform will depend on what the purposes of the Live Comp are. With Live Comp, users may switch between
different renders under the Input Points section without needing to start a new comp. When Live Comp is
used with live rendering, you can make changes to the properties of the scene such as lighting or graph state
variables, and see those changes fed back through Nuke.

Typical Workflow for Live Comp Mode with Nuke Bridge

In summary, Live Comp mode has the following steps:

1. Set up Nuke Bridge according to the instructions in Set Up Nuke Bridge for Katana section.
2. Perform a preview, disk or live render. It is recommended that users use live renders with this feature,

but preview or disk renders may also be used.
3. Destination is either Local Machine or Katana Queue, depending on where Nuke is running.
4. Perform a Live Comp.
5. Check the Monitor tab in Katana for the output of the live comp. Details of the comp will also appear

in the Nuke Sessions tab.
6. Edit the details of your Katana scene to get live results fed back through Nuke.

To see how to do this in Katana in more detail, follow these steps:

AdvancedWorkflow & Extensions | See a Nuke Comp of Your Project in Katana Using the Nuke Bridge

USER GUIDE
628

1. With Nuke Bridge set up for Katana, perform a Preview Render, Live Render, or Disk Render.

2. Open Nuke Bridge, set up the comp with Inputs, Outputs, and a Destination. Then click Live Comp.
3. The output of the Live Comp will appear in the Monitor tab, with a corresponding Catalog entry and

Nuke Sessions entry. You can then switch between different renders in the Input Points dropdown
without needing to start a new comp.

AdvancedWorkflow & Extensions | See a Nuke Comp of Your Project in Katana Using the Nuke Bridge

USER GUIDE
629

4. If you’re using a live render to drive a Live Comp, you can make adjustments to the properties of the
scene, such as lighting or graph state variables.

AdvancedWorkflow & Extensions | See a Nuke Comp of Your Project in Katana Using the Nuke Bridge

USER GUIDE
630

5. All updates from those changes are then communicated back to the Monitor tab through Nuke
without needing to start a new comp, or a new render.

AdvancedWorkflow & Extensions | See a Nuke Comp of Your Project in Katana Using the Nuke Bridge

USER GUIDE
631

Interactive Mode: Run the Katana and Nuke Applications Together for
Shared Edits
Interactive Comp Mode launches Nuke with the Nuke Script that was imported into Katana pre-loaded. You
can then make edits in both your Nuke Script and Katana scene side by side, and receive corresponding
updates in Katana, and vice versa.

You would use Interactive Comp Mode if you want to continue to make improvements in either application
side-by-side. This provides a complete lighting and compositing environment for a single user.

Users in possession of only a nuke_i license can create a custom launcher script for Nuke as per the Nuke
Licensing for Nuke Bridge section.

Typical Workflow for Interactive Comp Mode with Nuke Bridge

To use Interactive Comp mode, you need to have both Katana and Nuke running on your machine.

Your Nuke script must include KatanaReader and KatanaWriter nodes, and the KatanaWriter node must be
connected to an active Viewer node.

In summary, interactive comp mode has the following steps:

1. Set up Nuke Bridge according to the Set Up Nuke Bridge for Katana section.
2. Ensure the Destination is Local Machine and select Interactive Comp.

3. Edit both the Nuke script and Katana side by side.

To learn how to do this, follow these instructions:

AdvancedWorkflow & Extensions | See a Nuke Comp of Your Project in Katana Using the Nuke Bridge

USER GUIDE
632

1. With Nuke Bridge set up for Katana, perform a Preview Render, Live Render, or Disk Render.

2. Open Nuke Bridge, set up the comp with Inputs, Outputs, and a Destination. Then click Interactive
Comp.

3. Nuke then launches with the Nuke script that was specified to the Nuke Script dropdown in Nuke
Bridge.

AdvancedWorkflow & Extensions | See a Nuke Comp of Your Project in Katana Using the Nuke Bridge

USER GUIDE
633

4. You can then make changes to your Nuke script. For example, perform color correction or grading.

5. Any changes made to the Nuke script are communicated back to the Monitor tab in Katana.

6. If you’re using a Live Render to drive your Interactive Comp, you can also make edits to the properties
of your Katana scene and have those changes fed back to Katana through Nuke, as with Live Comps.

Stopping a Nuke Bridge Comp

Once you’re finished with Nuke Bridge comps, there are two ways in which they can be canceled:

AdvancedWorkflow & Extensions | See a Nuke Comp of Your Project in Katana Using the Nuke Bridge

USER GUIDE
634

1. Selecting the active Nuke Bridge comp you want to cancel, and hit the Esc key.
2. Ensure the Nuke Bridge comp you want to cancel is set as the front buffer in the Catalog tab, and go

to Render>Cancel Current Render.

Additional Steps for Setting up the Nuke Bridge With Only
a nuke_i License
Users in possession of only a nuke_r license will need to acquire a nuke_i license from Foundry to perform
interactive comps.

If you only have a nuke_i license, you can use all the feature of Nuke Bridge, with the following additional
steps:

1. Create a custom launcher script for Nuke, in addition to the one that has been set up for standalone
sessions.

2. Customize your Katana launcher script to reference this additional Nuke launcher script.

Creating an Additional Custom Launcher Script for nuke_i Licenses
Users will need to create a Nuke launcher script that contains an instruction to run the Nuke application with
the correct flags.

l Windows: "C:\Path\To\NukeVersion\NukeApplication.exe" -i %*
l Linux: "/opt/Foundry/Nuke13.1v1/Nuke13.1" -i "$@"

Setting a Custom Environment Variable for Katana’s Launcher Script for
nuke_i Licenses
The environment variable for set KATANA_NUKE_EXECUTABLE in Katana’s launcher script will then need to
point to the additional custom launcher created for Nuke, instead of the Nuke application.

l Windows: set KATANA_NUKE_EXECUTABLE=C:\path\to\additional\nuke_launcher.bat
l Linux: export KATANA_NUKE_EXECUTABLE="/path/to/additional/nuke_launcher"

AdvancedWorkflow & Extensions | See a Nuke Comp of Your Project in Katana Using the Nuke Bridge

USER GUIDE
635

Asset Management
An asset is an item of data that contributes to a Katana project, such as an Alembic file, or material shader. A
Katana project itself can also be an asset. An asset may have multiple versions, for example, incremental
versions recording the history of a Katana recipe, and there may even be different meta-versions (or tags) of
an asset indicating different purposes (such as lighting or animation).

Katana communicates with asset management systems through an asset plug-in. Assets are published to
and retrieved from an asset management system, which handles their cataloging, storage. Crucially, as each
saved version of an asset is stored with its version data, you can return to any saved point in an asset’s
history.

Asset Plug-ins
Katana includes an Asset API for plug-in authors, which consists of the following four core mechanisms:
• Script Level Hooks

Script level hooks for performing the Pre-Publish and Post-Publish asset management steps from within
Katana. See The Asset Publishing Process for more on this.

• Browser Customization

A mechanism for studios to replace the standard Katana file browser with a custom asset browser. For
example, the browser used in the PyMockAsset example has fields for Show, Shot, Asset, and Version. For
more on the PyMockAsset example plug-in, see Example Asset Plug-in.

AdvancedWorkflow & Extensions | Asset Management

USER GUIDE
636

• Parameter Display

A mechanism for controlling the representation of an asset in Katana’s Parameters tab.

• Render Output

A mechanism for controlling the representation of a render output’s Asset ID in a Render node’s
Parameters tab.

Asset Management System Plug-in
API
The Katana Asset plug-in API is a Python and C++ interface for integrating Katana with asset management
systems. It permits retrieval and publishing of assets within Katana. The asset management plug-in API
provides four core mechanisms, which are described in Asset Management.

AdvancedWorkflow & Extensions | Asset Management

USER GUIDE
637

The Asset plug-in API does not provide any functions for traversing over a Katana scene graph or for editing
nodes, and it is not a replacement asset management system. It is referenced when resolving a recipe and
should therefore not traverse the Node Graph directly, or instantiate a scene graph iterator. An Asset plug-
in is invoked during interactive Katana sessions and also during rendering.

Katana ships with an example Asset plug-in, called PyMockAsset. The source file MockAsset.py for the
example plug-in is located in:

${KATANA_ROOT}/plugins/Src/Resources/Examples/AssetPlugins/

As well as source file PyMockAssetWidgetDelegate.py for the corresponding UI widget used with
PyMockAsset, which is found in:

${KATANA_ROOT}/plugins/Src/Resources/Examples/UIPlugins/

PyMultiMockAsset is an extended version of PyMockAsset to allow a number of different asset resolving
behaviors, such as publishing to a database or saving to a sandbox. This example uses assetIds with different
prefix values to determine which behavior should be used. Further details are provided in the plug-in source
file.

Note: Python-based AssetAPI plug-ins have been deprecated, and support for them will be
removed. Moving forward, for performance and stability reasons, AssetAPI plug-ins should be
written in C++.
For more information, refer to the support article Deprecation of Python-based AssetAPI plug-ins.

Concepts

Asset ID
An Asset ID is a serialization of an asset’s fields. In a simple case, using the default File Asset plug-in, the
Asset ID is the file path, but in more complex systems it could be an SQL query, a URL, a GUID or a direct
string representation of the asset's fields, such as the PyMockAsset Asset ID shown below.
mock:///show/shot/name/version

As it’s a single string, an Asset ID can be passed as part of an argument string to a sub-process, such as a
shell command or a procedural. It is important therefore that the format of an Asset ID is such that it can be
easily found in a larger string and parsed.

AdvancedWorkflow & Extensions | Asset Management

https://support.foundry.com/hc/en-us/articles/360001321620-Q100444-Deprecation-of-Python-based-AssetAPI-plug-ins

USER GUIDE
638

Asset Fields
The fields of an asset are the key components needed to retrieve an asset from an asset management
system. Katana assumes that an asset has a name field and - if provided - also uses a version field.

Asset Attributes
An asset can optionally have attributes where additional metadata is stored, such as comments, or
information about the type of asset.

Katana does not rely on particular attributes to exist, but it presumes that there is a mechanism in place for
this additional data to be read from and written to.

Note: It is fine to leave these methods unimplemented if your asset management system has no
use for them.

Asset Publishing
Assets are published by users. When an asset is published it is in a finalized state, accessible to other users.
Publishing can involve incrementing the asset version.

Note: Any change that alters the project's katanaSceneName whilst saving a scene triggers a call
to SyncAllOutputPorts(). This ensures render outputs affected by this change are correct.

Transactions
A Transaction is a container for submitting multiple publish operations at once. Rather than submit one
publish operation per asset, operations can be grouped. This means that if an error occurs whilst publishing
many assets, the whole operation may be aborted.

beginTransaction (createTransaction)
publish asset A
publish asset B
publish asset C

AdvancedWorkflow & Extensions | Asset Management

USER GUIDE
639

endTransaction (commit)

The transaction is final only after the endTransaction(commit) operation.

A transaction must have a commit method and a cancel method. The cancel method can be used to
rollback.

Note: Implementing plug-in support for Transactions is optional.

Creating an Asset Plug-in

A Python Asset plug-in is created by making a new Python file in an AssetPlugins sub-directory of a folder
in a KATANA_RESOURCES directory.

Note: Asset management plug-ins can also be written in C++. See The C++ API for more on this.

Core Methods
The core methods for an Asset plug-in are:

Handling Asset IDs
• buildAssetId()

Serialize asset fields into an Asset ID.
• getAssetFields()

Deserialize an Asset ID into asset fields.
• isAssetId()

Check if a string is an Asset ID.

Publishing an Asset
• createAssetAndPath()

Create an entry for a new asset and optionally pre-publish it. This could have very little in it if your asset
management system does most of its work post creation in postCreateAsset.

AdvancedWorkflow & Extensions | Asset Management

USER GUIDE
640

• postCreateAsset()

Publish the new asset. This could have very little in it if your asset management system does most of its
work immediately when the resource is allocated in createAssetAndPath.

Retrieving an Asset
• resolveAsset()

Convert an Asset ID to a file path.
• resolvePath()

Convert an Asset ID and a frame number to a file path.

Note: Python-based AssetAPI plug-ins have been deprecated, and support for them will be
removed. Moving forward, for performance and stability reasons, AssetAPI plug-ins should be
written in C++.
For more information, refer to the support article Deprecation of Python-based AssetAPI plug-ins.

Publishing an Asset

The methods for publishing an Asset in a custom Asset Management System are createAssetAndPath() and
postCreateAsset().

createAssetAndPath() creates or updates an asset entry, given a collection of fields and an asset type. It
returns the ID of the asset, which resolves to a valid file path. It is invoked prior to writing an asset. The fields
passed to createAssetAndPath() may be the result of a decomposed Asset ID stored as a parameter on a
node.

Both createAssetAndPath() and postCreateAsset() are used by Katana mechanisms that write assets. The
Asset ID returned from createAssetAndPath() is used to create the fields passed to postCreateAsset(). The
result from postCreateAsset() is used from that point onward (such as in the File > Open Recent menu or
in any references to that asset ID in the current scene):

assetFields1 = assetPlugin.getAssetFields(assetId, True)
id1 = assetPlugin.createAssetAndPath(..., assetFields1, ...)
[Write Katana project file, for example]
assetFields2 = assetPlugin.getAssetFields(id1, True)
id2 = assetPlugin.postCreateAsset(..., assetFields2, ...)

This is done to allow a temporary file path to be used for the write operation. The LookFileBake node and the
Render node use these methods.

AdvancedWorkflow & Extensions | Asset Management

https://support.foundry.com/hc/en-us/articles/360001321620-Q100444-Deprecation-of-Python-based-AssetAPI-plug-ins

USER GUIDE
641

createAssetAndPath()
The arguments for createAssetAndPath() are:
• txn

The Asset Transaction (implementation optional). Can be used to group create/publish operations together
into one cancelable operation. This transaction is created via the createTransaction method.

• assetType

A string representing which of the supported asset types is published. See Asset Types and Contexts for a
list of the asset types, and contexts.

• fields

A dictionary of strings containing the asset fields that represent the location of the asset. These are typically
produced by de-serializing an Asset ID stored as a parameter on a node (such as a LookFileBake node).
These fields are based on the Asset ID returned by createAssetAndPath().

• args

A dictionary containing additional information about what asset type to create. For example, should we
increment the asset version? Is it an image, is it a Katana file? This is populated directly by the caller of
createAssetAndPath() and varies with the asset type.

• createDirectory

A Boolean indicating that a new directory for the asset needs to be created.

createAssetAndPath() should return the Asset ID of the newly created asset. This may be different to the
serialized Asset ID representation of the fields passed in. For example, if createAssetAndPath() were to
versionUp the asset the returned Asset ID would likely be different to the serialized fields passed in. The
returned Asset ID can be stored as a parameter on the node using this plug-in (if it is being used by a node).

The important arguments are assetType, fields and args. There are no rules for how the args dictionary is
populated. It depends on the calling context and the Asset Type that createAssetAndPath() was invoked
for.

postCreateAsset()
postCreateAsset() is invoked after Katana has finished writing to an asset file and is used to finalize the
publication of the asset.

The args dictionary for this type contains:
• txn

AdvancedWorkflow & Extensions | Asset Management

USER GUIDE
642

The Asset Transaction.
• assetType

A string representing which of the supported asset types is published. See Asset Types and Contexts for a
list of the asset types, and contexts.

• fields

The fields that represent the location of the asset. These fields are the identical to those given to
createAssetAndPath().

• args

A dictionary of strings containing additional information about what asset type to create. For example,
should we increment the asset version? If it is an image, what resolution should it be?

Examples
Selecting File > Version Up and Save triggers createAssetAndPath() to be invoked with an args
dictionary, in which the versionUp and publish keys are set to ’True’. This results in a different Asset ID to
that of the serialized fields passed in. versionUp indicates that a new version of the asset should be
published.

Selecting File > Save triggers createAssetAndPath(), invoked with versionUp and publish set to False,
unless a custom asset browser has been written. In that case, versionUp and publish are based on the values
returned from the getExtraOptions() method of a custom browser class. See Configuring the Asset Browser
for more on this.

Asset Types and Contexts

The following asset types are available to the AssetAPI module:
• Katana project

kAssetTypeKatanaScene
• Macro

kAssetTypeMacro
• Live Group

kAssetTypeLiveGroup
• Image

kAssetTypeImage
• Look File

AdvancedWorkflow & Extensions | Asset Management

USER GUIDE
643

kAssetTypeLookFile
• Look File Manager Settings

kAssetTypeLookFileMgrSettings
• Alembic Files

kAssetTypeAlembic
• Casting Sheets

kAssetTypeCastingSheet
• Attribute Files

kAssetTypeAttributeFile
• F Curves

kAssetTypeFCurveFile
• Gaffer Light Rig

kAssetTypeGafferRig
• Scene Graph Bookmarks

kAssetTypeScenegraphBookmarks
• Shaders

kAssetTypeShader

In addition, the following list of contexts is available inside the AssetAPI module, and passed as hints to the
asset browser whenever it is invoked:
• kAssetContextKatanaScene.
• kAssetContextMacro.
• kAssetContextLiveGroup.
• kAssetContextImage.
• kAssetContextLookFile.
• kAssetContextLookFileMgrSettings.
• kAssetContextAlembic.
• kAssetContextCastingSheet.
• kAssetContextAttributeFile.
• kAssetContextFCurveFile.
• kAssetContextGafferRig.
• kAssetContextScenegraphBookmarks.
• kAssetContextShader.

AdvancedWorkflow & Extensions | Asset Management

USER GUIDE
644

• kAssetContextCatalog.
• kAssetContextFarm.

A constant to hold the relationship between assets has been added. This constant is used when the
getRelatedAssetId() function is called:
• kAssetRelationArgsFile.

Accessing an Asset

The resolveAsset() method must be implemented in order for Katana to gain access to the asset itself.

It takes an Asset ID as its first argument and returns a string containing a file path to the asset. This handle is
a path to a file that can be read from and written to.

Note: An Asset plug-in must not attempt to use any NodegraphAPI, user interface, or callback
modules when resolving an Asset ID. This is because Asset ID resolution occurs at render time,
when these modules are not available. Reading from the scene graph while writing to it results in
undefined behavior.

Additional Methods

In addition to the core methods that need to be implemented by an Asset plug-in there are additional
methods, many of which are variants.

reset()
Triggered when the user requests that Katana flush its caches. This is used to clear local Asset ID caches to
allow retrieval of the latest version of an asset.

resolveAllAssets()
Used for expanding Asset IDs in a string containing a mix of Asset IDs and arbitrary tokens, such as a
command. It takes a single string parameter, which may contain one or more Asset IDs, and replaces them
with resolved file paths. resolveAllAssets() is used by:
• Python expressions, which have access to a function called assetResolve() that resolves a string of Asset

IDs split by white space.
• String parameters, which has a method called getFileSequenceValue() that returns the value of the string

with automatic expansion of Asset IDs into file paths.
• ImageWrite node postScripts. An ImageWrite node can execute post scripts commands. The Asset IDs in

these commands are automatically expanded.

AdvancedWorkflow & Extensions | Asset Management

USER GUIDE
645

resolvePath()
This resolves an Asset ID and frame number pair, where time is a factor in determining the asset resolution
(such as a sequence of images). resolvePath() is called in place of resolveAsset() whenever time is a
significant factor in asset resolution.

resolvePath() is used extensively for resolving procedural arguments in render plug-ins. It is used by the
Material and RiProcedural resolvers, and the Look File Manager. It can be accessed in Attribute Scripts via the
AssetResolve() function in an Attribute Script Util module.

resolveAssetVersion()
This accepts an Asset ID that references a tag or meta version such as latest or lighting and returns the
version number that it corresponds to. It also accepts an Asset ID that contains no version information and
an optional versionTag parameter, and produces the version number that corresponds to the versionTag
argument.

This is used by the LookFile resolver, Katana in Batch mode, the Casting Sheet plug-in, and the Importomatic
user interface.

createTransaction()
It allows Katana to create assets in bulk. If createTransaction is implemented to return a custom transaction
object, then the object must have commit and cancel methods that take no arguments. The commit
method should submit the operations accumulated in the transaction to the Asset Repository. The cancel
method should rollback the publish operations accumulated in the transaction.

The transaction is passed by Katana to createAssetAndPath() and to postCreateAsset(). An example of this
is in the Render node.

Note: For Python asset plug-ins, this method must be implemented but it may return None. In
C++, this method may be implemented; where it is, it must return an asset transaction object.

containsAssetId()
Reports if a string contains an Asset ID.

AdvancedWorkflow & Extensions | Asset Management

USER GUIDE
646

The string parameter uses this method prior to expanding the Asset IDs it may contain, when
getFileSequenceValue() is called.

getAssetDisplayName()
Is used to produce a short name for an asset. For example, a name that can be used in the UI.

This is used by the Alembic Importomatic plug-in and the LookFileManager.

getAssetVersions()
Lists the versions that are available for an asset as a sequence of strings.

This is used by the Importomatic, to allow users to choose an asset version in the Importomatic versions
column and by the CastingSheet plug-in.

getUniqueScenegraphLocationFromAssetId()
Provides a scene graph path for an asset, as a string, so that it can be placed easily in the Scene Graph tab,
and is currently used by the LookFileManager.

getRelatedAssetId()
Given an Asset ID and a string representing a relationship or connection, returns another Asset ID. For
example, with a shader file that has an Args file getRelatedAssetId() can be used to get the Asset ID of the
Args file from the Asset ID of the shader. The contexts listed in Asset Types and Contexts are passed to
getRelatedAssetId().

Note: If getRelatedAssetId() returns either None, or an empty string, Katana looks up the Args
file in the default fashion, relative to the .so file location.

Note: If getRelatedAssetId() returns anything other than None or an empty string, Katana
attempts to load the returned Asset ID. If, for any reason, that Asset ID is not valid, Katana does not
fall back to the default behavior, but gives a load error.

AdvancedWorkflow & Extensions | Asset Management

USER GUIDE
647

getAssetIdForScope()
This truncates an Asset ID to the given scope, where the scope is an asset field.

For example:
getAssetIdForScope("mock://myShow/myShot/myName/myVersion", "shot")

Produces:
mock://myShow/myShot

The returned Asset ID no longer contains the name and version components.

This is used by the assetAttr() built-in function that Python expressions have access to, and by Katana
internally.

setAssetAttributes()
Allows users to set additional metadata on an asset.

This is not used by anything in the Katana codebase. It is entirely up to the users to make use of this function.

getAssetAttributes()
Allows users to store additional metadata on an asset.

The casting sheet example plug-in uses this method and Python expressions have access to an assetAttr
built-in method that retrieves asset attribute information.

Top Level Asset API Functions

The top level Asset API functions can be found by opening a Python tab and typing:
help(AssetAPI)

The most useful are:
• SetDefaultAssetPluginName()

Sets the default asset plug-in to use in the user interface for this Katana project.
• GetDefaultAssetPlugin()

Retrieves an asset plug-in by name.
• GetAssetPluginNames()

Lists the names of all the currently registered asset plug-ins.

AdvancedWorkflow & Extensions | Asset Management

USER GUIDE
648

LiveGroup Asset Functions

A studio may decide to use permissions for working with certain assets on a project. These permissions may
depend on the name of the current user, the name of the user’s workstation, or certain environment
variables for a project, such as show, shot, or sequence. Katana’s AssetAPI supports such access permissions
through a dedicated function, checkPermissions(), which is called for certain LiveGroup operations. When a
function to check permissions in a specific context is called, the asset API plug-in queries the Asset
Management System (AMS) to check general permissions or permissions for working with the asset with the
given ID in the given context. Checking permissions for a given ID can be used to check whether the current
user has sufficient permissions to edit the asset or whether the asset has already been checked out for
editing.

Note: It is possible, with a custom implementation leveraging the Asset Management System, to
inform users of editable permission errors, such as when another user is currently editing the
LiveGroup source of the node you’re attempting to edit. If another LiveGroup node references the
same LiveGroup source and has been made editable by another user, an error is displayed and the
state of the node is not changed.

The function signature for checking permissions is:
checkPermissions(assetID: string, context: map of string to string): bool

The context dictionary contains information about the context from which to check permissions, with names
of information fields as keys and values of information fields as values. For example, the following might be
produced:
• action = edit
• shot = ts520
• show = srow
• username = name
• workstation = seat

When the function to run a custom asset plug-in command is called the asset API plug-in uses the AMS to
check if the command succeeds or fails. The function signature to run the plug-in command is:

runAssetPluginCommand(assetID: string, command: string, commandArgs: map of string): bool

The command parameter receives the command to execute, for example:
• acquireLock
• releaseLock

AdvancedWorkflow & Extensions | Asset Management

USER GUIDE
649

The commandArgs dictionary contains information about the arguments with which to customize the
execution of the given command, with names of command arguments as keys and values of command
arguments as values. The commandArgs dictionary may be empty.

Extending the User Interface with Asset Widget Delegate

Katana provides a mechanism for configuring the asset related parts of its user interface. This is achieved by
implementing and registering an AssetWidgetDelegate.

The PyMockAssetWidgetDelegate.py provides a good reference. This file is shipped with Katana in:

${KATANA_ROOT}/plugins/Src/Resources/Examples/UIPlugins/

This allows users to:
• Configure the asset/file browser. Typically this is done by extending with a custom asset browser tab.
• Implement a custom Python QT widget for displaying and editing Asset IDs in the Parameters tab.
• Implement a custom Python QT widget for displaying and editing render output locations in the

Parameters tab.
• Customize the QuickLink paths used by the file browser.

To create an AssetWidgetDelegate plug-in, create a new Python file and place it in a directory called
UIPlugins in a folder in your KATANA_RESOURCES.

Note: The UI4 module is the main Python module for working with the Katana user interface.

AdvancedWorkflow & Extensions | Asset Management

USER GUIDE
650

Configuring the Asset Browser
The entry point for extending the Katana asset browser is the method configureAssetBrowser(), which
must be implemented in your AssetWidgetDelegate plug-in. configureAssetBrowser() takes a single
browser argument, which is the Katana Asset Browser to configure. At its core the Asset Browser is a Qt
dialog window (QDialog) with additional utility methods. The most useful of these are:
• addBrowserTab()

Add a new tab to the Asset Browser.

Note: The custom browser tab added using addBrowserTab() should emit a
selectionValidSignal signal to indicate a change in selection validity and therefore the state of the
Asset Browser Accept button, for example:
browserTab.selectionValidSignal.emit(browserTab.selectionValid())

The browser dialog listens for this signal from the currently viewed tab and sets the enabled state
of its Accept button accordingly.

• addFileBrowserTab()
Add a standard file browser tab to the Asset Browser.

• getCurrentIndex()
Return the index of the currently open tab.

• setCurrentIndex()
Set the currently open tab.

The base implementation of configureAssetBrowser() sets the window title from the given hints and
creates a file browser tab. If you want to avoid creating a file browser tab, implement a
shouldAddFileTabToAssetBrowser() method with a return value of False.

The following methods exist but need minimal implementation:
• setSaveMode()

Tells us whether the browser is invoked for opening a file or for saving one. If saveMode is True, then the
browser has been opened for saving a file.

• selectionValid()
Checks whether the current asset path refers to a valid asset. For a file browser dialog window this returns
false if a chosen path does not exist.

• setLocation()
Sets the default location with which to open the browser.

AdvancedWorkflow & Extensions | Asset Management

USER GUIDE
651

• getExtraOptions()
This is used to support a versionUp and a publish option for LookFileBake and create a new Katana file. If
those options are displayed in the custom user interface Katana retrieves them using this method:

{"versionUp" : "False" / "True", "publish" : "False" / "True" }

Note: The function getExtraOptions() should return a dict.

The Asset Control Widget

The AssetWidgetDelegate plug-in API makes it possible to replace the default string widget that allows users
to view and edit an Asset ID in the node Parameters tab.

Typically you edit the fields of an asset through a UI. Internally those fields are serialized into a single string
as an Asset ID, and stored as a parameter on a node.

Using a custom Asset Control Widget you can replace the widget displaying the fields. Katana knows to use
the custom widget through the assetIdInput hint, which is associated with all string parameters that
represent an Asset ID.

AdvancedWorkflow & Extensions | Asset Management

USER GUIDE
652

Implementing A Custom Asset
Control Widget
The entry point that Katana needs, in order to create a custom asset control widget is the
createAssetControlWidget() method of our custom AssetWidgetDelegate class.

The createAssetControlWidget() method instantiates the SimpleMockAssetControlWidget, which must
inherit from BaseAssetControlWidget. BaseAssetControlWidget is a QT QWidget with an HBoxLayout.
createAssetControlWidget() then adds the control widget to the parent layout. The parent is a QWidget
and part of the Parameter tab.

The following methods must be implemented by an asset control widget:
• buildWidgets()

This is invoked by the BaseAssetControlWidget constructor to build the child widgets. This is where most of
the work happens.

• setValue()

Updates this widget with the given Asset ID.
• getValue()

Return the Asset ID from this widget.
• setReadOnly()

Enable/Disable editing of this widget.

The BaseAssetControlWidget supplies an emitValueChanged() method for notifying Katana that the user
has changed the Asset ID in the widget. This must be called when the value in the UI has changed.

AdvancedWorkflow & Extensions | Asset Management

USER GUIDE
653

Asset Render Widget
The Asset Widget Delegate allows customization of the display of the render output location shown in a
Render node’s Parameters tab. This is useful for when rendering to a location in a custom asset
management system.

This output location could be an automatically generated temporary path or one set explicitly using a
Render Output Define node. It is set on a Render Node and therefore the Asset Render Widget is read-only.

Implementing an Asset Render Widget

Implementing an Asset Render Widget is optional. The Asset Management user interface does not require
this. The entry point for a custom widget delegate is similar to that of the Asset Control Widget.

The Asset Widget Delegate must implement createAssetRenderWidget(), which in turn must return a class
that inherits from baseAssetWidgetDelegate() and implements two methods, buildWidgets() and
updateWidgets().

createAssetRenderWidget() has an additional outputInfo argument, which is a dictionary of output
information and must be passed to the BaseAssetRenderWidget constructor. The outputInfo dictionary
contains the output location’s Asset ID along with additional information (such as the image file type and
resolution). BaseAssetRenderWidget provides a utility method, getOutputInfo() for accessing this
dictionary.

The key for the Asset ID of the output location is outputLocation.

AdvancedWorkflow & Extensions | Asset Management

USER GUIDE
654

Additional Asset Widget Delegate
Methods
There are several methods used to make small customizations to the Asset Management UI. These are
implemented as overridable methods on the Asset Widget Delegate.

AdvancedWorkflow & Extensions | Asset Management

USER GUIDE
655

addAssetFromWidgetMenuItems()
Allows you to extend the menu item to the right of an Asset ID in the Parameters tab with additional items.

def addAssetFormWidgetMenuItems(self, menu):
menu.addAction("Custom Action",

self.__customCallback)

def __customCallback(self, *args):
print args

AdvancedWorkflow & Extensions | Asset Management

USER GUIDE
656

shouldAddStandardMenuItem()
When False is returned from this method, the menu item to the right of an Asset ID in the Parameters tab is
not displayed when clicked on.

AdvancedWorkflow & Extensions | Asset Management

USER GUIDE
657

shouldAddFileTabToAssetBrowser()
The File tab is not displayed in the Asset Browser when this is set to return False.

AdvancedWorkflow & Extensions | Asset Management

USER GUIDE
658

getQuickLinkPathsForContext()
For customization of the quicklink paths displayed at the bottom of the File tab. Must return a sequence of
file paths.

Locking Asset Versions Prior to Rendering

In many pipelines it is considered desirable to lock all the assets used in a shot to specific versions prior to
rendering. When an asset is locked, meta versions (or tags) are resolved to a fixed static version, represented
by a number. This ensures that the same asset version is used for rendering all frames. Conventional ways of
doing this include creating a look-up table to specify which explicit version of an asset to use for all asset
references, or by supplying an additional date-stamp to use when resolving assets.

The FarmAPI is a mechanism that allows users to take charge of the submission of jobs to a render farm and
the construction of a look up table might be implemented within this API. See the Farm API docs for how to
write a Farm API plug-in.

Setting the Default Asset Management Plug-in

The default Asset plug-in and file sequence is defined with two environment variables. If you want to set
your own plug-in and sequence as default, make sure the following are set on your system:
KATANA_DEFAULT_ASSET_PLUGIN=yourAssetPlug-in

KATANA_DEFAULT_FILE_SEQUENCE_PLUGIN=yourFileSequencePlug-in

The C++ API

You can implement an Asset plug-in in C++ as well as in Python. This is done by inheriting from the FnAsset
class in the C++ plug-in SDK. Almost exactly the same methods must be implemented in C++ as in Python.

It is not possible to implement a custom Asset Browser, Asset Control Widget or Asset Render Widget via the
C++ plug-in SDK. However, these user interfaces can still be implemented in Python and work alongside a
C++ Asset Management Plug-in.

Asset management plug-ins implemented in C++ and Python are accessed via the same Python interface
inside of Katana and similarly, C++ plug-ins that make use of an asset management plug-in have access to
those implemented in Python and in C++.

In order for Katana to load a custom asset management plug-in, it must be compiled as a shared object and
placed in a directory called Libs inside your KATANA_RESOURCES directory.

AdvancedWorkflow & Extensions | Asset Management

https://learn.foundry.com/katana/dev-guide/Scripting/RenderingAScene/FarmAPI.html

USER GUIDE
659

The Asset Publishing Process
Publishing an asset from Katana performs the following steps:
1. Pre-Publish

Takes identifying information from you (for example which show, shot, asset and version) and passes
that information to the asset plug-in. The plug-in returns an Asset ID - in the form of a string - to use in
the Publish step.

2. Publish
Katana passes the Asset ID returned at the Pre-Publish stage to the asset management system, which
resolves that ID to a file path. Katana generates the asset, and saves it to the resolved path.

3. Post-Publish
The asset management system handles storing the asset, and returns the Asset ID actually applied, which
can be different to the one supplied in the Pre-Publish step. Katana uses that Asset ID from then on to
identify the current version of the asset.

Choosing an Asset Plug-in
You can have multiple asset management plug-ins installed, but only one active at a time. Selecting which
asset management plug-in to use is done in the Project Settings tab. Choose plugins > asset and choose a
plug-in from the dropdown list.

Note: The default plugins > asset > File option selects Katana’s default, manual file management,
rather than any asset-managed file management.

AdvancedWorkflow & Extensions | Asset Management

USER GUIDE
660

Example Asset Plug-in
Katana ships with an example Asset plug-in, PyMockAsset. To use the example plug-in the following path
must be available in your KATANA_RESOURCES environment variable: ${KATANA_
ROOT}/plugins/Resources/Examples/

PyMockAsset takes information on show, shot, asset, and version, and uses a browser customized with fields
to hold that data. All of the images used in this section show the PyMockAsset plug-in.

The PyMockAsset plug-in searches for assets under a file location specified in an environment variable called
MOCK_ASSET_DIR, for example:
MOCK_ASSET_DIR=/tmp/MockDB

The entries in the selection menus in the PyMockAsset asset browser are determined by the folder structure
under the location specified in the MOCK_ASSET_DIR variable.

AdvancedWorkflow & Extensions | Asset Management

USER GUIDE
661

For example, the asset browser shown above is generated from the folder structure below.

Note: If MOCK_ASSET_DIR is not set on your system, PyMockAsset defaults to searching Python's
tempfile.tempdir directory
It varies on the platform, see https://docs.python.org/2/library/tempfile.html#tempfile.tempdir.

Retrieve and Publish
Accessing assets through the UI is performed using the asset browser provided by your plug-in. The
browsers used for retrieve and publish can be different. For example, when retrieving assets PyMockAsset
shows a browser that only allows selection of existing locations.

AdvancedWorkflow & Extensions | Asset Management

https://docs.python.org/2/library/tempfile.html#tempfile.tempdir

USER GUIDE
662

Retrieving
To retrieve an asset through the File menu:
1. With an asset plug-in enabled, choose File > Open...

The asset browser opens.

2. In the asset browser, select the asset you want to retrieve and click Accept.
The information you enter is resolved into an Asset ID, and that scene is loaded.

Retrieving through a supported node parameter works in the same way. For example, to bring in an asset-
managed Alembic file using an Alembic_In node:
1. Add an Alembic_In node to your Katana recipe.
2. Select the Alembic_In node and press Alt+E to edit it.

Assuming you have an asset plug-in selected in the Project Settings tab, the abcAsset parameter shows
the asset widget, and choosing abcAsset > Browse... opens the asset browser for your selected plug-in.

Supported Nodes and UI Locations

You can retrieve assets through the following nodes and UI locations:
• The File menu

To retrieve Katana scenes or macros.
• Alembic_In
• AttributeFile_In
• LookFileAssign

AdvancedWorkflow & Extensions | Asset Management

USER GUIDE
663

• LookFileGlobalsAssign
• LookFileMaterialIn
• LiveGroup
• ImageRead
• Importomatic
• PrmanGlobalSettings
• PrmanObjectSettings

Assets imported through the ribInclude parameter are supported.
• ArnoldGlobalSettings

Assets imported through the assInclude parameter are supported.
• PrimitiveCreate - for the following asset types:

• rib archive
• coordinate system sphere
• coordinate system plane

• Material

Shaders and their Args files can be asset-managed

Note: When you select a shader from the asset browser, the asset plug-in checks for a related
asset-managed Args file. If one is not found, it looks up the Args file in the usual fashion, relative to
the .so file location.

For more on the locations Katana searches for Args files, see Args Files for Shaders in the Dev
Guide.

• RenderProceduralArgs.

Note: When you select a render procedural from the asset browser, the asset plug-in checks for a
related asset-managed Args file. If one is not found, it looks for an Args file with the same name as
the render procedural .so file, in the same directory. For example, an .so file under /tmp/proc.so
expects an Args file at /tmp/proc.so.args.

AdvancedWorkflow & Extensions | Asset Management

https://learn.foundry.com/katana/3.0/dev-guide/ArgsFiles/ForShaders.html

USER GUIDE
664

Publishing
When publishing through an Asset plug-in, information entered in the asset browser is used to build an
Asset ID. For example, to publish from the file menu:
1. Choose File > Save As...

The asset browser opens.
2. In the asset browser, enter the information required to identify the asset to publish, then click Accept.

The asset plug-in performs the Pre-Publish step described in the The Asset Publishing Process, and if
that passes, Katana performs the Publish step to write the asset. Finally the Post-Publish step returns
the Asset ID of the published asset.

Publishing from a node works in the same way. For example, to publish a light rig from a GafferThree node:
1. In a Katana scene containing a GafferThree node with a rig, select the GafferThree node and press Alt+E

to edit it.
2. Select the rig you want to publish, right-click on the rig and choose Export Rig.

The Export Rig dialog opens for you to enter the required identification information. In the case of
PyMockAsset, the browser has fields for Show, Shot, Asset, and Version.

Supported Nodes and Use Cases

You can publish assets through the following nodes and use cases:
• Render
• ImageWrite.

Note: When performing a Disk Render from a Render node or an ImageWrite node, the Pre-
Publish and Post-Publish steps are not performed. To manually perform those steps, go to the
Parameters tab of a Render or ImageWrite node and choose Action > Pre-Render Publish Asset
and Action > Post-Render Publish Asset.

• LookFileBake
• LookFileMultiBake

AdvancedWorkflow & Extensions | Asset Management

USER GUIDE
665

LiveGroups and LiveShadingGroups
A LiveGroup node provides a way for you to import another Katana project into the current project, and
reload it every time the current project is updated, either automatically (for example, on scene load or before
batch rendering) or manually (through context menu options). A LiveGroup node’s source is expected to
contain a Group or Group-like node in its root level.

When loading a LiveGroup source scene, the first loaded Group node in the source scene defines the user
parameters and child node contents of the target LiveGroup. LiveGroups provide a number of useful
constructs for collaborative work between users, for sharing nodes between show, sequence, and shot levels,
and for users working in parallel on the same shot.

There are two primary cases for using LiveGroups: collaborative work between departments and
collaborative work within a department. As an example of collaborative work between departments, an FX
artist would pass a Katana project to a lighting artist that can then use that project as part of a lighting scene
by loading it into a LiveGroup node.

In this example, the FX artist is only interested in publishing their setup, while the lighting artist is only
interested in importing the published project, as shown in the diagram below:

As an example of collaborative work within a department, a shot or sequence lighting artist would make
changes to a LiveGroup source on a shot, and could then publish the source scene back to the shot or
sequence for other lighting artists to pick up, as shown in the diagram below:

In addition to the existing .katana file extension, the .livegroup file extension has been introduced. For
backwards compatibility, it is still possible to use a Katana project with the .katana file extension as a
LiveGroup source. When publishing new LiveGroup sources using the Publish... or Publish and Finish
Editing Contents... menu options, the .livegroup file extension is used.

Any Katana project file can be used as a source of a LiveGroup node, and LiveGroup sources can be
published as assets through Katana’s Asset API. When a LiveGroup node’s contents are exported to a file, the
.livegroup file extension is used to create it. When a LiveGroup is imported, you can choose whether to
import either .katana or .livegroup files. Files with the extension .macro are not listed by default but if there

AdvancedWorkflow & Extensions | LiveGroups and LiveShadingGroups

USER GUIDE
666

are macros present in the file structure, you can select the macros option in the Types field in the Import
Livegroup dialog.

For more information on Asset Management and the asset publishing process, see Asset Management, or
Asset Management System Plug-in API.

By default, exported .katana files are binary, gzip-compressed archives in a .tar format, containing an XML
scene description file as data. This format is archived and compressed because nodes may contain binary
data. In contrast, the .livegroup extension uses uncompressed, unarchived, ASCII files in a format similar to
.katana but with a dedicated extension for LiveGroup sources. This means that LiveGroups, by default, are
written as plain text, uncompressed XML files.

While .katana files contain project settings in addition to the nodes of the node graph document, as they
represent Katana projects, .livegroup files only contain the XML representation of the parameters and
children of the Group node that controls the LiveGroup interface and contents.

Creating a LiveGroup
You can create a LiveGroup node from scratch or by importing a LiveGroup source or Katana project as a
starting place. To create a LiveGroup node, in the Node Graph tab:
• Click New > Other > LiveGroup from the menu,
• Press Tab and select LiveGroup from the node list, or
• Right-click and select Other > LiveGroup from the menu.

The LiveGroup node floats with the cursor. Click inside the Node Graph tab to place it at that location.

As mentioned above, you can also create a LiveGroup node and choose a source to import in one step by
using an option in Katana’s File menu. When a LiveGroup source is selected for import, its contents are read
and the XML document structure is parsed. The first Group node, or Group-like node, found in the root level
of the document is used for defining the parameters and contents of the target LiveGroup node. Other
nodes, including other Group nodes, in the root level of the document are ignored.

To import a project as a LiveGroup node:
1. Select File > Import LiveGroup...

The Import LiveGroup dialog appears.
2. Select a LiveGroup source file in the file browser (see Using the File Browser for more information).
3. Click Accept.

A LiveGroup node, named after the imported file, floats with the cursor inside the Node Graph. Click
anywhere within the Node Graph to place it at that location.

AdvancedWorkflow & Extensions | LiveGroups and LiveShadingGroups

USER GUIDE
667

Editing LiveGroup Parameters
The wrench menu for a LiveGroup node that is edited in the Parameters tab contains not only the same
generic options as other nodes, such as Edit User Parameters, Reset Parameters, and Save as Macro, it
also has a unique set of options that change dynamically depending on whether the node is in a locked or
editable state. These unique options can be used to represent the parameter interface of the contents of a
LiveGroup node. Nodes inside of the LiveGroup node can reference these user parameters using Python
expressions, thus allowing the developer of the LiveGroup's internal node network to make certain
parameters of the nodes inside of the LiveGroup available to users of the LiveGroup asset. This effectively
exposes the parameters on the outer interface of the LiveGroup node that uses the LiveGroup asset.

When loading a LiveGroup asset into a LiveGroup node, the user parameters of the LiveGroup node are
initialized according to the user parameters in the LiveGroup asset. From then on, values and Python
expressions on user parameters of the LiveGroup node are stored in the Katana project file itself, or more
generally, in the parent node's context.

When reloading a LiveGroup asset from disk into a LiveGroup node, the user parameters are only updated in
the sense of adding and removing parameters, but values and Python expressions are not modified as part
of a reload. This is done deliberately, so as not to lose any modifications that might have been made to such
values and Python expressions on user parameters of LiveGroup nodes.

Warning: Katana doesn't currently determine whether values or Python expressions on user
parameters of LiveGroup nodes have been modified intentionally, or left to their default values.

Consequently, changes to values or Python expressions on user parameters of a LiveGroup asset
are not propagated to other LiveGroup nodes that use the same LiveGroup asset as their source.

For more information on loading LiveGroup assets into a LiveGroup node, see Loading and Reloading a
LiveGroup. Alternatively, for information on accessing or editing any node’s parameters, generally, see
Editing a Node’s Parameters.

In the Parameters tab, click the wrench icon, or right-click on the LiveGroup node.

• When the LiveGroup node is in a locked, non-editable state, the following menu options are available:
• Load... - opens the Load LiveGroup dialog to allow you to select a LiveGroup source for the node.
• Reload - reloads the source file, if you already have one specified in the source parameter.
• Edit Contents - changes the state of the node to be editable, so that contents of the node can be

modified. In this state, the contents of the node are no longer loaded from its source, if a source is set.

AdvancedWorkflow & Extensions | LiveGroups and LiveShadingGroups

USER GUIDE
668

• Convert to Group - converts the LiveGroup node to a Group node. Note that the Group node does
not retain the LiveGroup node’s source parameter.

Note: Converting a LiveGroup node to a Group node discards any history or knowledge of the
source file.

• When the LiveGroup node is in an unlocked, editable state, the following menu options are available:
• Revert - reloads the LiveGroup from its current source, thus discarding any changes made while it was

unlocked. The Revert option is only available when a source has been set.
• Publish... - opens the Publish LiveGroup dialog for publishing the parameters and contents of the

LiveGroup node as a LiveGroup source file or asset.
• Publish and Finish Editing Contents... - opens the Publish and Finish Editing Contents LiveGroup

dialog for publishing the parameters and contents of the LiveGroup node as a LiveGroup source file or
asset, and for loading the published source file or asset. This locks the LiveGroup node’s contents,
making them non-editable.

To access any of the above menu options, right-click on the LiveGroup node, or click the wrench icon in
the Parameters tab. The menus found, using either method, display the context-sensitive LiveGroup menu
options.

In addition, parameters can be opened in a floating pane as well as in the Parameters tab displayed in your
preferred layout by right-clicking on the LiveGroup node and selecting Show Parameters in Floating Pane
from the context menu.

Loading and Reloading a LiveGroup
Loading a LiveGroup source into a LiveGroup node opens the selected source file or asset, parses its
contents, and uses the first Group node found in the source for the parameters and contents of the
LiveGroup node. Once a LiveGroup source has been loaded into a LiveGroup node, the source can be
reloaded to pick up any changes that have been made to the file or asset outside of the current Katana
session.

To load the LiveGroup node source:

1. Right-click the LiveGroup node, or click the wrench icon in the b tab, and select Load from the menu.

The Load LiveGroup dialog appears.
2. Select the file or asset from the file browser to use as the source of the LiveGroup node.
3. Click Accept.

AdvancedWorkflow & Extensions | LiveGroups and LiveShadingGroups

USER GUIDE
669

Note: If the LiveGroup is editable and its contents have been modified, you must confirm whether
you want to proceed. Continuing to load from the source without publishing changes first results
in the unsaved changes being lost. To keep any changes, refer to Publishing a LiveGroup for more
information.

To reload the LiveGroup node source, right-click the LiveGroup node, or click the wrench icon in the
Parameters tab, and select Reload from the menu. The LiveGroup node’s contents are replaced with the
contents of the first Group node loaded from the selected LiveGroup source.

Note: If the source parameter specifies the latest version of a LiveGroup asset, the plug-in is used
to query the asset management system for the latest version of the LiveGroup asset, which is then
used as the actual source file to load.

Editing the Contents of a LiveGroup
LiveGroup nodes, which are created in a locked state, can be made editable so that their contents can be
freely manipulated. Once a LiveGroup node is in an editable state, it can be published as a LiveGroup source
file or as a new version of a LiveGroup source asset.

When loading a LiveGroup source file into an editable LiveGroup node, the contents of the LiveGroup node
become locked and non-editable. Its contents are automatically updated from the selected LiveGroup
source. When a non-editable LiveGroup node is made editable, its contents are no longer automatically
loaded from its selected source.

If a LiveGroup source becomes unavailable, Katana keeps the nodes inside of the LiveGroup node, by default.
However, there may be times when you want the contents to be discarded instead. You can achieve this by
setting the KATANA_DISABLE_LIVEGROUP_CACHING environment variable to 1.

Making a LiveGroup Node Editable
Making a LiveGroup node editable allows the contents to be edited. To make a LiveGroup editable, follow
the instructions below:

AdvancedWorkflow & Extensions | LiveGroups and LiveShadingGroups

USER GUIDE
670

1. Right-click the LiveGroup node, or click the wrench icon in the Parameters tab, and select Edit
Contents.
The LiveGroup icon changes from gray to yellow to indicate the editable state.

2. Once the LiveGroup is editable, the parameters of contained nodes can be edited and nodes, or node
connections, can be added or removed.

Reverting an editable LiveGroup node back to a locked state is necessary if you want to lock down the source
and prevent changes from being made to the file or asset. To revert an unlocked LiveGroup node back to a
locked state, follow the instructions below:

1. Right-click the LiveGroup node, or click the wrench icon in the Parameters tab, and select Revert
from the menu.
The contents of the LiveGroup node are locked and can no longer be edited. The LiveGroup icon
changes from yellow back to gray again.

2. If the node has unsaved changes, you must confirm whether you want to proceed. If the changes are not
published, and you continue to revert the node, the contents are loaded from the selected LiveGroup
source.

Modified State of Editable
LiveGroup Nodes
When changes are made to the parameters or contents of an editable LiveGroup node, the LiveGroup node’s
icon is drawn with an asterisk, indicating that it has been modified.

AdvancedWorkflow & Extensions | LiveGroups and LiveShadingGroups

USER GUIDE
671

The asterisk icon is also shown in the title bar of the Group bubble, which is shown when clicking the
LiveGroup node’s + button.

When reverting a LiveGroup node or when publishing a LiveGroup node, the modification state of the
LiveGroup node is reset and the asterisk disappears. When performing an operation where modifications to
a LiveGroup node’s parameters or contents would be lost, for example, when creating a new Katana project
or when quitting Katana, a dialog message appears asking whether to publish modified LiveGroup nodes to
files or assets.

This dialog is also shown when saving the current Katana project, as LiveGroup nodes are not saved in an
editable state as part of a Katana project. If you decide not to publish files or assets for modified LiveGroup
nodes, those LiveGroup nodes are reverted back to the state they were in when they were made editable.

Publishing a LiveGroup
When a LiveGroup node is editable, a menu option is available to publish changes made to the node’s
parameters and contents to a LiveGroup source file or asset. Both editable and non-editable LiveGroup
nodes have a source parameter that specifies a LiveGroup source file or asset that the LiveGroup node
represents. Publishing a LiveGroup node lets you create a new LiveGroup source file or asset, or lets you
create a new version of an existing LiveGroup source asset. Choose between leaving the LiveGroup node in
its editable state after publishing, so you can continue to work on the node, or loading the published
LiveGroup source file or asset using its new filename or asset ID.

To publish a LiveGroup node, follow the instructions below:
1. Ensure the node is in an editable state. For more information how to make a LiveGroup node editable,

refer to
Making a LiveGroup Node Editable.

2. After you have made your changes and are ready to publish, right-click on the LiveGroup node, or click

the wrench icon in the Parameters tab, and select Publish... from the menu.

AdvancedWorkflow & Extensions | LiveGroups and LiveShadingGroups

USER GUIDE
672

The Publish LiveGroup dialog appears.
3. Enter the filename or asset ID under which you want to publish the LiveGroup source file or asset.
4. Click Accept.

The source in the Parameters tab is updated with the new source filename or asset ID and the node
remains in an editable state.

Note: If publishing fails for any reason, an error message provides information explaining why
publishing changes at that time was not possible.

To publish and finish editing the contents of a LiveGroup node, follow the instructions below:
1. Ensure the node is in an editable state.
2. After you have made your changes and are ready to publish, right-click on the LiveGroup node, or click

the wrench icon in the Parameters tab, and select Publish and Finish Editing Contents... from the
menu.
The Publish and Finish Editing Contents of LiveGroup dialog appears.

3. Enter the filename or asset ID under which you want to publish the LiveGroup source file or asset.
4. Click Accept.

The source in the Parameters tab is updated with the new source filename or asset ID, the contents of
the LiveGroup node are loaded from the selected source, and the node’s contents become locked
against editing.

Note: If publishing fails for any reason, an error message provides information explaining why
publishing changes at that time was not possible, and the node remains in an unlocked state.

LiveGroup Conversion
A LiveGroup node can be converted to a Group node, which brings the contents of the LiveGroup into the
current recipe and stops it from updating from the selected source. A Group node can also be converted to a
LiveGroup node at any time. A Group that is converted to a LiveGroup is replaced by an editable LiveGroup
node with the same contents that the Group node contained.

A LiveGroup node doesn’t need to be editable to convert it. To convert a LiveGroup node to a Group node,

right-click the LiveGroup node, or click the wrench icon in the Parameters tab, and select Convert to

AdvancedWorkflow & Extensions | LiveGroups and LiveShadingGroups

USER GUIDE
673

Group from the menu. The LiveGroup node is replaced by a Group node with the same parameters and
contents, with the exception of the source parameters, which is not retained.

To convert a Group node to a LiveGroup node, right-click the Group node, or click the wrench icon in the
Parameters tab, and select Convert to LiveGroup from the menu. The Group node is replaced by an
editable LiveGroup node with the same parameters and contents as the Group node, but with the additional
source parameter that allows a LiveGroup node’s parameters and contents to be loaded from an external file
or asset.

Share and Reuse Sections of Your Shading Network With LiveShadingGroups

LiveShadingGroups are the material counterpart of LiveGroups and are available in the context of a
NetworkMaterialCreate node. LiveShadingGroups allow you to share and version snippets or the entirety of
a shading network from one Katana project into another, giving you the ability to create entire material
libraries within Katana that can then be shared and reused across projects and departments.

Note: For more information on creating materials and Network Material functionality, see Building
Materials Using NetworkMaterialCreate.

LiveShadingGroups are created in the same way and have the same functionality as regular LiveGroups.

Once a LiveShadingGroup is published, the contents can be locked to prevent accidental edits being shared
across Katana projects that are using that particular LiveShadingGroup.

In addition, when a LiveShadingGroup is unlocked, changes can be made and published to either overwrite
the existing LiveShadingGroup or create a new version. Any changes made to a LiveShadingGroup that is
used across different materials or projects are automatically updated.

ShadingGroups can be converted into LiveShadingGroups and shared across Katana projects and between
teams. You can also convert LiveShadingGroups into standard ShadingGroups. For more information on
ShadingGroups, see Organizing Shading Networks with ShadingGroup Nodes.

For more information on LiveGroups and their functionality, see LiveGroups.

Graph State Variables
Graph State Variables can be used to control which nodes in the node graph contribute to scene graph
processing, based on the values of user-set variables. These values can be set either at the whole project

AdvancedWorkflow & Extensions | Graph State Variables

USER GUIDE
674

level or by nodes in the node graph.

Graph State Variables have been designed to make it easier to set up a single Katana project, for instance to
control the lighting for a whole sequence, or to perform edits and overrides only active in the node graph,
depending on which output is currently being rendered. You can define your own variables and they can be
used in many different ways.

The key concept is that Graph State Variables can be set either at a global, whole-project level, such as a
variable for the shot number in a sequence that is being worked on, or at a local level using VariableSet
nodes, such as for a variable that says which render pass is being evaluated.

You can then use VariableSwitch or VariableEnabledGroup nodes to control which nodes are active or not,
based on the values of Graph State Variables. For instance, you could have a VariableSwitch node with
different inputs based on the shot number, so which input is read depends on which shot in a sequence you
are working on. Another example is that you could have an override for some attributes in a
VariableEnabledGroup node, based on which render pass is being evaluated, so the override is only applied
for specific output passes.

The essential idea is that Graph State Variables allow you to define the context in which the scene is currently
being evaluated, and have nodes whose behavior can be changed depending on that context. You can also
read the values of Graph State Variables in OpScripts or your own Op plug-ins in order to modify their
behavior, based on the values of the Graph State Variables.

Video: This video demonstrates how Graph State Variables can be used.

Setting Graph State Variables
Global Variables
Variables set using the Project Settings tab affect all node graph branches in the entire project and are,
therefore, referred to as global.

To define a new global Graph State Variable:
1. Open the Project Settings tab and locate the variables group parameter.
2. Click the Graph State Variables menu on the right of the group header and choose Add Variable.

3. Click the wrench menu to the right of the newly-created variable and choose Rename. Enter a
variable name and click OK.

AdvancedWorkflow & Extensions | Graph State Variables

https://www.youtube.com/watch?v=_oE5C-OOIik

USER GUIDE
675

4. Enter a value for the variable in the dropdown widget. You can add new values while retaining old ones
as options.

Katana also shows a variables widget in the main menu bar. This cannot be used to define a new variable,
but can be used to change the value of an existing global variable. To do this, locate the variables widget in
the main menu bar, for example , and left-click.

Local Variables
Variables set using a VariableSet node are referred to as local and affect the Graph State seen by nodes
upstream of the VariableSet node. For a VariableSet node to have an effect, it must be a contributing node,
that is to say, upstream of the viewed node and not disconnected (by a Switch node, for example).

The variable name used by a VariableSet node need not already exist as a global Graph State Variable. If a
global variable of the same name does exist, upstream nodes see the new value and consider it local. This
implies that changing the global variable’s value through the Project Settings tab or the variables menu
bar entry has no effect on the value seen by nodes upstream of the VariableSet.

A Graph State Variable can be deleted by a VariableDelete node, which again only affects the upstream
Graph State.

Inspecting Graph State Variables
The value of a project-wide Graph State Variable can be inspected through the variables section of the main
menu bar. The value of a local Graph State Variable can be inspected in the Parameters tab. To do this:
1. Set the edit flag on the node at which you’d like to view the Graph State Variables.
2. Set the view flag on whichever downstream node you’d like to produce scene data from.

Note: If you have a VariableSet node that does not lie between the edited and viewed nodes, it is
not a contributing node and has no effect.

3. In the Parameters tab, click the Graph State Variables button () to the right of the node name.

A list of variables and their current values appears in the pop-up menu. The values of Graph State
Variables cannot be changed in the widget; it is read-only.

AdvancedWorkflow & Extensions | Graph State Variables

USER GUIDE
676

When the Graph State Variables menu is shown while a node is currently viewed, and the edited node is
part of the active node graph, the menu displays Graph State Variables that are seen in the portion of the
node graph between the currently viewed node and the respective edited node.

When the Graph State Variables menu is shown while no node is currently viewed, or if the edited node is
not part of the active node graph, the menu displays a label with red text to indicate that the edited node is
not part of the currently active node graph and that Graph State Variables are not available.

To see the effect of VariableSwitch and VariableEnabledGroup nodes, open the Node Graph tab and choose
Edit > Dim Nodes Not Contributing to Viewed Node from the tab’s menu, or press Alt+. (period). When
this option is turned on, nodes in the Node Graph tab that are not part of the currently active node graph
portion are drawn in a dimmed appearance. This is determined by taking into account the active graph state
and possible VariableSwitch and Switch nodes that may be a part of the node graph.

Reading Graph State Variables
Nodes
The following Katana node types perform some logic, based on the Graph State Variables passed to them.

VariableSwitch

This node type is similar to the Switch node type, which uses a parameter to determine which input port
should be followed. VariableSwitch nodes make this determination by reading a Graph State Variable and
attempting to match its value against patterns defined for input ports, or input port names directly, should a
port have no pattern define. For example, a VariableSwitch node could be configured to read a
"levelofdetail" variable, with input ports named "high" and "low". The same effect can be achieved by
defining the following patterns:
• i0 → “high”
• i1 → “low”

A pattern takes the form of a CEL statement, where the {@[name]=="value"} syntax may be used to specify
requirements of additional Graph State Variables.

If no port matches the value of the Graph State Variable, the default behavior is to use the left-most input. If
more than one pattern matches, the default behavior is to use the left-most matching input.

AdvancedWorkflow & Extensions | Graph State Variables

USER GUIDE
677

Note: If a VariableSwitch node defines no patterns, input selection is performed using a faster
look-up operation. This may be useful for nodes with a large number of input ports.

VariableEnabledGroup

The VariableEnabledGroup node type is an extension to the Group node type, which allows you to combine
multiple nodes into a single unit. VariableEnabledGroup bypasses its internal nodes entirely, unless a given
Graph State Variable matches a pattern. For example, if the group contained nodes responsible for material
assignments, the node could be configured to read an "assignmaterials" variable, with the pattern set to
“yes”. The material assignments would then only be active if the value of "assignmaterials" was set to "yes".

Scripts

OpScript

Graph State Variables can be read in OpScript nodes. The function signature for this is:
 string Interface.GetGraphStateVariable(string variableName)

OpScripts cannot manipulate Graph State Variables as, by the time an OpScript is executed, the contributing
nodes (and their associated Graph States) have already been determined.

The getGraphState() Function

Instances of NodegraphAPI.Node have a .getGraphState() method for retrieving the local graph state
seen by the node. This method takes two optional arguments:
• node - a NodegraphAPI.Node instance. This is used as a starting node for walking the node graph. If

None or not given, this parameter defaults to the currently viewed node.
• graphState - a NodegraphAPI.GraphState instance. This is the global graph state that is passed to the

start node (given above). If None, or not given, this parameter defaults to the scene-wide global graph
state.

Additionally, the global graph state can be retrieved through NodegraphAPI.GetCurrentGraphState().

AdvancedWorkflow & Extensions | Graph State Variables

USER GUIDE
678

How Do Graph State Variables
Work?
When evaluating scene graph data at any node, Katana follows a recursive process of asking the node to
describe its inputs, then following those inputs and repeating the procedure on any nodes above. This
process has the effect of identifying the nodes that contribute to the scene, which can be evaluated later to
produce the scene graph. Many nodes always identify the same inputs, but a few use conditional logic. For
example, a Switch node uses a parameter to choose its input; sub-graphs above non-active inputs are never
evaluated.

Katana also maintains a Graph State data structure when traversing up the node graph. This contains
information such as the current frame and the shutter timings. As part of identifying their inputs, nodes can
read from and write to the Graph State. For example, a TimeOffset node reads the current frame time and
increments or decrements it by some amount. The modified Graph State is then passed to the node above. It
is important to realize that the Graph State information flows up the node graph, rather than down, as scene
data does.

Graph State Variables essentially allow us to define key-value pairs within the Graph State, and can be set at
the project or node level. They can then be referenced and manipulated by other nodes, allowing for a
powerful workflow feature, where groups of nodes and entire node graph branches can be enabled and
disabled with ease.

Scripting and Programming in
Katana
Katana utilizes three languages for scripting within the application: Python, Lua, and C++. Each serves a
distinct purpose but the language most appropriate for you may vary, depending on what you want to
achieve and whether you need to edit the scene graph or scene graph locations.

This page provides an overview of how to get started with scripting and programming in Katana and which
language is most appropriate for which tasks.

AdvancedWorkflow & Extensions | Scripting and Programming in Katana

USER GUIDE
679

Python
Python is used widely for rapid application development, especially in the context of APIs to allow users to
customize the application. Information about Katana customization can be found in the Katana Developer
Guide. For example:

l Working with projects
l Working with nodes
l Customizing node types
l Customizing the user interface
l Python-based parameter expressions

Alternatively, for more information and detailed articles on various Python workflows, visit the Support
Portal.

Where fast performance is required, Python isn’t always an ideal choice, partly due to the GIL.

In the context of parameter expressions, a faster alternative to Python expressions is Reference Expressions
which can be used for simple expressions that reference nodes or parameters. More information on
Reference Expressions, can be found in the Katana Developer Guide.

Lua
Lua is used within the OpScript node in Katana. By using OpScript/Lua, it is possible to access the Op API,
which is both faster and more powerful than Python. In particular, the OpScript node allows you to modify
the structure of the scene graph hierarchy, such as deleting locations, creating new child locations as well as
setting and editing attributes.

Lua represents a reasonable balance between fast development turnaround time for developing operations
on the scene graph, and fast execution time and stability as part of cooking a scene.

Note: Lua is also useful for prototyping more complex operations that are planned to be
implemented as Op Types later.

In certain situations it may be advisable to implement a custom Op type plug-in instead of using
OpScript/Lua. Whether this is of advantage should be determined on a case by case basis as it can depend
on the complexity of a project and its assets, the number of operations to be performed or the number of

AdvancedWorkflow & Extensions | Scripting and Programming in Katana

https://learn.foundry.com/katana/dev-guide/index.html
https://learn.foundry.com/katana/dev-guide/index.html
https://learn.foundry.com/katana/dev-guide/Scripting/WorkingWithProjects.html
https://learn.foundry.com/katana/dev-guide/Scripting/WorkingWithNodes/index.html
https://learn.foundry.com/katana/dev-guide/Scripting/CustomizingNodeTypes/index.html
https://learn.foundry.com/katana/dev-guide/Scripting/CustomizingUserInterface/index.html
https://learn.foundry.com/katana/dev-guide/ParameterExpressions/PythonExpressions.html
https://support.foundry.com/hc/en-us
https://support.foundry.com/hc/en-us
https://wiki.python.org/moin/GlobalInterpreterLock
https://learn.foundry.com/katana/dev-guide/ParameterExpressions/ReferenceExpressions.html

USER GUIDE
680

scene graph locations to target. It's advisable to process FX data like particle simulations in Ops/C++, rather
than OpScript/Lua.

For an introduction to using OpScript and the Op API, you can look at the OpScript tutorials in available in
Katana at:

Help > Example Projects

More information on the Op API, see OpScript Nodes or The Op API. You can also refer to Cook Interface
(OpScript) in the Katana Developer Guide.

C++
When performance is critical, for example, when working with large data sets, a Lua OpScript can be ported
to a C++ Op type plug-in.

Please see the Katana Developer Guide for documentation of the interface. You can also refer to the
HelloWorld example Op which is shipped with the Katana source code in the following location:
$KATANA_ROOT/plugins/Src/Ops/HelloWorld

Build instructions can be found here:
$KATANA_ROOT/plugins/Src/README.md

Note: For more information and further reading on scripting and programming in Katana, refer to
the associated article on the Support Portal, Scripting and Programming in Katana.

Scripting with Python
Python workflow:
1. Enter Python statements in Katana’s Python tab to perform the required actions.

2. Save your script with the extension .py in a directory that is contained in the sys.path variable.

3. Later, when you want to execute the same statement sequence, import the .py file into Katana’s Python
tab again. Katana executes the statements in the specified order.

AdvancedWorkflow & Extensions | Scripting and Programming in Katana

https://learn.foundry.com/katana/current/dev-guide/OpsAndOpScript/CookInterface/OpScript.html
https://learn.foundry.com/katana/current/dev-guide/OpsAndOpScript/CookInterface/OpScript.html
https://learn.foundry.com/katana/current/dev-guide/OpsAndOpScript/CookInterface/Cpp.html
https://support.foundry.com/hc/en-us/articles/360001288699-Q100443-Scripting-and-Programming-in-Katana

USER GUIDE
681

For more information on the Python tab, see Using the Python Tab, or for detailed information on the
Python API click Help > API Reference > Python APIs within the application.

Python on the Web
To read more about Python, check out its documentation, or interact with other Python users. Visit the
Python programming language official website at http://www.python.org/.

Shelf Item Scripts
Shelf Item Scripts are Python scripts that you can run from Katana's UI in order to perform arbitrary
operations using Katana's APIs. Shelf item scripts implement Shelf Items, which are grouped into Shelves.

Shelf Item Scripts can use Katana's APIs, like the NodegraphAPI, to access various parts of Katana that can
be queried or modified, for example a project's node graph, with its nodes, parameters, ports, and
connections. This section explains how they can be run from Katana's UI, what types of shelves there are, and
where the folders and script files that define shelves and shelf items are located.

Running Shelf Item Scripts from the UI
The shelf items that are available for you to run from Katana's UI are listed by shelves in the Shelf Actions
pop-ups that are shown when clicking the Shelf Actions toolbar buttons, which appear in different types of
toolbars in Katana's UI:
• The toolbar next to the main menu bar in Katana's main window.

• The widgets toolbar for a node that is edited in the Parameters tab.

AdvancedWorkflow & Extensions | Scripting and Programming in Katana

http://www.python.org/

USER GUIDE
682

• The toolbar in the Scene Graph tab.

The shelves and shelf items listed in the Shelf Actions pop-up of the Parameters tab are considered to be
specific to the type of node that is edited, but this is not enforced: you are free to perform any operation
available through Katana APIs or provided by external libraries.

Likewise, the shelves and shelf items listed in the Shelf Actions pop-up of the Scene Graph tab are
considered to be dedicated to working with the scene graph.

Types of Shelves
There are three types of shelves:
• Built-in shelves
• User-defined shelves

AdvancedWorkflow & Extensions | Scripting and Programming in Katana

USER GUIDE
683

• Additional shelves

Built-in Shelves
Built-in shelves contain pre-defined shelf items that ship with Katana releases. In Shelf Actions pop-ups,
their names are shown with an (App) prefix. The shelf item scripts that correspond to shelf items in built-in
shelves are loaded from internal Katana resource directories.

You can view the source code of built-in shelf items through the UI, but you can't modify that source code or
delete the items or the shelves they are contained in. You can also not create new built-in shelves or shelf
items. If you want to create custom shelves and shelf items, use one of the following types of shelves: User-
defined Shelves or Additional Shelves.

User-defined Shelves
User-defined shelves are shelves that you can freely create, modify, and delete according to your needs.
They are specific to you as a user, so aren't normally available to other artists. They are shown with your
username as a prefix, for example (David), if your username is David.

Scripts that implement user-defined shelf items are loaded from the .katana directory of your HOME folder.
You can create and delete shelves for user-defined shelf items, and inside of a shelf, create new shelf items,
and edit their source code right from within Shelf Actions pop-ups.

Additional Shelves
Additional shelves are shelves that are loaded from directories whose paths are listed in the KATANA_
RESOURCES environment variable. They can be used to share shelf item scripts between artists across a
studio: you can simply place the resource directory with a directory structure as described below in a
network location, and add its path to KATANA_RESOURCES.

The names of additional shelves are shown with an (other) prefix in Shelf Actions pop-ups. Just like built-in
shelf items, you can view the source code of additional shelf items through the UI, but you can't delete them
or modify their source code. You can also not add or remove additional shelves using the UI. They are
defined exclusively through script files in shelves folders on disk that are picked up through KATANA_
RESOURCES.

Directory Structure for Shelf Item Scripts
Within a Katana resource directory, shelves and shelf items are loaded from sub-folders with the following
names:

AdvancedWorkflow & Extensions | Scripting and Programming in Katana

USER GUIDE
684

• Shelves - contains shelves that are shown in the Shelf Actions pop-up in the toolbar of Katana's main
window.

• ShelvesNodeSpecific - contains shelves that are shown in Shelf Actions pop-ups of the Parameters tab.
• ShelvesScenegraph - contains shelves that are shown in the Shelf Actions pop-up of the Scene Graph

tab.

Sub-folders of those folders represent the Shelves available in Shelf Actions pop-ups, and contain the shelf
item scripts that correspond to shelf items that are listed for a shelf that is selected in the UI.

Shelf item script files are ASCII text files that use the standard .py file extension of Python source files, and
can be edited in source code or regular text editor applications.

Note: There is a known issue with loading of shelves where shelf entries of the same name are
shown multiple times when multiple shelves of the same name are present in Katana resource
directories. The shelves' loading mechanism searches from left to right, and shelves in folders listed
later win over shelves in folders that are listed first. If multiple shelves with the same name are
present in KATANA_RESOURCES directories, all shelf items for that shelf are taken from the last
shelf that was loaded with that same name.

Node-Specific Shelf Item Scripts
Node-specific shelf item scripts define shelf items that can be run from the Shelf Actions pop-up in the
Parameters tab for a node whose parameters are shown.

Pre-Defined Variables in Node-Specific Shelf Item Scripts
The following variable is pre-defined for use in node-specific shelf item scripts:
• node - The node whose parameters are shown in the Parameters tab.

Note: In addition to node, other variables may be present, which are set using node interaction
delegates.

The following additional variables are defined for certain types of nodes using node interaction delegates:

AdvancedWorkflow & Extensions | Scripting and Programming in Katana

USER GUIDE
685

Nodes Variables

GafferThree selectedItems - A list of paths of scene graph locations that are selected in the
Gaffer table in the parameter interface of those types of nodes.

GroupStack and
GroupMerge

selectedNodes - A list of nodes that are selected in the parameter interface of those
types of nodes.

MaterialStack selectedLocations - A list of paths of scene graph locations that are selected in the
parameter interface of MaterialStack nodes.

Targeting Node-Specific Shelf Item Scripts to Specific Types of Nodes
It is possible to add information to node-specific shelf item scripts so that their corresponding shelf items
are shown in Shelf Actions pop-ups of the Parameters tab only for specific types of nodes. A special SCOPE
field in the docstring of the shelf item script can be used to list names of node types (comma separated) to
which the script applies. This information is used in the UI to filter the list of shelf items shown for a selected
shelf to only show those shelf items that are compatible with the type of the node whose parameters are
shown.

For example, the built-in node-specific shelf item script for updating OpScript nodes contains the following
scope information in its docstring:

"""
NAME: Upgrade OpScript Node To New API
SCOPE: OpScript

Migrates OpScript nodes from the legacy syntax to the modern syntax.

"""

Docstrings of Shelf Item Scripts
User-defined shelf item scripts that are created in the UI use the following module docstring at the top of the
file:

"""
NAME: <the name of the script to show in the UI>

AdvancedWorkflow & Extensions | Scripting and Programming in Katana

USER GUIDE
686

ICON: <the filename of icon to use in the UI>
DROP_TYPES: <currently unused>
SCOPE: <names of types of nodes to target by node-specific shelf items>
<description>

"""

The SCOPE field applies to node-specific shelf item scripts only (see section above).

Using the Python Tab
If you're not using a third-party Python interpreter, you can type scripts into Katana's Python tab. Open the

Python tab by clicking the tabs dropdown button or clicking the Tabs menu, and selecting Python from
the list.

Input and Output Panes
The Python tab is divided into two parts: the input pane and the output pane. The input pane, the lower part
of the tab, is used to type in and execute your Python statements. When you've done this, the statement and
the output appears in the output pane, the upper part of the tab.

AdvancedWorkflow & Extensions | Scripting and Programming in Katana

USER GUIDE
687

To adjust the size of either the input or output panes, click and hold the divider between the two and drag it
to the desired height. Alternatively, to completely hide either of the panes, click and hold the divider
between the two and either drag it all the way to the top or bottom of the tab.

Entering a Statement
To enter a statement in the Python tab:
1. Click on the input pane of the editor to insert the cursor there.
2. Type in your statement. To use the usual editing functions, such as copy and paste:

• Right-click on the editor and select the desired function from the dropdown menu,
• Click the Edit menu in the Python tab, and select the desired function from the dropdown menu, or
• Use the common shortcut for the editing function (for example, to paste a previously-copied

statement, press Ctrl+P).
When entering the statement, you may notice that any words that are Python's keywords, such as print
and import, turn purple, while strings and comments (content in quotation marks or following a #)
become green.

AdvancedWorkflow & Extensions | Scripting and Programming in Katana

USER GUIDE
688

3. If your statement includes several lines, or you want to enter several statements at once, press Return to
move to the next line.

4. Execute the statement by pressing Ctrl+Return.

Tip: You can also execute statements by pressing Ctrl+Enter on the numeric keypad.

By default, successful statements disappear from the input pane, and appear in the output pane. If you enter
an invalid statement Katana produces an error in the output pane and clears the statement from the input
pane.

Note: Sometimes you may get an error if you copy ad paste statements into the Python tab from
another source, like an e-mail. This may be caused by the mark-up or encoding of the source you
copied the statement from. To fix the problem, re-enter the statement manually.

To only execute part of a script, enter the script in the input pane and select the part you want to execute.
Press Ctrl+Return. Katana runs the selected part of the script, leaving the script in the input pane.

If you want to repeat a statement, click Script > History Previous at the top of the tab, or press Alt+Up.
This moves back to the previous statement. You can do this repeatedly until you reach the statement you
want to execute again. Alternatively, if you are further up the script history stack and you want to move back
down to a more-recent statement, click Script > History Next at the top of the tab, or press Alt+Down. This
moves to the next statement down, and you can do this repeatedly until you reach the statement you want
to execute. If you are on the last statement in the stack, the input pane is cleared.

To increase the indentation in the input window, press Tab. To decrease the indentation in the input window,
press Shift+Tab.

Auto-completion
The Python tab provides auto-completion so that you can quickly finish statement tokens. If you write a
partial token but are unsure how to complete it or want to fill in the token automatically, press Tab while the
cursor is still in the input pane.

There are two options for the way in which the auto-completion is handled. You can opt to use the Shell or
IDE auto-completion methods.

AdvancedWorkflow & Extensions | Scripting and Programming in Katana

USER GUIDE
689

• Shell - auto-completes the token based on matches with possible completions, when Tab is pressed. If
there are multiple match possibilities, a list of possibilities is printed to the output pane.

• IDE - provides options for possible auto-completion in a pop-up widget as you type. If you want to use a
possible match for auto-completion, press the Up or Down arrows to choose the specific match and then
press Tab or Return/Enter to auto-complete. If you want to close the IDE pop-widget, press Esc.

To set the auto-completion method, click Edit > Preferences, and select the python heading in the
Preferences dialog. Click the autoCompletionBehavior dropdown and choose Shell or IDE.

Clearing the Output Pane
To clear everything that appears in the output pane, click Edit > Clear at the top of the Python tab.

Automating Procedures
Once you know how to use the Python tab to type in a sequence of Python statements, you probably want
to learn how to automate the procedure. All you need to do is save your statements, and when you want to
use them again later, import them into the Python tab.

Importing and Executing a Python Script
To import and execute a Python script in the Python tab:
1. On the top of the Python tab, click the Script > Source File menu option.

The Run a Script dialog opens.
2. Navigate to the Python module that contains the script you want to open, or type in the file path to the

module, and click Open.

OR
In the input pane, enter:
import module
Wheremodule represents the name of your Python module without the file extension, for example:
import firstmodule
Katana imports the Python module and performs the procedure defined in the module.

Note: The statement does not appear in the input pane either before or after it's executed.

AdvancedWorkflow & Extensions | Scripting and Programming in Katana

USER GUIDE
690

Note: Importing the module is done according to Python’s default rules. During the import, the
module is searched in the following locations and order:

1. In the current directory.
2. In the directories contained in the PYTHONPATH environment variable, if this has been defined.
To view these directories, enter echo $PYTHONPATH in a command shell.
3. In an installation-dependent default directory.

During the search, the variable sys.path is initialized from these directories. Modules are then
searched in the directories listed by the sys.path variable. To see these directories, execute the
statement print sys.path in the Python tab.

Message Logging
Error, warning, and informational messages (to name a few) are logged in Katana using the logging module
of the Python Standard Library. Messages are logged from contexts including the Python tab, shelf scripts,
and Python startup scripts. Messages shown in the UI are generated by the root logger, which is configured
with the ${KATANA_ROOT}/bin/python_log.conf file.

In addition to the Python logging system, Katana also has a C++ logging system, configured with
${KATANA_ROOT}/bin/log.conf. In interactive Katana, messages logged using the Python logging module
are filtered according to its own configuration and posted in the Messages tab, but they are also forwarded
to the Log4CPlus logger, configured using the specified (or default) log.conf. The Render Log is handled
independently.

You can filter the level of messages generated, and the level of messages displayed. For more on how to
filter the level of messages generated or displaying messages, see The Message Center.

The C++ log.conf logging can be sourced from an external file if this is set through the FNLOGGING_
CONFIG environment variable.

Note: This new log.conf file overrides the internal Katana file, so it needs to be complete to
preserve the same print out information. However, using this environment only works for the C++
logging, not for the Python logging driven by the python_log.conf file.

AdvancedWorkflow & Extensions | Scripting and Programming in Katana

USER GUIDE
691

Message Levels

Python Message Levels
Katana recognizes the following standard log message levels from the Python logging module:
• DEBUG

Generates messages of debug level and higher.
• INFO

Generates messages of info level and higher.
• WARNING

Generates messages of warning level and higher.
• ERROR

Generates messages of error level and higher.
• CRITICAL

Generates critical messages only.

Messages shown in the UI are generated by the root logger, which is configured with the ${KATANA_
ROOT}/bin/python_log.conf file. If you're using Katana in Batch mode, all render messages are logged as
INFO log messages to the MainBatch log. The reason for the fixed Python log configuration is that the
actual logging is all configurable using log.conf instead of python_log.conf. The exception to this is the
passing of messages to the Messages tab, where filtering is performed in an interactive manner.

To configure the Python logger for an interactive session you can acquire the specific logger and set its level.
For example, try the following in the Python tab:

noisyLogger = logging.getLogger('NoisyLogger')
noisyLogger.setLevel(logging.WARN)

This should silence all INFO messages from this logger only.

For example:
1. Load a scene and note the INFO message: [INFO python.NodegraphAPI.NodeXmlIO]: Loading

"/tmp/anyScene.katana"...
2. Execute the following in the Python tab:

loadingLog = logging.getLogger('NodegraphAPI.NodeXmlIO')
loadingLog.setLevel(logging.WARN)

AdvancedWorkflow & Extensions | Scripting and Programming in Katana

USER GUIDE
692

3. Now load the scene again.
The INFO message is not logged.

Loggers

There are two ways of logging messages from a Python context:
• directly through the Root Logger, or
• through a Custom Logger.

Root Logger
The following example logs a message of each supported type through Python's root logger:

import logging

logging.info("This is an informational message.")
logging.warning("This is a warning message.")
logging.error("This is an error message.")
logging.critical("This is a fatal error message.")
logging.debug("This is a debugging message.")

Custom Logger
Instead of using the root logger, you can create a custom logger object. The following example creates a
custom logger and generates a message of each level using that logger:

import logging

AdvancedWorkflow & Extensions | Scripting and Programming in Katana

USER GUIDE
693

log = logging.getLogger("myLogger")
log.info("This is an informational message.")
log.warning("This is a warning message.")
log.error("This is an error message.")
log.critical("This is a fatal error message.")
log.debug("This is a debugging message.")

Note: The message level display option in the Messages tab is independent of the level of
message actually generated. For example, if the Messages tab is set to show debug messages,
debug messages are only actually displayed if the level of message generated is also set to include
debug. Refer to The Message Center for more information on how to set the level of message that
is generated.

log4cplus.appender.KatanaConsoleOutput=log4cplus::ConsoleAppender
log4cplus.appender.KatanaConsoleOutput.layout=log4cplus::PatternLayout
log4cplus.appender.KatanaConsoleOutput.layout.ConversionPattern=[%p%c]:

%m%n

log4cplus.appender.KatanaConsoleOutput.layout.ConversionPattern=[%p %c]: %m%n

log4cplus.appender.KatanaConsoleOutput.layout.ConversionPattern=[%p %c %d]:
%m%n

Logging Exceptions

Exceptions can be logged in a way that automatically includes traceback information in the log message, as
in the following example:

AdvancedWorkflow & Extensions | Scripting and Programming in Katana

USER GUIDE
694

import logging

try:
i = 1 / 0

except Exception as exception:
logging.exception("Error in computation: %s"

% str(exception))

Run in the Python tab, this produces a log message with the following text:

Error in computation: float division
Traceback (most recent call last):
File "<string>", line 4, in <module>

ZeroDivisionError: float division

Verbose Mode Logging

There is no command-line argument for controlling the verbosity level for console messages. You can
modify the type of messages that are appended to the logger by changing the rootLogger details so, for
example, to suppress all INFO messages you can set WARN instead:
log4cplus.rootLogger=WARN, KatanaLogFile, KatanaConsoleOutput

Note: To suppress messages in this way, you need to be change the existing log.conf file within
the Katana installation directory, as there is no direct support for sourcing external log.conf files to
customize the logging output.

Renderer Logging

Message logging for renderers is specific for each plug-in, and needs to be handled in a log.conf file located
in the plugins directory.

Note: The level set in the log.conf core file takes precedence over the level set in your plug-ins.
So, setting log.conf to ERROR and the plug-in log level to INFO shows only the errors.

You can also customize the logger completely by creating a new handler for the Logger class, using a similar
structure to that below:

myLog = logging.getLogger('MyLog')
sh = logging.StreamHandler()
logLevel = logging.WARNING # logging.INFO

AdvancedWorkflow & Extensions | Scripting and Programming in Katana

USER GUIDE
695

sh.setLevel(logLevel)
myLog.addHandler(sh)

The Op API
The Op API offers a powerful C++ plug-in interface for manipulating the scene graph and modifying
attributes. All of Katana's shipped Ops are written with the Op API. This API allows you to create plug-ins that
can arbitrarily create and manipulate scene data. An Op can be given any number of scene graph inputs,
inspect the attribute data at any location from those inputs, and can create, delete, and modify the attributes
at the current location. Ops can also create and delete child locations, or even delete themselves.

In other words, anything that you can do with any Katana node, you can do with an Op. Examples of the
things you can do with Ops include:
• Using context-aware generators and importers,
• Advanced custom merge operations,
• Instancing of hierarchies,
• Building network materials out of fragment parts, and
• Processing to generate geometry for crowds.

Op API Basics
Geolib3 is a library for efficiently loading and processing scene graph data. The Geolib3 scene graph is
defined as a hierarchy of named scene graph locations, with each location having a set of named attributes.
Scene graph locations are generated and processed on demand to support large data sets.

Example scene graph locations:
/root

/root/world/geo/mesh

Example attributes:
StringAttr("hello world")

FloatAttr([1.0 2.0 3.0 …])

Operators (Ops) are the core processing unit of Geolib3, called upon to compute the scene graph’s locations
and attributes. Ops can both generate new scene graph locations - the equivalent to Scene Graph
Generators and can also process incoming attributes. In fact, Geolib3 Ops are a super-set of both APIs and,

AdvancedWorkflow & Extensions | Scripting and Programming in Katana

USER GUIDE
696

in practice, no distinction is made between scene graph generation and modification. The code you need to
write for the Op API is also much simpler.

Example Op (Pseudocode):
attr = getAttribute("taco")

setAttribute("cheese", value)

createChild("world")

The OpTree
The tree of connected Operators (the OpTree), is both persistent and mutable. The persistent OpTree allows
Katana to inform Geolib3 of only the changes to the OpTree’s topology and arguments, rather than having
to describe the complete set of Ops again from scratch. This persistent OpTree is efficient by not only
allowing simpler update mechanisms when only a sub-set of Ops have changed, but is also more efficient
from a computational standpoint, as the underlying engine can potentially reuse previously computed (and
cached) results.

Katana cannot directly query from arbitrary Ops in the OpTree. Instead, Clients are created and pointed at an
Op. Locations and attributes, which represent the cumulative result of the upstream OpTree, can then be
computed upon request.

The Runtime is the underlying computational engine responsible for maintaining the persistent
representation of the OpTree, scheduling Op execution, and delivering results to Clients. The runtime can be
used either in a synchronous or asynchronous manner. The synchronous interaction model is common at
render time while the asynchronous model is common during UI interaction.

AdvancedWorkflow & Extensions | Scripting and Programming in Katana

USER GUIDE
697

Core Concepts with Geolib3
There are three core concepts in Geolib3 that pertains to the Op API: the Runtime, Ops, and Clients. In the
sections below, we'll address the host of the system - the Runtime - and the services it provides before
looking closely at Ops and the concept of the Client, and its use.

Geolib3: Into the Details
Geolib3 is Katana’s new deferred scene graph processing library. Geolib3 works at Katana’s core, processing
and generating scene graph locations on demand, to support large data sets. Geolib3 supports an
asynchronous processing model allowing the UI to remain responsive while scene graph data is being
processed.

Operators (Ops) are the core processing unit of Geolib3. Ops can both generate new scene graph locations
(equivalent to Geolib2 Scene Graph Generators) and process incoming attributes.

Katana uses Clients to query attributes on specific locations when requested by the UI, for example to show
attribute values in the Attributes tab, or during rendering, when the scene graph is traversed and processed
to deliver data to the selected renderer.

Differences Between Geolib2 and Geolib3
• Geolib2 did not have a persistent scene graph data model. Conceptually, the entire scene graph is

reconstructed on every edit. Conversely, Geolib3’s OpTree is persistent, allowing for inter-cook scene data
re-use.

• Geolib2’s scene graph was traversed using an implicit index mechanism, for example getFirstChild(),
getNextSibling(), with scene graph location names determined by the name attribute. In Geolib3, children
are natively indexed by name. Thus, in Geolib3 you can selectively cook a location, by name, without
cooking any peers. Consequently, the name attribute is meaningless. However, this also implies that
locations cannot rename themselves (you can rename children, however).

• Geolib2 was not amenable to either asynchronous or concurrent evaluation. Geolib3 supports both of
these features.

The Runtime
The Runtime is responsible for coordinating Op execution, and provides a few key services:
• A means of configuring and modifying the persistent OpTree. This includes creating instances of Ops,

connecting Ops to each other, and providing them with arguments to determine their behavior. Within

AdvancedWorkflow & Extensions | Scripting and Programming in Katana

USER GUIDE
698

Katana, artists interact with nodes rather than the OpTree directly. There is roughly a 1:1 correspondence
between nodes in the node graph and Ops in the OpTree.

• The ability to register your interest in specific scene graph locations and their attributes that are produced
as a result of evaluating the OpTree.

Internally, the Runtime has a number of other responsibilities including:
• Managing the scheduling and evaluation of Ops.
• Observing dependencies between Ops to ensure correct scene graph generation.
• Caching of location and attribute data for retrieval.
• Distribution of location and attribute data to clients.

The Runtime is able to use all the information it gathers from your interactions with it to efficiently manage
resources. For example, if you don't attach any Clients to the OpTree then it does not need to evaluate any
Ops or, if no dependencies exist between two Ops, it can concurrently schedule their evaluation to make
best use of multicore systems.

From a technical perspective, you can interact with the Runtime through a C++ or Python interface, which
provides a great deal of flexibility in how you configure your OpTree and listen to scene graph updates.

Interface Languages Available

Ops C++ and Lua (with OpScript)

Client Configuration C++ and Python

OpTree Configuration C++ and Python

Ops
A Katana Geolib3 Op is the lowest level scene graph processing “unit”, responsible for building or processing
scene graph data on demand. All scene graph loading/processing functionality internal to Katana is
implemented using the same Op API available for your own custom development. Conceptually, Ops are a
super-set of the old geometry APIs in Katana, including Scene Graph Generators.

Examples of what Ops can do include:
• Setting attributes
• Creating child scene graph locations
• Deleting child scene graph locations
• Getting attributes from the incoming scene graph
• Getting the available Op arguments.

AdvancedWorkflow & Extensions | Scripting and Programming in Katana

USER GUIDE
699

Rules for Ops include:
• The OpTree defines the connectivity for what an Op sees as its input.
• Each Op is responsible for registering a stateless function, which is called on demand at all locations on the

input scene graph. This function is also referred to, later on, as the Cook function.
• For Ops that do not have an input, the function is called at the root location giving them the opportunity to

construct a more complex scene graph.
• From the perspective of an Op implementer, the incoming scene is immutable. Only the output scene can

be modified.
• Although an Op can run on many different locations, it's called separately for each location. Each time an

Op is called, the result is a single scene graph location - the 'output location'.
• Ops are expected in their implementation to do the minimum amount of work necessary to produce the

specified scene graph location, in order to be a “good citizen” in a deferred processing system.
• Roughly speaking, when a downstream client is evaluated, all upstream Ops in the OpTree are run over all

scene graph locations that exist (and are expanded) in the incoming tree. While there are more
sophisticated API calls to change which Op runs at child locations, substituting out your OpArgs, the
Optype, or even calling into another Op entirely, these can be ignored during your initial exposure to Op
writing.

• An Op is evaluated from a starting location. This is usually the familiar /root, however, Geolib3 provides
mechanisms that allow you to redefine an Op’s starting location. The ability to change an Op’s starting
location is extremely powerful and allows you to write Ops than can work either relative to your start
location or in a more absolute manner.

Ops have two types of input:
1. Op arguments - these are provided by the user to govern how the Op behaves when evaluated at a

particular scene graph location. When you instantiate an Op you provide a set of root location
arguments, which are the arguments the Op receives when run at its starting location. For instance,
parameter values from nodes and system args, such as the current frame time, are passed to Ops using
Op Arguments.

2. Scene graph input(s) - locations and attributes that have been produced by other upstream Ops in the
OpTree, which are connected to the Op currently being evaluated, are available as input and query-able
in a read-only state.

AdvancedWorkflow & Extensions | Scripting and Programming in Katana

USER GUIDE
700

The Runtime evaluates your Op at, potentially many, scene graph locations and it is up to you, the Op Writer,
to determine the action taken at any particular location. As an Op Writer, you have access to a rich API,
whose functionality can be broken down into three areas:
• Functions to interrogate the scene graph location the Op is currently being evaluated at.
• Functions to interrogate the state of the connected incoming scene graph.
• Functions to modify the output scene graph as a result of evaluating the Op at a given location. In addition

to changing the output scene graph, it is also possible for an Op to change, at evaluation time, what Op
and corresponding arguments are evaluated at child locations. It's also possible for an Op to arbitrarily
execute other Ops during its evaluation.

Clients
In order to view the scene graph locations and attributes generated as a result of evaluating Ops, such as to
walk the scene graph to declare data to a renderer, or to inspect the values in the Attributes tab, we use
Clients. A Client is connected to a specific Op in the OpTree and, in this context, we refer to it as a Terminal
Op. We can control the scene graph locations we are interested in receiving updates for using the Client API.

To ensure the Runtime re-computes scene graph locations for every commit, set these locations as active.
To ensure the Runtime re-computes a scene graph location’s children whenever it is cooked, set the location
as open. As an extension to the open state, you can set a location to recursive open, which also sets the
child locations produced as a result of evaluating that location to open in a recursive manner. This provides
behavior the same as the existing forceExpand option. To conduct a one-shot computation of a scene
graph location, you can instruct the Runtime to ready it.

Once you have created a Client, connected to a specific Op, you can then declare locations in the scene
graph that you are interested in getting data from. The client then receives events from the Geolib3 Runtime
when the requested data is ready.

Examples of Clients include:

AdvancedWorkflow & Extensions | Scripting and Programming in Katana

USER GUIDE
701

• The Attributes tab - sets a single location in the Scene Graph tab as active. When anything at that
location is changed the Attributes tab is notified of the updates.

• The Scene Graph tab - sets /root as active. As you open locations in the UI, these locations are set to open
on the Client. On subsequent updates to the OpTree, open portions of the scene graph are automatically
recomputed.

• Renderers - typically make repeated calls to the Client to ready a location, read the required attributes,
declare them to the renderer’s API, then immediately discard the data.

Client Configuration

You can point a Client at a particular Op, configure it to listen to particular locations, and interrogate the
scene graph locations and attributes that are returned by the Runtime. With client configuration, you are
also able to use transactions, which are objects used to batch together operations that are submitted to the
Runtime at one time.

The first step in Client configuration is the setup of the client with the Runtime. To do this:

Create the Runtime and a transaction to batch our work for the Runtime
into
runtime = FnGeolib.GetRegisteredRuntimeInstance()
transaction = runtime.createTransaction()

Create the Client and point it a terminalOp
client = transaction.createClient()
transaction.setClientOp(client, terminalOp)

Push these changes to the Runtime
runtime.commit([transaction,])

Set a location we're interested in as active
client.setLocationsActive(('/root/world',))

We can then ask the Client for information about the locations we’ve registered interest in, at any point:

Get the list of changed locations
locationDataChangeEvents = client.getLocationEvents()
if not locationDataChangeEvents:
 return

Iterate over each location we've been informed about and interrogate it
for event in locationDataChangeEvents:
 location = event.getLocationPath()

AdvancedWorkflow & Extensions | Scripting and Programming in Katana

USER GUIDE
702

 locationData = event.getLocationData()
 locationAttrs = locationData.getAttrs()
 if not isinstance(locationAttrs, FnAttribute.GroupAttribute):
 continue

Only look at locations of type 'light'
typeAttr = locationAttrs.getChildByName('type')
if (not isinstance(typeAttr, FnAttribute.StringAttribute)
 or typeAttr.getValue('', False) != 'light'):
 continue

Only want to look at xform or material updates
for attrName in ('xform.matrix', 'material',):
 attr = locationAttrs.getChildByName(attrName)

Do something with attr

The OP API Explained
This section covers the following elements of the Op API:
• The cook interface, what it is, and how it fits into Geolib3.
• Op arguments and modifying arguments that are passed down to children.
• Scene graph creation and hierarchy topology management, including how to create and delete scene

graph locations, and controlling where an Op is executed.
• Reading scene graph input from potentially many inputs, and the associated issues.
• CEL and other utility functions that are available to you, as an Op writer, to accomplish common tasks.
• Integrating your Op with the node graph.

You can find concrete examples of the above concepts in the $KATANA_HOME/plugins/Src/Ops directory
where the source code for a number of core Ops is kept. Below is a brief overview of some of these Ops, and
examples of where they are currently used:
• AttributeCopy - provides the implementation for the AttributeCopy node, which copies attributes at

locations from one branch of a scene to another.
• AttributeSet - the back-end to the AttributeSet node, it allows you to set, change, and delete attributes at

arbitrary locations in the incoming scene graph.
• HierarchyCopy - like the AttributeSet Op, it's the back-end to the HierarchyCopy node, allowing you to

copy arbitrary portions of scene graph hierarchy to other parts of the scene graph.
• Prune - removes any locations that match the CEL expression you provide from the scene.

AdvancedWorkflow & Extensions | Scripting and Programming in Katana

USER GUIDE
703

• StaticSceneCreate - produces a static hierarchy based on a set of arguments you provide. This Op is the
core of HierarchyCreate, and is used extensively by other Ops and nodes to produce the hierarchies of
locations and attributes that they need. For example, the CameraCreate node uses a StaticSceneCreate Op
to produce the required hierarchy for a camera location.

The Cook Interface
The cook interface is the interface Geolib3 provides to implement your Op’s functionality. You are passed a
valid instance of this interface when your Op’s cook() method is called. As discussed above, this interface
provides methods that allow you to interrogate arguments, create or modify scene graph topology, and read
scene graph input. You can find a full list of the available methods on the cook interface in $KATANA_
HOME/plugin_apis/include/FnGeolib/op/FnGeolibCookInterface.h.

Op Arguments
As discussed previously, Ops are provided with two forms of input: scene graph input created by upstream
Ops and Op arguments, which are passed to the Op to configure how it should run. Examples of user
arguments include CEL statements describing the locations where the Op should run, a file path pointing to
a geometry cache that should be loaded, or a list of child locations the Op should create.

We’ll first look at the simple case of interrogating arguments and then look at a common pattern of
recursively passing arguments down to child locations.

Reading Arguments
Arguments are passed to your Op as instances of the FnAttribute class. The cook interface has the following
function call to retrieve Op arguments:

FnAttribute::Attribute getOpArg(
 const std::string& specificArgName = std::string()) const;

For example, the StaticSceneCreate Op accepts a GroupAttribute called a that contains a list of attributes,
which contain values to set at a given location. This appears as:

AdvancedWorkflow & Extensions | Scripting and Programming in Katana

USER GUIDE
704

StaticSceneCreate handles the a argument as follows:

FnAttribute::GroupAttribute a = interface.getOpArg("a");
if (a.isValid())
{
 for (int i = 0; i < a.getNumberOfChildren(); ++i)

{
 interface.setAttr(a.getChildName(i), a.getChildByIndex(i));
 }
}

Note: It's important to check the validity of an attribute after retrieving it using the isValid() call.
You should check an attribute’s validity every time you are returned an attribute from the cook
interface.

Passing Arguments to Child Locations
There is a common recursive approach to passing arguments down to child locations on which an Op runs.
The StaticSceneCreate Op exemplifies this pattern quite nicely.

StaticSceneCreate sets attributes and creates a hierarchy of child locations based on the value of one of the
arguments passed to it. This argument is a GroupAttribute that for each location describes:
• a - attributes values
• c - the names of any child locations
• x - whether an additional Op needs to be evaluated at that location

To pass arguments to the children it creates, it peels off the lower layers of the c argument and passes them
to its children. Conceptually, you can consider it as follows (details of a and x are omitted for brevity):

AdvancedWorkflow & Extensions | Scripting and Programming in Katana

USER GUIDE
705

The Op running at its current location reads a, c, and x. For each child GroupAttribute of c it creates a new
child location with the GroupAttribute’s name, for example, child1/child2, and pass the GroupAttribute as
that location’s arguments.

Creating a child in code makes use of the following key function call:

void createChild(const std::string& name,
 const std::string& optype = "",
 const FnAttribute::Attribute& args = FnAttribute::Attribute(),
 ResetRoot resetRoot = ResetRootAuto,
 void* privateData = 0x0,
 void (*deletePrivateData)(void* data) = 0x0);

The createChild() function creates a child of the location where the Op is being evaluated at. The function
also instructs the Runtime the type of Op that should run there (by default, the same type of Op as the Op
that called createChild()) and the arguments that should be passed to it. In StaticSceneCreate this looks as
follows:

for (int childindex = 0; childindex < c.getNumberOfChildren(); ++childindex)
{
 std::string childName = c.getChildName(childindex);
 FnAttribute::GroupAttribute childArgs = c.getChildByIndex(childindex);
 interface.createChild(childName, "", childArgs);
}

Scene Graph Creation
One of the main tasks of an Op is to produce scene graph locations and attributes. The Op API offers a rich
set of functionality in order to do this. There are five key functions that can be used to modify scene graph
topology and control Op execution, which we'll explain below.

AdvancedWorkflow & Extensions | Scripting and Programming in Katana

USER GUIDE
706

Note: It is important to remember the distinction between the set of functions described here and
those described in Reading Scene Graph Input. All functions described here operate on the output
of an Op at a given Scene Graph location. The functions described in Reading Scene Graph
Input relate only to reading the scene graph data on the input of an Op at a given scene graph
location, which is immutable.

The setAttr() Function
void setAttr(const std::string& attrName,
 const FnAttribute::Attribute& value,
 const bool groupInherit = true);

The setAttr() function allows you to set an attribute value at the location at which your Op is currently being
evaluated. For example, to set a StringAttribute at your Op’s root location you can do the following:

if (interface.atRoot())
{
 interface.setAttr("myAttr", FnAttribute::StringAttribute("Val"));
}

It is not possible to set attributes at locations other than those where your Op is currently being evaluated. If
you call setAttr() for a given attribute name multiple times on the same location, the last one called is the
one that is used. The groupInherit parameter is used to determine if the attribute should be inherited by its
children.

Note: Since setAttr() sets values on the Op’s output, while getAttr() is reading immutable values
on a given input, if a call to setAttr() is followed immediately by getAttr(), the result is still just the
value from the relevant input, rather than returning the value set by the setAttr().

The createChild() Function
void createChild(const std::string& name,
 const std::string& optype = "",
 const FnAttribute::Attribute& args = FnAttribute::Attribute(),
 ResetRoot resetRoot = ResetRootAuto,
 void* privateData = 0x0,
 void (*deletePrivateData)(void* data) = 0x0);

AdvancedWorkflow & Extensions | Scripting and Programming in Katana

USER GUIDE
707

The createChild() function allows you to create children under the scene graph location at which your Op is
being evaluated. In the simplest case it requires the name of the location to create, and arguments that
should be passed to the Op that is evaluated at that location. For example:
interface.createChild(childName, "", childArgs);

If you specify optype as an empty string, the same Op that called create child is evaluated at the child
location. However, you can specify any other optype and that is run instead.

Note: Multiple calls to createChild() for the same named child location causes the last specified
optype to be used, that is to say, successive calls to createChild() mask prior calls.

The resetRoot parameter takes one of three values:
• ResetRootTrue - the root location of the Op evaluated at the new location is reset to the new location

path.
• ResetRootAuto (the default) - the root location is reset only if optype is different to the Op calling

createChild().
• ResetRootFalse - the root location of the Op evaluated at the new location is inherited from the Op that

called createChild().

This parameter controls what is used as the rootLocation for the Op when it is run at the child location.

The execOp() Function
void execOp(const std::string& opType,
 const FnAttribute::GroupAttribute& args);

By the time the Geolib3 Runtime comes to evaluating the OpTree, it is static and fixed. The cook interface
provides a number of functions, which allow you to request that Ops that were not declared when the
OpTree was constructed, be executed during evaluation time of the OpTree.

We have already seen how createChild() allows you to do this by allowing you to specify which Op is run at
the child location. The execOp() function allows an Op to directly call the execution of another Op, providing
another mechanism to evaluate Ops, which are not directly declared in the original OpTree. This differs from
the createChild() behavior, where we declare a different Op to run at child locations in a number of ways,
including that:
• It should be thought of as a one-shot execution of another Op, and
• The Op specified in the execOp() call is evaluated as if it were being run at the same location with the same

root location as the caller.

You can see execOp() in action in the StaticSceneCreate Op, where Op types are specified in the x argument:

AdvancedWorkflow & Extensions | Scripting and Programming in Katana

USER GUIDE
708

// Exec some ops?
FnAttribute::GroupAttribute opGroups = interface.getOpArg("x");
if (opGroups.isValid())
{
 for (int childindex = 0; childindex < opGroups.getNumberOfChildren();
 ++childindex)

{
 ...
 if (!opType.isValid() || !opArgs.isValid())

{
 continue;
 }
 interface.execOp(opType.getValue("", false), opArgs);
 }
}

The deleteSelf() Function
void deleteSelf();

Thus far, we have only seen mechanisms to add data to the scene graph, but the deleteSelf() function and
the associated function deleteChild() allow you to remove locations from the scene graph. Their behavior is
self-explanatory but their side effects are less intuitive and are explained fully in Reading Scene Graph Input.
For now, however, an example for what a Prune Op may look like by using the deleteSelf() function call is
shown below:

// Use CEL Utility function to evaluate CEL expression
FnAttribute::StringAttribute celAttr = interface.getOpArg("CEL");
if (!celAttr.isValid())
 return;

Foundry::Katana::MatchesCELInfo info;
Foundry::Katana::MatchesCEL(info, interface, celAttr);

if (!info.matches)
 return;
// Otherwise, delete myself
interface.deleteSelf();

return;

The stopChildTraversal() Function
void stopChildTraversal();

AdvancedWorkflow & Extensions | Scripting and Programming in Katana

USER GUIDE
709

The stopChildTraversal() function is one of the functions that allows you to control on which locations your
Op is run. It stops the execution of this Op at any child of the current location being evaluated. It is best
explained by way of example.

Say we have an input scene:
/root

 /world

 /light

Say what we want is:
/root

 /world

 /geo

 /taco

 /light

So we use a StaticSceneCreate Op to create this additional hierarchy at the starting location /root/world:
/geo

 /taco

However, if we don’t call stopChildTraversal() when the StaticSceneCreate Op is at /root/world then this
Op is run at both /root/world and /root/world/light, resulting in:
/root

 /world

 /geo

 /taco

 /light

 /geo

 /taco

To summarize, stopChildTraversal() stops your Op from being automatically evaluated at any of the child
locations that exist on its input. The most common use of stopChildTraversal() is for efficiency. If we can
determine, for example, by looking at a CEL expression, that this Op has no effect at any locations deeper in
the hierarchy than the current one, it's good practice to call stopChildTraversal() so that we don’t even call
this Op on any child locations.

Reading Scene Graph Input
There are a range of functions that read the input scene graph produced by upstream Ops. All these
functions allow only read functionality; the input scene is immutable.

AdvancedWorkflow & Extensions | Scripting and Programming in Katana

USER GUIDE
710

The getNumInputs() function
int getNumInputs() const;

An Op can have the output from multiple other Ops as its input. Obvious use cases for this are instances
where you wish to merge multiple scene graphs produced by different OpTrees into a single scene graph,
comparing attribute values in two scene graph states, or copying one scene graph into another one. The
getNumInputs() function allows you to determine how many Ops you have as inputs, which is a precursor
to interrogating different branches of the OpTree for scene graph data.

Warning: It is worth noting that, given the deferred processing model of Geolib3, the “get”
functions, such as getAttr(), getPotentialChildren(), doesInputExist(), may ask for scene graph
information that has not yet been computed.

In such this instance, your Op’s execution is aborted (using an exception) and re-scheduled when
the requested location is ready. Thus, Op writers should not attempt to blindly catch all exceptions
with “(...)” and, furthermore, should attempt to write exception-safe code.

If a user Op does accidentally catch one of these exceptions, the runtime detects this and considers
the results invalid, generating an error in the scene graph.

If your Op is only reading from its default input location (and index) or its parents, “recooks” are
unlikely to occur. However, for scattered access queries, either on the input location path or on the
input index, "recooks" are likely. If an Op needs to do scattered access queries from a multitude of
locations, which would otherwise have unfortunate performance characteristics, an API call -
prefetch() - is available and is discussed in further detail later on.

The getAttr() Function
FnAttribute::Attribute getAttr(
 const std::string& attrName,
 const std::string& inputLocationPath = std::string(),
 int inputIndex = kFnKatGeolibDefaultInput) const;

It is often necessary to perform some action or compute a value based on the result stored in another
attribute. The getAttr() function allows you to interrogate any part of the incoming scene graph by
providing the attribute name and a scene graph location path (either absolute or relative). Additionally, you
can specify a particular input index to obtain the attribute value from, which must be smaller than the result
of getNumInputs(). It is important to note that getAttr always returns the value as seen at the input to the

AdvancedWorkflow & Extensions | Scripting and Programming in Katana

USER GUIDE
711

Op. If you wish to consider any setAttrs already made, either by yourself or another Op invoked with execOp,
you must use getOutputAttr.

The following diagram illustrates some of the subtleties of this and, most importantly, that getAttr in an
execOp Op, only sees the results of the calling Op when the query location is the current location, otherwise
you see the input to the calling Op’s ‘slot’ in the Op graph.

The getPotentialChildren() Function
FnAttribute::StringAttribute getPotentialChildren(
 const std::string& inputLocationPath = std::string(),
 int inputIndex = kFnKatGeolibDefaultInput) const;

In Scene Graph Creation the function deleteSelf() was introduced, noting that the consequence of such a
call is more subtle than it may have first appeared. When an upstream Op is evaluated and creates children, if
downstream Ops have the ability to delete them, the upstream Op can only go so far as to state that the
children it creates may potentially exist after a downstream Op has been evaluated at those child locations.
This is because the Op has no knowledge of what a downstream Op may do when evaluated at such a
location. To that extent, getPotentialChildren() returns a list of all the children of a given location on the
input of an Op.

The prefetch() Function
void prefetch(const std::string& inputLocationPath = std::string(),
 int inputIndex = kFnKatGeolibDefaultInput) const;

Maintain good code practice by using prefetch() as early as possible in the code for your Op's cook function.

The prefetch() function can be used to indicate dependencies between scene graph locations. For example:

AdvancedWorkflow & Extensions | Scripting and Programming in Katana

USER GUIDE
712

/root/world/geo/a may call prefetch() for /root/world/geo/b because during the processing of
/root/world/geo/a, attributes present at ./b will be required.

CEL and Utilities
There are a number of tasks that Ops are frequently required to complete, such as:
• Creating a hierarchy of locations,
• Determining whether an Op should run based on a CEL expression argument,
• Reporting errors to the user through the scene graph, and
• Obtaining well-known attribute values in an easy to use format, for example, bounding boxes.

Currently you can find headers for these utilities in:
• $KATANA_HOME/plugin_apis/include/FnGeolib/op/FnGeolibCookInterface.h
• $KATANA_HOME/plugin_apis/include/FnGeolib/util/*

The utility implementations live in:
• $KATANA_HOME/plugin_apis/src/FnGeolib/op/FnGeolibCookInterfaceUtils.cpp
• $KATANA_HOME/plugin_apis/src/FnGeolib/util/*

Many of these utilities are self-documenting and follow similar patterns. The following example
demonstrates using the CEL matching utilities:

// Should we run here? If not, return.
FnAttribute::StringAttribute celAttr = interface.getOpArg("CEL");
if (!celAttr.isValid())
 return;
Foundry::Katana::MatchesCELInfo info;
Foundry::Katana::MatchesCEL(info, interface, celAttr);
if (!info.canMatchChildren)
{
 interface.stopChildTraversal();
}
if (!info.matches)
 return;

In the example above, a couple of things are achieved:
1. We determine whether the CEL expression could potentially match any of the children, and if not, we

direct the Runtime to not evaluate this Op at child locations.
2. We determine whether we should run at this location, and return early if not.

Feel free to explore the range of utility functions available, as it can increase your productivity when writing
Ops.

AdvancedWorkflow & Extensions | Scripting and Programming in Katana

USER GUIDE
713

Groups, Macros, and SuperTools
Groups, Macros, and SuperTools allow you to create higher-level compound nodes out of other nodes.
Groups and macros are created in the Katana UI, while SuperTools are created using Python.

Introduction to Groups
Groups are simply nodes that group together a number of other nodes into a single node. They are typically
used to simplify the node graph by collecting nodes together. The simplest way to create a group is by
selecting a number of nodes in the node graph and pressing G. A new Group node is created, with the
previously selected nodes as its children. Any connections between selected nodes are preserved. You can
also create an empty group by choosing Group from the Tab node creation menu. Group nodes can also be
duplicated like any other node, creating duplicates of any child nodes and preserving any connections
between them.

A Group node may have upstream and downstream connections, depending on the connections of the
nodes contained within it.

The contents of a group that holds PrimitiveCreate,
Material, Merge, and MaterialAssign nodes, with a
connection leaving the group from the
MaterialAssign node.

None of the nodes in the group have incoming
connections from outside the group. Nodes in the
group with outgoing connections show an output
connection from the Group node.

To see and edit the nodes within a group, click on the icon on the node to show the group’s contents in a
new window. When the new window is open, the icon on the Group node turns into a sign. Clicking the

sign closes the new window.

AdvancedWorkflow & Extensions | Groups, Macros, and SuperTools

USER GUIDE
714

Another way to view the contents of a group is to Ctrl+middle-click on the Group in the node graph to drop
down a level in the node graph to the level of the child nodes. With the contents of a group exposed, you
can select and edit individual nodes in the same way you would any other. See Editing the Node Graph for
more on selecting nodes and editing parameters. To go back up a level in the node graph, use

Ctrl+Backspace or click on the up arrow icon in the node graph address bar. Group nodes - as with any
other node - can have user parameters with which you can add parameters to a node, and interactive
connections between parameters.

Note: See the Adding User Parameters section for more on adding and using user parameters.
Additionally, for more on Group nodes and their incoming or outgoing connections, see Help >
Developer Guide.

GroupStack and GroupMerge Nodes
As well as standard Group nodes, which can have child nodes of any node type, there are two special
convenience group nodes to make it easier to collect multiple nodes of the same type: GroupStack and
GroupMerge. These nodes are useful for organizing the UI when there are large numbers of the same types
of nodes. Both GroupStack and GroupMerge nodes offer an interface to control some elements of the nodes
contained within. To create a GroupStack or GroupMerge node of a particular node type, simply create a
GroupStack or GroupMerge and Shift+middle-drag a node of the desired type into it, from the Node Graph
tab.

AdvancedWorkflow & Extensions | Groups, Macros, and SuperTools

USER GUIDE
715

A GroupStack node can only contain nodes of a single type, and those nodes must have at least one input
connection, and a single output connection. The contained nodes are chained together in a series inside the
GroupStack, with the output of the top node connected to the first input of the next node, and so on. If there
are multiple inputs on a node, only the first one is considered. Ctrl+middle-click on the GroupStack node in
the node graph to see the arrangement of the nodes inside the GroupStack.

In the node graph, select any nodes you want to place in a GroupStack node, then Shift+middle-click and
drag them onto the GroupStack node’s list pane in the Parameters tab. The nodes are transferred to the
GroupStack node, and are editable in the GroupStack node’s Parameters tab. GroupStack nodes have
additional Parameters tab options for adding, and editing nodes of their selected type. Above the list pane
in a GroupStack node’s Parameters tab are icons to add additional nodes of the selected type, filter the list
of nodes, and lock highlighted nodes. Highlighting an entry in the list pane and pressing the D key also
disables the selected entry.

A GroupMerge node can only contain nodes of a single type and those nodes must have a single output
connection, but there is no requirement on the type of input connections used. The child nodes are
connected as separate inputs to a Merge node, creating a single output out of the group. Any inputs on
nodes inside a GroupMerge node are ignored. The only connections inside the GroupMerge are from the
outputs of the constituent nodes, to the input of a Merge node. Ctrl+middle-click on a GroupMerge node in
the Node Graph to see the arrangement of its constituent nodes.

AdvancedWorkflow & Extensions | Groups, Macros, and SuperTools

USER GUIDE
716

In the node graph, select any nodes you want to place in a GroupMerge node, then Shift+middle-click and
drag them onto the GroupMerge node’s Parameters tab. The nodes are transferred to the GroupMerge
node, and are editable in the GroupMerge node’s Parameters tab. GroupMerge nodes have additional
Parameters tab options for adding, and editing nodes of their selected type. Above the list pane in a
GroupMerge node’s Parameters tab are icons to add additional nodes of the selected type, filter the list of
nodes, and lock highlighted nodes. Highlighting an entry in the list pane and pressing the D key disables the
selected entry.

Introduction to Macros
Macros are nodes that wrap any single node, or group of nodes, and publish them so that their state is saved
and they can be recalled in other projects. Macros wrap functionality, allowing you to hide or group logic, so
that you can then re-use the macros multiple times. You can create a macro made from groups or from any

single node by using the menu at the top of the node’s Parameters tab, and choosing Save As Macro....

Once you have created a macro, it can be added to a project as you would add a regular node, including
from the Tab node creation menu. By default, if no other directory options are set, macros are saved into the
Home directory in .katana/Macros/_User. Like any other node, they can make use of user parameters for
more complex functionality. For more on how to set up user parameters, refer to Adding User Parameters.

You can also place and read macros from other directories included in your $KATANA_RESOURCES
environment variable. Macros are picked up from sub-directories called Macros and take the name of the

AdvancedWorkflow & Extensions | Groups, Macros, and SuperTools

USER GUIDE
717

parent directory as a suffix. For example, if you point your $KATANA_RESOURCES to /production/katana_
stuff/_studio, you can put macros in /production/katana_stuff/_studio/Macros and they are
automatically suffixed with _studio.

If you want the macro to have input or output ports, you need to make sure that there are connections to
other external nodes when you create the group. For each original connection from an internal node to an
external one, the macro creates an appropriate port.

For more information on creating or recalling macros, refer to Macros.

Introduction to SuperTools
SuperTools are like macros but written in Python. The nodes inside are created and controlled using Python
scripts, and you can customize how parameters are presented using PyQt. For more information on writing
SuperTools, refer to Writing a SuperTool.

Alternatively, for more technical information about how to set up SuperTools using the NodegraphAPI and
the Plug-in Registry, refer to SuperTools.

Macros
Macros are nodes that wrap any single node, or group of nodes, and publish them so that their state is saved
and they can be recalled in other projects.

You can create a macro from any node by using the wrench menu at the top of the node’s Parameters tab,
and choosing Save as Macro... although Macros are more typically - and more usefully - made from groups.
You save a macro from a Group node in the same way you would from any other node (by choosing Save as
Macro... from the wrench menu in a group’s Parameters tab).

Once you have created a macro, it can be added to a project as you would add a regular node, including
from the Tabnode creation menu. By default - if no other directory options are set - macros are saved into
the Home directory in .katana/Macros/_User and are given the suffix _User.

You can also read macros from other directories included in your $KATANA_RESOURCES environment
variable. Macros are picked up from sub-directories called Macros and take the name of the parent directory
as suffix. For example, if you point your $KATANA_RESOURCES to /production/katana/studio you can put
macros in /production/katana/studio/Macros. Macros which are inside a subdirectory automatically
suffixed with the name of the subdirectory.

For example:

AdvancedWorkflow & Extensions | Groups, Macros, and SuperTools

USER GUIDE
718

Macro Path Macro Name

/production/katana/studio/Macros/MyMacro.macro MyMacro

/production/katana/studio/Macros/_User/MyMacro.macro MyMacro_User

/production/katana/studio/Macros/OtherMacros/MyMacro.macro MyMacroOtherMacros

If you want the macro to have input or output ports you need to make sure that there are connections to
other external nodes when you create the group. For each original connection from an internal node to an
external one, the macro creates an appropriate port.

SuperTools
SuperTools are compound nodes where the internal structure of nodes is dynamically created using Python
scripting.

This means that the internal nodes can be created and deleted depending on the user's actions, as well as
modifications to the connections between nodes and any input or output ports. The UI that a SuperTool
shows in the Parameters tab can be completely customized using PyQt, including the use of signals and
slots to create callbacks based on user actions. To help with this, we have a special arrangement with
Riverbank Computing - the creators of PyQt - allowing us to give user access to the same PyQt that Foundry
uses internally in Katana.

Many of Katana’s common user level nodes, such as the Importomatic, GafferThree, and LookFileManager,
are actually SuperTools created out of more atomic nodes. It can be useful to look inside existing SuperTool
nodes and macros to get a better understanding of how they work. If you Ctrl+middle-click on a suitable
node, you open up its internal Node Graph.

In general, SuperTools consist of:
• A Python script written using the Katana NodegraphAPI that declares how the SuperTool creates its internal

network.
• A Python script using PyQt that declares how the SuperTool creates its UI in the Parameters tab.
• A third Python script (typically) for common shared utility functions needed by both the nodes and UI

scripts.

AdvancedWorkflow & Extensions | Groups, Macros, and SuperTools

USER GUIDE
719

Writing a SuperTool
SuperTools in Katana are written in Python and the suggested convention is that form and function are
defined by two separate classes: xxxNode and xxxEditor respectively (where xxx is the tool's name, for
example, GafferThree). The Editor class offers a UI to modify the internal network using the API functions,
whereas the Node class defines the node itself and the public scripting API.

Most of the information on SuperTools can be found in SuperTools, however, continue for the basics on
writing a SuperTool.

Following the suggested convention, the internal file structure of a SuperTool could look something like this:
HelloSuperTool

├─ __init__.py
└─ v1

├─ __init__.py
├─ Editor.py
├─ Node.py
├─ ScriptActions.py
└─ Upgrade.py

The files in a SuperTool are as follows:
• Node.py - the node itself and the public scripting API, which you can test if you get a reference to the node

in the Python tab.
• Editor.py - the Qt4 UI (this is only imported in the interactive GUI, not in batch or scripting modes).
• ScriptActions.py - useful functions that are not part of the node API. Since this node is imported by both

node and editor, it cannot contain any GUI code.
• Upgrade.py - stub for upgrading the node. This allows compatibility with older versions of the node.

Note: The clean separation between the node and the UI is important for being able to script the
node in Script mode.

There is no namespacing of nodes inside groups or SuperTools. To reliably get access to nodes with an initial
name, you should use expressions such as:
getNode('Merge').getName()

If the node gets renamed, Katana looks for all getNode('xxx') calls and renames them appropriately.

You can also find example source code, which demonstrates the creation of a SuperTool in:

AdvancedWorkflow & Extensions | Groups, Macros, and SuperTools

USER GUIDE
720

$KATANA_HOME/plugins/Resources/Examples/SuperTools/ImageCoordinate.

This particular example demonstrates the SuperTool making use of a custom Qt widget, and interacting with
Katana's Model-View-Controller system. It also presents a simple SuperTool that allows you to load an image
(.jpg or .gif) and select a coordinate within the image. The coordinate is then fed back into the scene graph
using the SuperTool's internal node network.

Customizing GafferThree

Creating a Custom GafferThree Package Class
Package classes in the GafferThree define the types of items that can be created through the GafferThree,
the way in which they are displayed in the GafferThree's UI within the Parameters tab, and other properties
such as whether the items can accept other items as children.

In order to create a custom package class for the GafferThree, the following components are required:
• Package class
• Edit package class (optional)
• UI delegate class
• Package initialization file

Package Class
The package’s main class is responsible for creating nodes that produce the scene graph locations and
attributes for your package, as well as the parameters for modifying these locations and attributes.

To implement a package class, do the following:
• Create a class derived from PackageSuperToolAPI.Packages.Package, or choose a specific type of

package class to derive from if appropriate, for example, the GafferThree’s LightPackage class.
• Implement the create() class method. Your implementation should create and connect together the nodes

for the package within a Group node, and instantiate and return a new package class instance.
• After defining your package class, register it with the GafferThreeAPI by calling

GafferThreeAPI.RegisterPackageClass(), and passing your class.

AdvancedWorkflow & Extensions | Customizing GafferThree

USER GUIDE
721

Tip: You can store references to nodes you create using the
PackageSuperToolAPI.NodeUtils.AddNodeRef() function. AddNodeRef() stores the name of
the node as a custom parameter on the package node, and makes it easy to refer to nodes within a
package from elsewhere in the code associated with your package. Node references stored in this
way can be obtained using the corresponding GetNodeRef() function from the NodeUtils
module.

Edit Package Class (Optional)
An edit package class is responsible for creating nodes, which can edit scene graph locations in the incoming
scene graph. These locations may have been created by an instance of your custom package class in an
upstream GafferThree node.

To implement an edit package class, which is optional, do the following:
Create a class derived from PackageSuperToolAPI.Packages.EditPackage, or choose a specific type of edit
package class to derive from if appropriate. For instance, the GafferThree’s LightEditPackage class.

UI Delegate Class
A UI delegate class is responsible for defining the parameter interface shown in tabs below the Gaffer object
table in the Parameters tab.

To implement a UI delegate class, do the following:
• Create a class derived from PackageSuperToolAPI.UIDelegate.UIDelegate, or choose a specific type of

UI delegate class to derive from if appropriate. For instance, the GafferThree’s LightUIDelegate class.

Tip: You can use PackageSuperToolAPI.UIDelegate.GetUIDelegateClassForPackageClass() to
obtain the UI delegate class that was registered for a specific package class.

• You can also implement the getTabPolicy() instance method, which is optional:

getTabPolicy() receives the name of a tab, Object, Material, or Linking in the case of GafferThree, and is
expected to return a QT4FormWidgets.PythonGroupPolicy instance containing parameter policies for
editing parameters on the nodes created by your package class.

AdvancedWorkflow & Extensions | Customizing GafferThree

USER GUIDE
722

Tip: You can use PackageSuperToolAPI.NodeUtils.GetRefNode() to reference nodes in your
package that you have previously stored using AddNodeRef().

Package Initialization File
To ensure that your package is initialized, place your package modules in a SuperTools sub-directory of a
path, which is contained in your $KATANA_RESOURCES environment variable, alongside an __init__.py file,
which imports your package files.

The resulting directory structure should look similar to the following:

SuperTools
`-- SkyDome

|-- __init__.py
|-- ExamplePackage.py
`-- ExampleUIDelegate.py

The UI delegate class can only be imported if Katana is running in UI mode:

import PackageSuperToolAPI
import ExamplePackage

if PackageSuperToolAPI.IsUIMode():
import ExampleUIDelegate

Optimizing Performance
Katana node graphs, their Op trees, and the scenes they subsequently create are incredibly flexible and
varied. To optimally evaluate these scenes, an evaluation engine must be both efficient and flexible enough
to handle the variety and complexity of scenes possible in Katana.

Geolib3-MT, the next generation of Katana scene graph processing engine, provides a greater degree of
configuration, introspection, and tuning options than previous versions of Geolib3 to meet the demands of
increasingly complex and varied workloads.

This section explores these options and how they can be used to improve scene traversal performance.

Optimizing Performance | Customizing GafferThree

USER GUIDE
723

Note: For more information on profiling and optimization, you can refer to the Developer Guide.

Geolib3-MT Configuration
Geolib3-MT can be configured via the RenderSettings node. All Geolib3-MT options live under the
sceneTraversal heading.

Optimizing Performance | Geolib3-MT Configuration

https://learn.foundry.com/katana/6.5v1/dev-guide/PerformanceOptimizationGuide/StartHere.html

USER GUIDE
724

sceneTraversal Parameters

maxCores

text field

Default: 0

Determines how many logical cores Geolib3-MT uses during scene traversal
phase.

Unlike previous versions, Geolib3-MT uses an internal thread pool to improve
scene traversal time. The following diagram demonstrates the difference
between Geolib3-MT and previous versions of Katana.

The default value of 0, causes Geolib3-MT to use all available logical cores on
the host computer.

Note: Whilst the core Geolib3-MT processing engine scales as the
number of cores increases, individual Ops within an Op tree may not
exhibit the same scaling characteristics. It is possible that an increase
in threads can result in an increase of scene traversal time. In this case,
the new profiling tools available in Katana 3.5 can be used to identify
these Ops and optimize their behavior. The same is true of Ops
marked thread unsafe, as these require the acquisition of a Global
Execution Lock (GEL), which further limits scene traversal scalability.

opTreeOptimizations

checkbox

Default: Off

When turned on, Geolib3-MT performs a pre-processing step in which it
examines the topology of the Op tree to identify constructs that can be
potentially optimized. One optimization is the collapsing of sequences of Ops of
the same type into a single instance of that Op. There are a number of benefits
to this:

l Reduced function call overhead - There is a small cost involved in

Optimizing Performance | Geolib3-MT Configuration

USER GUIDE
725

scheduling an Op to cook a scene graph location. By combining chains of
similar Ops, it's possible to reduce this function call overhead.

l Reduced memory footprint - A chain of 10 Ops occupies 10 separate
cook results in the caching subsystem, while a successfully collapsed Op
Chain occupies only 1 cook result per location.

The result of evaluating a collapsed chain of Ops, when observed from the most
downstream Op, should be the same as if the chain of Ops were evaluated.

Note: Op API calls to query upstream scene graph results, such as
getAttr(), does not return the expected result when called within a
collapsed chain if one of those Ops within the chain was responsible
for setting that attribute. In this case the Op should use
getOutputAttr() instead.

The Op tree optimizer attempts to collapse any chain of Ops of the same type if
it calls GeolibSetupInterface::setOpsCollapsible() during the setup() call.
Callers of this function must specify the name of an attribute which Geolib3
passes to the Op's cook() call as an Op argument. This attribute contains an
ordered array of attributes (ordered upstream Op to downstream Op)
containing the collapsed Ops' arguments. The Op is then able to deal with this
batch Op argument as appropriate.

verboseLogging

checkbox

Default: Off

When turned on, verbose logging inside the Geolib3-MT runtime is enabled.
This includes verbose logging during scene traversal, and Op tree optimization,
if enabled.

sceneTraversal.cache Parameters
Geolib3-MT includes a number of settings to control the behavior of the caching subsystem. The caching
subsystem is responsible for the storage and retrieval of previously cooked scene graph locations, known as
cook results. These settings can be modified from the RenderSettings node on a project-by-project basis.

Caching, and the trade-off between memory usage and time to first pixel can have a significant impact on
the performance of scene traversal time and rendering. Using the settings provided by Geolib3-MT it's
possible to tune the memory footprint during the scene traversal phase of rendering.

Optimizing Performance | Geolib3-MT Configuration

USER GUIDE
726

cacheEviction

checkbox

Default: On

If turned off, no cook results are evicted from the cache.

Tip: Whilst initially it might seem counter-intuitive to disable cache
eviction, there may be scenes where it is appropriate. This may be
the case when the scene and data structures required by the
renderer fit comfortably into memory. Even larger scenes could
benefit to some degree, as once the scene generation phase of
rendering is complete, the memory pages occupied by Geolib3-
MT's cook results can no longer be accessed and therefore are not
eligible for paging to disk; as these pages won't be re-paged to
main memory during rendering the performance penalty is
minimal.

cacheSoftLimit

text field

Default: 1,048,576

If cacheEviction is turned on, the cacheSoftLimit governs how many cook
results are stored in local caches before entries are evicted using a least
recently used eviction policy.

Note: Whilst these entries may be evicted from a local cache they
may be shared amongst a number of other local caches or the
central (shared cache). In which case, the entries' memory won't
immediately be reclaimed.

Consider the maximum depth of the scene graph and Op tree. The
cacheSoftLimit controls the size of the recently used cook result cache on a
per thread basis. This means any locations cooked on a particular thread, or
any locations accessed during the cooking process (such as via getAttr()),
are stored in the local cache and subject to eviction based on the value of the
cacheSoftLimit.

collectionFrequency

text field

Default: 10,000

If cacheEviction is turned on, the collectionFrequency governs the time, in
milliseconds, between collection cycles. During a collection cycle, Geolib3-MT
gathers all cache entries evicted since the previous collection cycle and if the
cook result is no longer used, evict and reclaim the memory for the cook
result.

Optimizing Performance | Geolib3-MT Configuration

USER GUIDE
727

Note: Reducing the collectionFrequency interval causes more
aggressive eviction of cook results leading to a reduced memory
footprint but potentially at the cost of scene traversal time.

useCachePrepopulation

checkbox

Default: On

If turned on, Geolib3-MT performs a traversal of the scene graph populating
an internal cache.

The extent of this traversal can be controlled by the settings under
sceneTraversal.cachePrepopulation.

sceneTraversal.cachePrepopulation Parameters

preCookSourceOps

checkbox

Default: Off

If turned on, Geolib3-MT first fully traverses the scene generated by any source
Op (any Op with no inputs) found in the Op tree. This setting can provide
benefits when loading in geometry caches or other asset types.

Note: Empirical tests have found that source Ops are typically
followed by some form of prune operation; as a result, in these cases,
turning on preCookSourceOps can generate more scene graph
locations than is required which can lead to increased memory
consumption and traversal times.

preCookKeyOps

checkbox

Default: On

If turned on, Geolib3-MT identifies Ops within the Op tree that can be evaluated
in parallel.

An example of this is the Merge Op:

Geolib3-MT evaluates each branch in parallel, which can reduce scene traversal
times.

preCookAllLocations

checkbox

Default: On

If turned on, Geolib3-MT cooks all remaining scene graph locations, fully
expanding the scene.

Based on the values of the above settings, on completion of the cachePrepopulation phase, the Geolib3-
MT cache is pre-populated with either the whole scene graph or a subsection of it. Geolib3-MT has been

Optimizing Performance | Geolib3-MT Configuration

USER GUIDE
728

optimized to provide efficient access to renderer plugins via the existing FnScenegraphIterator API to this
cache. This cache is a scalable, thread safe cache, as such >we encourage renderer plugins to access this
cache concurrently to improve the performance of the scene build phase.

Warning: If the Geolib3-MT cache is not fully populated, cache access (via
FnScenegraphIterator) results in a cache miss. In this case the requested location is cooked using
the calling thread.

Geolib3-MT Profiling
Geolib3-MT adds a new render type, called Preview Render with Profiling, designed to help track down
performance problems in scene traversal. This performs a normal Preview Render, but also captures
information about which Ops have run, the amount of CPU used by them to cook locations, and the amount
of memory used for attributes and Lua scripts.

A Preview Render with Profiling outputs profiling data in two places:

l A summary report in the Render Log, containing total CPU time and memory used, as well as the ten
most expensive Ops.

l A JSON file written to disk containing raw profiling data.

Starting a Preview Render with Profiling
A Preview Render with Profiling can be started from the same menu as any other render:

1. Right-click on the node you wish to render from.
2. Click Preview Render with Profiling from the menu.

Optimizing Performance | Geolib3-MT Profiling

USER GUIDE
729

This option will be available for any renderer that already supports a Preview Render, and requires no
additional work on the part of the renderer. If the renderer implements the finalize() method of the Geolib3-
MT runtime, these profiling reports will be created when the runtime is finalized; otherwise reports will be
written when the render finishes.

The overhead of capturing profiling data during a Preview Render with Profiling is minimal, and there
should not be significant slowdown compared to a normal Preview Render.

What Information is Captured?
A Preview Render with Profiling captures the following information for each Op that is executed during
scene traversal:

Optimizing Performance | Geolib3-MT Profiling

USER GUIDE
730

l The name, type and numerical ID of the Op.
Each Op has name, type and a unique numeric ID. For example, an OpScript Op may have name op74,
type OpScript.Lua; and ID 77.

Note: The name and ID do not need to correlate.

l The name and type of the Katana node that spawned the Op.
In cases where an Op is spawned directly by a Katana node, the name and type of that node are
recorded. In cases where the Op was created implicitly, the node name will equal _NoName_ and the
type will equal _NoType_. This occurs, for example, with MaterialFilenameResolve Ops as these Ops
are created implicitly when a file name needs to be resolved, so no Katana node is identified as the
creator.

Note: If sceneTraversal.opTreeOptimizations is enabled and chains of Ops are collapsed,
node name and type will be replaced with a string generated from the chain. If the chain has
length t, formed of Ops of type opType, where Op k is named ok and is generated by a
Katana node named nk, the general form of the string will be:
cop(o0(n0)->o1(n1)-> ... ->ot(nt))
However, the format of this string is not guaranteed to remain fixed.

l The total CPU time that Op spent cooking locations.
Each Op will cook many locations, and the time spent doing this, across all scene traversal threads, is
accumulated. CPU time scales with the number of scene traversal threads when a scene is traversed in
parallel. If this is not the case, there may be a thread-unsafe Op upstream of the Op in question.

l The memory footprint of that Op.
Each Op must allocate memory to cook locations, and the memory total per Op is aggregated.
At present, the following allocations are recorded:

l Allocations made by the FnAttribute library, to store attributes of cooked locations.
l Allocations made by the Lua interpreter while executing OpScripts.
l Allocations made to store CookResults in the cache.

Profiling Summary Report
A summary report is written to the Render Log upon completion of a Preview Render with Profiling. This
report is intended to give a high-level overview of the profile data, and contains:

l The total CPU time, summed across all Ops.
l The total memory footprint, summed across all Ops.

Optimizing Performance | Geolib3-MT Profiling

USER GUIDE
731

l The slowest five Ops by CPU time.

The relevant section of an example Render Log.

Profiling JSON File
In addition to the summary report, a JSON file containing the raw profiling data is written to disk. The
directory it is written to is determined by the --profiling-dir command-line argument; if this is not set, it will
be written to the temporary directory for the Katana session. If this directory does not exist, it will be created,
as long as file system permissions allow. The file name takes the following format:

profile_<renderer>_previewRender_<datetime>.json

Where:

l <renderer> is the name of the render plugin, e.g. dl for 3Delight;
l <datetime> is the ISO8601 timestamp from when the render was started.

The file contains a single JSON object with the following properties:

Property Type Description Example

timestamp string ISO8601 timestamp at which the
profile file was written.

2019-10-11T09:37:06Z

renderer string Name of the render plugin. dl

renderMethodName string Name of the render method;
currently always previewRender.

previewRender

environment object An object containing values of {

Optimizing Performance | Geolib3-MT Profiling

USER GUIDE
732

various environment variables,
including:

l KATANA_RELEASE
l KATANA_ROOT
l KATANA_RESOURCES.

“KATANA_RELEASE”: “3.5v1”,

“KATANA_ROOT”:
/opt/foundry/katana3.5v1”,

“KATANA_RESOURCES”:
“<unset>”

}

profileMode string Name of the profile mode; currently
always basic.

basic

ops array Array of objects describing resources
consumed by each Op.

See the table below

numOps number Length of the Ops array. 78

wallTime number Wall-clock time in seconds between
render start and the profiling file
being written; if the renderer
implements finalize(), this equates
to scene traversal time.

46.85064

cpuTime number Sum of CPU time for all Ops, in
seconds.

91.39238

memoryUsed number Sum of memory footprints for all
Ops, in bytes.

10728607911

The ops property contains an array of objects of the following format, one for each Op that was executed
during scene traversal.

Property Type Description Example

opId number The unique integer identifier for the Op. 23

opName string The unique name of the Op. op223

opType string The type of the Op. AttributeSet

nodeName string The name of the Katana node responsible for creating
this Op, or _NoName_ if the Op was created implicitly.

RenderSettings_
SetSamples

Optimizing Performance | Geolib3-MT Profiling

USER GUIDE
733

nodeType string The type of the Katana node responsible for creating
this Op, or _NoType_ if the Op was created implicitly.

RenderSettings

cpuTime number The total time this Op spent cooking locations across all
threads, in seconds.

0.54512136

memoryUsed number The total memory footprint, as defined above, this Op
used while cooking locations, in bytes.

185378321

Analyzing the Profile Results
A Python 2.7 script is included to sort and group the results in various ways. This script can be found here:

$KATANA_ROOT/extras/Profiling/analyzeProfilingRenderResults.py

You can call this Python script from the command line as follows:
cd $KATANA_ROOT/extras/Profiling

python analyzeProfilingRenderResults.py /path/to/results/file.json <options>

The following command-line options are available:

--help Display the help text and exit.

--sort-by FIELDNAME Sort the results by FIELDNAME, where FIELDNAME is one of the JSON property
names opId, opName, opType, nodeName, nodeType, cpuTime or
memoryUsed.

--reverse, -r Sort the results in reverse order.

--group-by FIELDNAME Group the results by FIELDNAME, where FIELDNAME is one of the JSON
property names opId, opName, opType, nodeName, nodeType, cpuTime or
memoryUsed.

--human-readable, -h Print memory totals in human-readable units (i.e. KiB, MiB, etc. as appropriate)
rather than bytes.

--limit LIMIT, -l LIMIT Limit output to the first LIMIT rows after grouping and sorting.

--columns COLUMNS Output only the specified columns, where COLUMNS is a comma-separated
list of the JSON property names opId, opName, opType, nodeName,
nodeType, cpuTime or memoryUsed.

Optimizing Performance | Geolib3-MT Profiling

USER GUIDE
734

The script outputs an ASCII table of results to stdout, grouped and sorted as requested. If --sort-by is not
set, results will be sorted by opId. If --group-by is not set, no grouping will occur.

Note: When grouping by nodeName, all results with name _NoName_ will be grouped together.
The same is true for nodeType.

The following combination of command-line options may be useful to get started:

--group-by opType --sort-by cpuTime Find out which Op types are most CPU-intensive.

--group-by nodeName --sort-by
cpuTime

Find out which Katana nodes are most CPU-intensive.

--group-by nodeType --sort-by
memoryUsed

Find out which Katana node type accounts for the largest
memory footprint.

Op Cook Profiling
A Profiling mode exists in Katana. When launched in Profiling mode, Katana can generate reports on Op
cook times within profiling sessions. Cook times are aggregated per Op instance, per location. These reports
can help in pinpointing slow areas of the Op tree and scene graph.

The profiling is low overhead to minimize its effect on cook performance and the more computationally
demanding data aggregation is performed at the end of the profiling session.

Note: The timing report files produced can be extremely large, of the order of gigabytes. As a
guide, note that typically one line of information is produced per Op instance, per scene graph
location at which it is cooked. This is why we recommend you use profiling mode selectively when
measuring cooking times, and not during normal production usage of Katana.

Command-Line Options
The following command-line options allow you to set the specific Profiling mode you want to use, or to
specify a directory where profiling reports are written:
• --profile - launches Katana in Profiling mode,

Optimizing Performance | Op Cook Profiling

USER GUIDE
735

• --force-profile - launches Katana in Profiling mode and starts a profiling session immediately on launch,
• --profiling-dir=[DIR] - specifies the directory where the profiling reports are written.

Note: For more information on command-line launch modes in Katana, see Command-line
Interface

Starting and Ending a Profiling Session

Learn the basics of beginning and ending a profiling session in Katana.

Profiling Renders

An overview for profiling renders in Katana.

Profiling Reports

A guide for creating and analyzing profiling reports.

Starting and Ending a Profiling
Session
A profiling session can be started and ended on Katana's main Runtime using the following Python calls:

from Katana import FnGeolib

#Get the Runtime
runtime = FnGeolib.GetRegisteredRuntimeInstance()

#Start Profiling
runtime.StartProfilingSession()

...

#End Profiling
runtime.EndProfilingSession()

This code can be called from a plug-in, a shelf script, or in the Python console in the standard interactive
mode. It can also be invoked in --script and --shell modes. It is possible to start a profiling session on
Katana startup and end it when Katana quits by using the --force-profile command-line option:
./katana --force-profile

Optimizing Performance | Op Cook Profiling

USER GUIDE
736

Note: This option causes all Geolib3 Runtime instances to start a profiling session upon
initialization, meaning that reports are also created for additional instances, such as that used to
cook Viewer proxies.

Note: Since it is more contrived for you to start and end a profiling session, in --batch mode,
Katana immediately starts a profiling session when launched with either the --profile or --force-
profile options, and it ends the session once the render is finished. These options are, therefore,
equivalent in --batch mode.

Profiling Renders
Renders are executed by the renderboot sub-process launched by Katana's katanaBin main process. This
means that render processes have their own instances of the Geolib3 Runtime that can be profiled as well.
Any renders launched in the standard, Interactive Katana mode, as well as the Shell and Script modes during
a profiling session (after StartProfilingSession() and before EndProfilingSession() on Katana's main
Runtime) are profiled and produce their own profiling reports at the end. In Batch mode, the render is
profiled if the --force-profile or --profile options are used.

Profiling Reports
Creating Profiling Reports
Profiling reports are generated at the end of each profiling session per process (katanaBin versus
renderboot, for example), per Runtime instance. Renders that call the Katana procedural on multiple
threads, for example, instantiate one Runtime per thread, each one producing a different report. Each report
consists of two files:
1. A .dot file that contains the graph with the Op tree at the end of the profiling session.
2. A .csv file containing the recorded cooking times in a table format.

The profile reports are, by default, written to the Katana session's temporary directory and, optionally, in the
directory specified by the --profiling-dir command-line option. For example:
./katana --profile --profiling-dir=/tmp/katana_profiling

Optimizing Performance | Op Cook Profiling

USER GUIDE
737

The naming of the reports follows the format:
Profiling__PID[P]__Runtime[R]__[YYYY]-[MM]-[DD]__[hh]-[mm]-[ss].csv

Profiling__PID[P]__Runtime[R]__[YYYY]-[MM]-[DD]__[hh]-[mm]-[ss].dot

In which P is the Process ID of the process that produced the report and R is a number that identifies the
instance of the Runtime. In a multi-threaded render that instantiates several Runtimes, there is a P for
katanaBin and another for renderboot and, in the latter, one R per Runtime instance created at render time.
The date and time at which the profiling session was ended is appended to the file name.

The .dot files can be converted, for example, into a PDF document using the following command, which
requires Graphviz:
dot [DOT FILE] -Tpdf > [OUTPUT PDF FILE]

Analyzing Profiling Reports
The .csv (comma-separated values) files contain the aggregated cook times and number of cooks. This can
be read directly into a spreadsheet application or other reporting tool. Each entry (row) contains the
following values (columns):
1. OpId - integer ID of the Op instance (or the invoking Op instance if IsExecOp is true).
2. OpType - Op type string (for example, "AttributeSet").
3. IsExecOp - specifies whether or not the entry refers to an Op invoked using execOp() (true or false).
4. Location - the path of the scene graph location that was cooked
5. TotalTime(usecs) - the total time spent by the Op instance in successfully cooking Location (in

microseconds).
6. AbortTime(usecs) - the total time spent by the Op instance in aborted cooks of Location (in

microseconds).
7. TotalCount - the number of cooks of the Op at Location.
8. AbortCount - the number of aborted cooks of the Op at Location.

An entry for which IsExecOp is true represents the times for an Op that was explicitly cooked by an invoking
Op, using a call to execOp(). In this case, the OpId corresponds to the invoking Op instance, while the
opType corresponds to the type of the invoked Op.

Optimizing Performance | Op Cook Profiling

USER GUIDE
738

Note: Time reported for entries for which IsExecOp is true is also included in the entry for the
invoking Op. The total cook time during the session is therefore the sum of the cook time for all
entries for which IsExecOp is false.

For example, if Op A (for which IsExecOp is false) calls execOp() on Op B, which in turn calls
execOp() on Op C, then TotalTime for Op A is strictly greater than that for Op B, which is strictly
greater than that for Op C. These Ops are all reported with the same OpID: that of Op A.

Note: Abort time is a normal component of scene expansion in Geolib3, but is minimized through
good Op-writing practices. For more information, see The Op API.

Currently, the Geolib3 Runtime has no knowledge of the mapping between Ops and their respective project
nodes. However, the graph produced by the .dot file shows the Runtime's Op tree structure at the time the
profiling session was ended, and can assist in matching Ops to nodes. Note that profiling the cooking of
distinct or altered Op trees within a single session is likely to produce less helpful and, perhaps, invalid
results, since aggregation may erroneously occur across re-purposed Op instances.

The Op tree is created directly from the node graph, plus all implicit resolvers, Interactive Render Filters, and
terminal Ops on different UI elements. Note that some nodes produce multiple Ops. OpId values in the
graph, of course, correspond to those in the respective .csv file.

When loading the .csv file in a spreadsheet, the values can easily be filtered, sorted, aggregated, and
summed. Average times can be calculated by dividing the times by the number of cooks. It is quite possible
to produce extremely large reports (to the order to millions of entries) that may not be loaded completely
into common spreadsheet software. For such cases, the .csv format is readily parsed by a script or program
that aggregates values, for example, per location or per Op type.

Profiling and Optimization Guide
This guide describes a number of practical ways in which you can improve the performance of your Katana
scenes and reduce render time. It also covers a number of systematic methods by which you can analyze
your Katana scene to limit the time you need to spend optimizing your scene.

At times, some of these recommendations may appear contradictory. This is intentional: scene graphs, their
Ops and inputs vary significantly between projects. What works for one scene may cause a slow down in
others. Profiling and optimization should be an iterative, results driven process; with experience, you will
develop an intuition as to what works well in certain situations and for certain scenes.

Optimizing Performance | Profiling and Optimization Guide

USER GUIDE
739

A general workflow pattern for optimizing Katana scene traversal is as follows:

1. Identify an optimization target, for example, time to first pixel, memory reduction in cook() calls.
2. Identify thread unsafe ops and refactor where possible to allow parallel evaluation.

Measure against (1).
3. Identify the most costly ops in the op tree.

• Analyze these ops and, where possible, optimize the code.
Measure against (1).

• Repeat for as many ops as practicable.
4. Analyze data dependencies in the scene graph to exploit op tree parallelism.

• Refactor node graph where appropriate.
5. Tune cache settings.

Improving Your Node Graph

Understand the various ways of improving your node graph in Katana and learn which to use.

Ways to Improve Your Ops

There are many different ways of improving your Ops in Katana. Learn which to consider and use in a variety
of circumstances.

Composing Concurrency-Friendly Scenes

Learn to identify bottlenecks, indirect use of mutexes and other synchronization primitives to understand
Katana scene throughput.

Improving OpScript Performance

This guide takes you through the ways to improve OpScript performance by highlighting key areas of
knowledge which are essential for scene optimization.

Optimize Projects Using the
Performance Tab
Efficient projects are extremely important in production, the less time you spend investigating issues, the
more time you can spend on look development or lighting. The Performance tab helps you understand
where bottlenecks may lie in your node graph by interpreting profiling information.

Optimizing Performance | Profiling and Optimization Guide

USER GUIDE
740

You can see at glance how many nodes you have in the recipe, how many are contributing to your scene,
and which nodes use more CPU resources. The Heat Map allows you to view this information directly in the
Node Graph tab, providing a visual indication of expensive nodes so you can debug scenes more effectively.

If you're still not sure where optimizations can improve your scene, you can send the Profile Results File to a
colleague for analysis. Profiling data is automatically saved as .json files to the KATANA_TMPDIR location.

Tip: The .json location is also recorded in the Render Log if you're not sure where the file is saved.
See Renderer Logging for more information.

Analyze the Scene with the Performance Tab
1. Load the project you want to analyze and optimize.
2. Navigate to the Performance tab or click the Add Tab button and then select Performance if the tab

is not already in your workspace.

The Performance tab is added to the pane and the Project Stats displays the number of nodes in the
scene and how many of those nodes are contributing.

The Number of Nodes and Contributing Nodes listed includes all nodes inside groups, Network
Material contexts, and super tools such as Gaffer3. As a result, the number may be higher than looking
at the node graph suggests.

Optimizing Performance | Profiling and Optimization Guide

USER GUIDE
741

To see a visual representation of contributing nodes, go to View > Dim Nodes Not Contributing to
Viewed Node. Nodes that are not contributing are dimmed.

All nodes appear to be contributing Non-contributing nodes are dimmed

3. Select and deselect nodes in the node graph to update the Number of Selected Nodes indicator. The
number in brackets indicates nodes that are not visible at the root level, such as those in groups and
super tools.

To display more in-depth data

1. Render the scene from any node by right-clicking the node and selecting Preview Render with
Profiling.

2. The Performance tab shows the time to first pixel rendered and a list of nodes and CPU usage, with
the most expensive nodes at the top. As you can see in this example, importing geometry (UsdIn) and
merging (Merge) are quite CPU-heavy operations.

Optimizing Performance | Profiling and Optimization Guide

USER GUIDE
742

Note: The _NoName_ entry represents all operations that are not related to nodes, such as
implicit resolvers. See Implicit Resolvers for more information.

3. Enable Show Heat Map to display heat colors in the Node Graph tab.

In this example, the Char Geo import nodes are clearly the most expensive nodes.

4. If you have difficulty distinguishing between nodes with similar color gradients, you can change the
heat map color scheme by clicking View > Heat Color Map and selecting a new scheme. For example,
Magma colors cheap nodes black, which can be easily ignored.

Optimizing Performance | Profiling and Optimization Guide

USER GUIDE
743

Tip: There's also colored scale at the bottom-left of the Node Graph tab that displays color
against a relative CPU time value. The range adjusts dynamically between the least expensive
node and most expensive node, which allows it to scale to any size of project.

Optimizing Nodes with the Heat Map
Katana's Performance tab heat map gives you a breakdown of your entire project at a glance. It's easy to
locate CPU-heavy nodes so you can investigate where performance can be improved.

1. Render the scene by right-clicking a render node and selecting Preview Render with Profiling.

2. The Performance tab shows the time to first pixel rendered and a list of nodes and CPU usage, with
the most expensive nodes at the top.

3. Enable Show Heat Map to display heat colors in the Node Graph tab.

Optimizing Performance | Profiling and Optimization Guide

USER GUIDE
744

In this example, the Char Geo import nodes are clearly the most expensive nodes.

Geometry nodes are often CPU-heavy, but in this case we've imported USD files that were encoded as
.usda, which is not an optimal format for character animation.

In this particular case, the way we have reduced CPU time is to convert the data into .usd files, which
subsequently made the time against those geometry nodes more efficient. If we then recalculate the
Node Graph data in the Performance tab, we get a much more varied heat map. This is because the
UsdIn nodes are no longer using way more resources that all other nodes, which evens out the heat
map colors.

Note: Subsequent profile .json files don’t overwrite each other, you get a new file for each
calculation with a time stamp.

Optimizing Performance | Profiling and Optimization Guide

USER GUIDE
745

This is a very simple example, but it highlights the power of the heat map for locating bottlenecks in
your Katana projects.

Phone a Friend if You Can’t Troubleshoot Yourself
OK, so you've removed bottlenecks and reduced some of the CPU-heavy nodes' processing time, but your
project is still not as optimal as it could be. Time to call for help. Katana saves performance data to Profile
Results Files automatically, which you can share with colleagues if you're really stuck. Your colleague only
needs your Katana project and your profile .json file to get started, they don't even have to perform a render
because all the data they need is already in the .json file.

Note: If changes are made in the scene, the imported static profiling data becomes invalid. You'll
need to run another Preview Render with Profiling to update the data to include any changes.

Profiling data is automatically saved as .json files to the KATANA_TMPDIR location, but you can specify a
different directory at startup using the --profiling-dir command line argument. See Command-line Interface
for more information.

1. Save the project and make a note of the Profile Results File location. Send the project and the .json file
to your colleague.

2. On their machine, load the Katana project and open the Performance tab.
3. In the Profile Results File field, enter the location of the profiling .json or click the Browse dropdown

to navigate to the location of the file.

They don’t need to execute the Preview Render with Profiling step themselves, the data is already
available.

4. Enable Show Heat Map, if it isn't already checked.

All the data is now available for your colleague to help you get back on track.

Improving Your Node Graph
Prune Locations as Early as Possible
The Prune node is used to remove objects from the scene. Given the processing model used by Geolib3-MT,
the sooner unneeded scene graph locations/objects are pruned from the scene, the less work required from

Optimizing Performance | Profiling and Optimization Guide

USER GUIDE
746

both downstream Ops and Geolib3-MT itself. In this respect, Prune can be thought of as providing a filtering
operation, reducing the size of the scene graph that must be processed by downstream Ops.

In the following example, assets are loaded by the AssetsIn node producing a scene graph of 100 locations.
Bounding boxes are calculated by the ProcessBounds Op on all 100 locations and then unneeded scene
graph locations for this shot are then pruned from the scene. However, if the Prune node is placed closer to
the AssetsIn node, the scene graph processed by ProcessBounds is half the size. This directly translates to
both memory and processing cost savings.

Prune scene graph objects/locations as early as possible. Doing so reduces the number of locations
downstream Ops must process which corresponds to a reduction in both memory and scene processing

time.

Understand Parallel Scene Processing Dimensions
Geolib3-MT’s scene graph processing system searches for computationally independent tasks which can be
evaluated in parallel. Broadly speaking, there are two dimensions of parallelism Geolib3-MT looks to exploit:

l Scene Graph Parallelism - In a deferred/lazily evaluated scene graph such as Katana, a scene graph
contains potential work. It is potential because it is only computed once a scene graph location and its
children become known through expansion.
Each child of a scene graph location represents a computationally independent task, depending only
on its parent location. Once a scene graph location has been computed, all of its children can be
computed in parallel.

Optimizing Performance | Profiling and Optimization Guide

USER GUIDE
747

l Op Tree Parallelism - Sub sections of the Op tree can be processed in parallel. In doing so Geolib3-
MT fully expands the scene at the sub section of the Op tree it’s processing. Some ops are naturally
parallelizable, such as source Ops (i.e. those Ops with no inputs). Some constructs are also naturally
parallelizable, such as Merge Ops, in which each Op tree branch is independently computable.

Exploit parallelism in both dimensions to provide Geolib3-MT with the maximum backlog of known
computationally independent tasks to process.

Use Merge Branches for Computationally Independent
Scene Graphs
Each branch of a Katana node graph can be thought of as producing an independent scene graph, which are
combined through the use of a Merge node.

As each branch of the Merge node represents a computationally independent scene graph, Geolib3-MT
exploits this fact to expand each branch in parallel. If this behavior is not desired, it can be disabled in the
RenderSettings node. To benefit from this parallel expansion of Op tree branches there are a number of
things to consider:

l Consider your scene graph not as one large scene graph but multiple smaller scene graphs, each
produced by one or more connected Ops.

l Consider the data dependencies that exist in your scene graphs and the nodes an Ops responsible for
producing them. Are there opportunities to refactor your node graph to take advantage of the parallel
processing available from multiple independent branches?

l Identify CPU-bound operations that must operate on multiple locations. Whilst Geolib3-MT exploits
parallelism available within the scene graph itself (by processing independent locations in parallel),
CPU bound operations could also be evaluated in parallel by duplicating CPU bound nodes and ops.

Optimizing Performance | Profiling and Optimization Guide

USER GUIDE
748

In this example, whilst the three scene graphs produced by the Alembic_In nodes are generated in parallel,
the parallelism available to the CPUBoundOperation node is limited to the scene graph only.

Example refactored node graph version in which the CPUBoundOperation is placed within each branch,
which means that parallelism can be taken advantage of in both dimensions (scene graph and Op tree).

Place chains of collapsible Nodes/Ops together
In order to process a scene graph location at a particular Op, Geolib3-MT must perform a number of steps,
including but not limited to:

l Ensuring the location’s dependencies (parent location and the location it inherits its attributes from)
have also been evaluated.

l Memory has been allocated to store the results of processing the scene graph location.

Optimizing Performance | Profiling and Optimization Guide

USER GUIDE
749

l Any inherited scene graph attributes have been applied prior to cooking the location.
l Evaluate the actual location using the Op’s cook function.

Whilst this process is efficient, it is not cost-free. Checking dependencies requires checking a central cook
result store, memory allocation requires a (potential) system call and the cook call incurs a small overhead to
call the function (even if the cook() call doesn’t mutate the scene graph).

With this in mind, anything that can be done to reduce the number of cooks has the potential to improve
scene graph processing time and reduce memory usage.

Geolib3-MT’s new Op tree optimization feature performs a preprocessing step to analyze the topology of
the Op tree. One such optimization is the collapsing of chains of Ops of the same type. For example, a series
of four AttributeSet Ops acting on the same set of locations may be collapsed into a single AttributeSet
acting on that set of locations. This reduces the number of cook results in the caching subsystem, thus
reducing the memory footprint of scene traversal.

Improving Your Ops
Consider using a scalable memory allocator
A memory allocator receives requests from the user application for memory (via malloc()) and responds with
the address of a memory location that can be used by the application. When the application has finished
with the memory it can return this memory to the allocator (via free()). Given the central role memory plays
in most applications the performance of the memory allocator is of critical importance.

Most general purpose allocators that ship with operating system and the C Standard Library
implementations can suffer from a number of pitfalls when used within highly multithreaded applications:

l More requests to the operating system for blocks of memory than required. Each request to the
operating system results in a system call which requires the CPU on which the request is made to
switch to a higher privilege level and execute code in kernel mode. If an allocator makes more
requests to the operating system to allocate memory than is required the application’s performance
may suffer.

l Use of concurrency primitives for mutual exclusion. Many general purpose allocators weren’t designed
for use in multithreaded applications and to protect their critical sections, mutexes or other
concurrency primitives are used to enforce correctness. When used in highly multithreaded
applications the use of mutexes (either directly or indirectly) can negatively impact the application’s
performance.

Optimizing Performance | Profiling and Optimization Guide

USER GUIDE
750

The general purpose allocator, used on most GNU/Linux operating systems is ptmalloc2 or a variant of it.
Whilst ptmalloc2 exhibits low memory overhead it struggles to scale as requests are made from multiple
threads. Therefore, if profiling indicates your scene is spending a significant portion of time in calls to malloc
()/free() you may consider replacing the general purpose allocator with a scalable alternative.

Internally Geolib3-MT makes uses a number of techniques to handle memory allocation including the
judicious of jemalloc to satisfy some requests for memory in the critical path.

Mark custom Ops as thread-safe where possible
Geolib3-MT is designed to scale across multiple cores by cooking locations in parallel. An Op may declare
that it is not thread-safe by calling FnGeolibCookInterface::setThreading(), in which case a Global
Execution Lock (GEL) must be acquired while cooking a location with the Op. This prevents other thread-
unsafe Ops from cooking locations, so is likely to cause pockets of inefficiency during scene traversal. In
profiling your scenes, first identify and convert all thread unsafe Ops.

Thread-unsafe Ops can easily be identified from the Render Log: if a thread-unsafe Op is detected in the Op
tree, a warning is issued:

[WARN plugins.Geolib3-MT.OpTree]: Op (<opName>: <opType>) is marked
ThreadModeGlobalUnsafe - this might degrade performance.

Mark custom Ops as collapsible where possible
Real world scenes contain many instances of the following Op Chain construct:

Optimizing Performance | Profiling and Optimization Guide

USER GUIDE
751

This can arise for a number or reasons, given the versatility of the AttributeSet node, they are frequently
used to hotfix scenes to ensure a given enabling attribute is present at render time. Or, the sequence of Ops
can represent a set of logical steps to be taken during the creation of a given node graph. However, chains of
similar Ops represent both a potential overhead and optimization opportunity for Geolib3-MT see
Improving Your Ops .

Scenes may take advantage of Geolib3-MTs ability to optimize the topology of the Op tree. Custom Ops
may indicate they can be collapsed by calling FnGeolibCookInterface::setOpsCollapsible(). This function
takes an FnAttribute::StringAttribute as parameter, whose value indicates the name of the attribute to
which the collapsed Ops’ arguments are passed.

For example, consider the chain of four AttributeSet ops above. Geolib3-MT collapses this chain of Ops by
gathering the Op args for each Op into a GroupAttribute called batch, whose children contain the Op args
of each op in the chain.

l batch
o Op1
o Op2
o Op3
o Op4

Optimizing Performance | Profiling and Optimization Guide

USER GUIDE
752

Note: The Op args are passed to the collapsed Op in top down order.

Custom user Ops can participate in the Op Chain collapsing functionality by calling setOpsCollapsible() as
described above. In the above example AttributeSet calls setOpsCollapsible(“batch”) and then tests
whether it’s running in batch mode during its cook() call.

If participating in the Op Chain collapsing system, the Op makes the firm guarantee that the result of
processing a collapsed chain of Ops must be identical to processing each one in sequence. The implications
of this mainly relate to the querying of upstream locations or attributes where those locations or attributes
could have been produced or modified by the chain that has been collapsed. As a concrete example,
consider a two-Op Chain in which the first Op sets an attribute hello=world and the second Op in the
chain prints Hi There! if hello is equal to world. If the second Op uses Interface::getAttr() to query the
value of hello in the collapsed chain the result is empty, as hello has been set on the location’s output but
did not exist on the input. To remedy this, the op can be refactored to call getOutputAttr() instead.

Cache frequently accessed attributes
While access of an FnAttribute’s data is inexpensive, retention or release of an FnAttribute objects requires
modifying a reference count. This is not typically a problem however, this may accumulate for Ops that
create many temporary or short lived FnAttribute objects, especially if many threads are executing the Op at
once. In cases where an FnAttribute instance is frequently used, consider whether it may be cached to avoid
this overhead.

As a concrete example, consider the following OpScript snippet:

local function generateChildren(count)

for i=1,count do

local name = Interface.GetAttr(“data.name”).getValue() .. tostring
(i)

Interface.CreateChild(name)

end

end

This function creates count children, with names derived from the input attribute data.name. If count is
large, accessing this attribute inside the loop causes unnecessary work for two reasons,

l Lua must allocate and deallocate an object for the data.name attribute each iteration, causing more
work for the Garbage Collector.

l This allocation and destruction causes an increment and decrement in the attribute’s atomic reference
count, potentially introducing stalls between threads.

Optimizing Performance | Profiling and Optimization Guide

USER GUIDE
753

The second bottleneck applies when OpScripts accessing the same set of attributes are executed on many
threads. To avoid accessing the reference count so frequently, this snippet may be rewritten as follows:

local function generateChildren(count)

local stem = Interface.GetAttr(“data.name”).getValue()

for i=1,count do

local name = stem .. tostring(i)

Interface.CreateChild(name)

end

end

Now data.name is accessed only once, outside of the loop, so the reference count is not touched while the
loop executes.

Composing Concurrency-Friendly
Scenes
Understand Scene Throughput and How to Identify
Bottlenecks
In Geolib3-MT, system throughput is defined as the number of scene graph locations that are processed per
second. In processing a given scene graph the moment-to-moment objective is to either maintain or
increase the Geolib3-MT processing throughput.

Location Bottlenecks
In a typical scene, some scene graph locations take longer to compute than others, this is normal and
expected behavior of scene graph processing. However, these expensive-to-compute locations can become
system-wide bottlenecks when subsequent locations depend on their results.

To provide a concrete example, in the following screenshot OpScript_lsysString produces a costly L-system
description at the scene graph location /root/world/geo/lsys. The node OpScript_lsystem then processes this
description to build a graphical representation of the tree.

Optimizing Performance | Profiling and Optimization Guide

USER GUIDE
754

Because the work of OpScript_lsystem is entirely dependent upon OpScript_lsysString, processing of the
whole scene graph is stalled until /root/world/geo/lsys is computed by OpScript_lsysString. The resulting
throughput when processing this tree is approximate to:

On initial inspection it could be reasonable to assume the processing between 0-60s is bounded by a mutex
or serial code. But, as previously discussed, this is actually a very costly location upon which the rest of the
scene depends on. What options exist to address scene bottlenecks like this?

First, we can use the Op tree profiling tools shipped with Katana 3.5 to identify costly Ops in the scene. Using
this information we can seek to optimize the performance of those costly Ops. Optimizing these Ops largely

Optimizing Performance | Profiling and Optimization Guide

USER GUIDE
755

depends upon the nature of the work they’re doing; but as with any optimization task, first identify an
optimization target, measure, refactor and re-measure.

It may be possible to entirely remove the bottleneck by just optimizing one or two key Ops in the Op tree.
This was the case in the above example in which careful use of Lua object creation significantly reduced the
time to compute the L-system description. However, sometimes we must accept the operation simply is
costly; in this case, what options exist to help maintain scene processing throughput?

The next step is to examine the processing problem itself, can it be broken down into smaller, logical chunks
that could be linked or indexed by scene graph locations. Effectively using the scene graph topology to
represent a parallel processing task graph where each child represents a subsection of the work that can be
processed in parallel.

For example, say we need to compute the first 1000 prime numbers. We could create an Op that at the
location /root/world/geo/data/primes calculates each prime in turn and stores them as an IntAttribute.
Alternatively, we could create an Op that creates 1000 children under /root/world/geo/data/primes, each
child’s position serving as the index to the prime series. At those children, the Op would then compute the
prime at that point in the series. In this example, Geolib3-MT is able to take advantage of the parallelism
available within the scene graph to schedule each child to run in parallel.

An extension to this approach is also provided in Use Merge branches for computationally independent
scene graphs in which computationally intensive work is broken up using the Op tree and the results collated
using a Merge node.

Finally, you can use knowledge of the scene traversal pattern to your advantage. Geolib3-MT completes a
breadth first expansion of the scene, thus, if there exists a computationally expensive scene graph location,
consider placing it under a scene graph location with a number of other children which can also be
processed in parallel. Then, whilst one location may take longer to cook, it does not prevent the other
locations—indeed, the rest of the scene graph—from being evaluated.

Processing Capacity
Scene throughput can be bounded by processing capacity. If there are more scene graph locations to be
processed than available CPU cores, we would expect to see complete utilization (saturation) of available
cores and a backlog of scene graph locations awaiting processing. In general, adding more cores should help
reduce scene graph processing time.

Conversely, if the available computing resources are able to process scene graph locations faster than new
locations become known, or, if the scene simply does not contain a large enough (“large enough” also
depending on what processing Ops in the Op tree are doing at each scene graph location) number of scene
graph locations to keep all cores utilized you may benefit from reducing the number of cores available to
fully utilize those cores. From a performance standpoint this may be beneficial when combined with a CPU
pinning strategy which could potentially improve the L2/L3 cache performance.

Optimizing Performance | Profiling and Optimization Guide

USER GUIDE
756

Identify Indirect Use of Mutexes and Other
Synchronization Primitives
Mutexes and other synchronization primitives that enforce serialized execution of code can have a significant
and negative impact on scene graph evaluation performance. Whilst it may be straightforward to identify
mutexes in your own code it can be more problematic in third-party code and libraries.

Symptoms that Ops in your scene may be indirectly calling code wrapped in mutexes or critical sections
range from:

l Increasing the number of threads/cores available for scene processing increases, rather than
decreases, scene graph expansion and time to first pixel.

l Messages in the Render Log that indicate a thread-unsafe Op has been called.
l Multiple threads/cores available for scene processing but only one or two cores actually utilized.

Alembic HDF5 to Ogawa
To provide a concrete example, Alembic caches can be stored in two formats, HDF5 and the newer Ogawa
format which was designed to support parallel scene traversal. Whilst no messages are printed to the
Render Log when reading HDF5 formatted caches, the scene traversal time is significantly slower and
performance may even degrade when more threads are added. In a test scene with approximately 140k
locations, converting an existing HDF5 cache to Ogawa saw a reduction in scene traversal time from 26.2s to
3.9s with a 32 core task pool available for processing.

The Alembic library provides a utility to convert Alembic files from HDF5 to Ogawa, called abcconvert. This
utility must be built from source; this source can be found at here, with instructions in the root of the
repository.

Once built, abcconvert can be used from the command line as follows:

l cd /path/to/build/directory
l abcconvert -toOgawa -in <input file> <output file>

abcconvert does nothing if the input file is already in Ogawa format.

Optimizing Performance | Profiling and Optimization Guide

https://github.com/alembic/alembic/tree/master/bin/AbcConvert

USER GUIDE
757

Improving OpScript Performance
Understand the Lua Garbage Collector
In Lua, memory can be allocated on either the stack or the heap. Objects or memory allocated on the heap is
reclaimed through Lua’s garbage collector. When the garbage collector is running your Lua code cannot
make forward progress therefore, reducing the frequency with which the garbage collector must run or, the
amount of garbage it must collect, helps to improve the performance of your OpScripts.

The following Lua constructs, while not bad, result in a new object being created which must be
subsequently cleaned up during garbage collection. You should pay particular attention it these constructs
are used within loops.

l String_one..string_two - String concatenation or any string creation function could potentially result
in the creation of a new object. As Lua strings are unique it firstly checks to determine if the string has
been created elsewhere.

l { … } - Each time a table constructor is executed, a new table is created.
l function() ... end - Executing a function statement creates a closure. If this executed within a loop of n

iterations it results in the creation of n closures.

Note: For more information see lua-users.org.

Avoid “..” in loops
As a concrete example of Understand the Lua Garbage Collector, in this recommendation we explore the use
of the string concatenation operator “..”, commonly used in OpScripts due to its convenient shorthand
notation.

As an example, consider the following code used to build an L-System description:

local result = ""

for i = 1, #inputStr do

local char = inputStr:sub(i,i)

local ruleStr = rulesTable[char]

Optimizing Performance | Profiling and Optimization Guide

http://lua-users.org/wiki/OptimisingGarbageCollection

USER GUIDE
758

if ruleStr then

result = result..ruleStr

else

result = result..char

end

end

return result

result is appended to in a tight loop. Whilst convenient, this results in a large number of string allocations
and poor performance. The preceding code can be re-written to handle all concatenation only once the loop
has completed as shown below:

local buf = {}

for i = 1, #inputStr do

local char = inputStr:sub(i,i)

local ruleStr = rulesTable[char]

if ruleStr then

buf[#buf+1] = ruleStr

else

buf[#buf+1] = char

end

end

return table.concat(buf)

Running the above example as part of a large Katana scene file reduced the scene processing time of this
function by approximately 2.5x as shown in the following table:

String Method Time

“..” Operator 7.011s

Table.concat() 2.681s

Optimizing Performance | Profiling and Optimization Guide

USER GUIDE
759

Consider creating custom C++ Ops to replace costly
OpScripts
While Lua and the OpScript API are very convenient and versatile, OpScripts that account for a large portion
of scene traversal time may be better suited as custom C++ Ops.

As a concrete example, consider the following OpScript, which places the target location at a random
position, orientation and scale within a uniform box.

Local hash = ExpressionMath.stablehash(Interface.GetOutputName()))

math.randomseed(hash)

local dim = 10

local s = 0.15

local sx = s*(1 + 0.5*math.random())

local sy = s*(1 + 0.5*math.random())

local sz = s*(1 + 0.5*math.random())

local tx = 2*dim*(math.random() - 0.5)

local ty = dim* math.random() + sy

local tz = 2*dim*(math.random() - 0.5)

local ax = math.random()

local ay = math.random()

local az = math.random()

local axis = Imath.V3d(ax, ay, az):normalize()

local angle = 360 * math.random()

local translate = Imath.V3d(tx, ty, tz)

local rotate = Imath.V4d(angle, axis.x, axis.y, axis.z)

local scale = Imath.V3d(sx, sy, sz)

Interface.SetAttr("xform.group0.translate",

DoubleAttribute(translate:toTable(), 3))

Interface.SetAttr("xform.group0.rotate",

Optimizing Performance | Profiling and Optimization Guide

USER GUIDE
760

DoubleAttribute(rotate:toTable(), 4))

Interface.SetAttr("xform.group0.scale",

DoubleAttribute(scale:toTable(), 3))

(Such an OpScript is of course contrived, but one could imagine replacing randomness with a well-defined
distribution to place geometry.)

This OpScript could be rewritten as the following C++ Op:

#include <FnAttribute/FnAttribute.h>

#include <FnGeolib/op/FnGeolibOp.h>

#include <FnGeolibServices/FnExpressionMath.h>

#include <FnGeolibServices/FnGeolibCookInterfaceUtilsService.h>

#include <FnPluginSystem/FnPlugin.h>

#include <cstdlib>

inline double getRandom()

{

return (double)rand() / (double)RAND_MAX;

}

struct DistributeGeometryOp : public Foundry::Katana::GeolibOp

{

static void setup(Foundry::Katana::GeolibSetupInterface &interface)

{

interface.setThreading
(Foundry::Katana::GeolibSetupInterface::ThreadModeConcurrent);

}

static void cook(Foundry::Katana::GeolibCookInterface &interface)

{

srand(FnGeolibServices::FnExpressionMath::stablehash(interface.getOutputName
()));

double dim = 10.0;

double s = 0.15f;

double sx = s*(1.0 + 0.5f*getRandom());

double sy = s*(1.0 + 0.5f*getRandom());

double sz = s*(1.0 + 0.5f*getRandom());

Optimizing Performance | Profiling and Optimization Guide

USER GUIDE
761

double tx = 2.0f*dim*(getRandom() - 0.5f);

double ty = dim* getRandom() + sy;

double tz = 2.0f*dim*(getRandom() - 0.5f);

double ax = getRandom();

double ay = getRandom();

double az = getRandom();

double axisLen = sqrt(ax*ax + ay*ay + az*az);

ax /= axisLen;

ay /= axisLen;

az /= axisLen;

double angle = 360.0 * getRandom();

double translate[] = { tx, ty, tz };

double rotate[] = { angle, ax, ay, az };

double scale[] = { sx, sy, sz };

interface.setAttr(

"Xform.group0.translate",

FnAttribute::DoubleAttribute(translate, 3, 3));

interface.setAttr(

"Xform.group0.rotate",

FnAttribute::DoubleAttribute(rotate, 4, 4));

interface.setAttr(

"Xform.group0.scale",

FnAttribute::DoubleAttribute(scale, 3, 3));

}

};

DEFINE_GEOLIBOP_PLUGIN(DistributeGeometryOp);

void registerPlugins()

{

REGISTER_PLUGIN(DistributeGeometryOp, "DistributeGeometryOp", 0, 1);

}

Up to a different random distribution, these Ops produce the same scene. However, the C++ version
executes around 3.2 times as fast: when used to position 10,000 geometric primitives, the Ops use the
following resources:

Optimizing Performance | Profiling and Optimization Guide

USER GUIDE
762

Op CPU time Memory used

OpScript 0.989s 54.24 MiB

C++ Op 0.310s 53.67 MiB

In this instance, memory usage is similar. However, if the OpScript is allocating and freeing a lot of small
objects, converting to C++ also saves time spent in Lua garbage collection.

Optimizing Performance | Profiling and Optimization Guide

USER GUIDE

Preferences
This section shows you which preferences you can set up for Katana.

Note: To reset the preferences to their default values, you can delete the Prefs2.ini file in the
following location: $KATANA_HOME/katana.

Application

Control (UI) Default Value Function

Application

fontFamily Bitstream Vera
Sans

Set the font family for the Katana UI.

Some UI components cache elements like font
or control size. Restart Katana for the font
family change to take full effect.

fontSize 8 Set the base font size for the Katana UI.

Some UI components cache elements like font
or control size. Restart Katana for the font size
change to take full effect.

macroSavePath N/A Specify the default location for saving macros.

numberOfRecentProjects 10 The number of recent projects that are shown in
the File > Open Recent menu. The maximum
number of recent projects that are stored is 100.

crashFile

numberOfActions 50 Set the number of actions before automatically
saving the current project to a file from which

763

USER GUIDE
764

Control (UI) Default Value Function

the project can be restored after a crash.

time 5 Set the time in minutes before automatically
saving the current project to a file from which
the project can be restored after a crash.

rendering

interactiveRenderThreadOverride Yes Use the interactiveRenderThreads settings
below to control the number of threads used in
an interactive render.

When set to No, the renderer-specific settings
from the scene are used.

interactiveRenderThreads2D 9 Set the number of render threads for interactive
2D renders, including hot renders. This value
has to be larger than 0.

interactiveRenderThreads3D 1 Set the number of render threads for interactive
3D renders, including hot renders.

restartLiveRenderOnTimeChange Yes Specify whether or not a Live Render session
should be automatically restarted when the
selected time changes.

saveKatanaScriptOnRender No Specify whether or not to auto-save the .katana
script for each render.

Warning: For large sessions, this can
substantially increase render launch
times.

updateMode2D Manual Specify what UI actions trigger a render of the
currently viewed 2D node.
• Manual - changes to materials, lights, or

geometry transformations don’t trigger a
render update. To have the changes take
effect, click the Trigger 2D Update button.

Preferences |

USER GUIDE
765

Control (UI) Default Value Function

• Pen-up - changes to materials, lights, or
geometry transformations trigger a render
update only when the mouse button is
released or a parameter change is applied.

• Continuous - changes to materials, lights, or
geometry transformations, including some
manipulations in the Viewer tab, continuously
trigger a render update.

Note: Setting this preference to a
value other than Continuous is
particularly useful when rendering
large images where constant render
updates would be too time-
consuming.

updateMode3D Continuous Specify what UI actions trigger an update
(recook) of the scene.
• Manual - changes to materials, lights, or

geometry transformations do not trigger an
update of the scene. To have the changes take
effect, click the Trigger 3D Update button

.

• Pen-up - changes to materials, lights, or
geometry transformations trigger an update
of the scene only when the mouse button is
released or a parameter change is applied.

• Continuous - changes to materials, lights, or
geometry transformations, including some
manipulations in the Viewer tab, continuously
trigger an update of the scene.

Preferences |

USER GUIDE
766

Attributes

Control (UI) Default Value Function

attributes

showInternalNodesInAttributeHistory No Show internal nodes in Attribute History in
the Attributes tab.

Color

Control (UI) Default Value Function

color

useSingleComponentRGB No Set whether or not the RGB gradients are displayed
using pure components.

Control (UI) Default Value Function

documentation

source Local Controls where Katana's documentation should be
served from.
• remote - uses help.thefoundry.co.uk/katana.
• local - uses a local copy of the documentation.

Dopesheet

Control (UI) Default Value Function

dopesheet

showToolTips Yes Specify whether or not to display the tooltips with
key values.

Preferences |

USER GUIDE
767

ExternalTools

Control (UI) Default Value Function

externalTools

editor gedit Enter the command for launching an external text
editor.

imageViewer eog Enter the command for launching an external image
viewer.

pdfViewer evince Enter the command for launching an external PDF
viewer.

webBrowser firefox Enter the command for launching an external web
browser.

Control (UI) Default Value Function

flipbook

colorspace n/a Default output colorspace for flipbook images.

format n/a Default file format for flipbook images.

Layout

Control (UI) Default Value Function

layout

default N/A Specify which Katana UI layout you want to start in
by default.

hotkey1 Monitor Specify the layout assigned to F9.

hotkey2 Lighting Specify the layout assigned to F10.

Preferences |

USER GUIDE
768

Control (UI) Default Value Function

hotkey3 Dual Lighting Specify the layout assigned to F11.

hotkey4 Composite Specify the layout assigned to F12.

Monitor

Control (UI) Default Value Function

monitor

allowKeylessTabletInteraction Yes Specify whether or not to allow the tablet
interaction without pressing the modifier keys.

When set to Yes, you can use the stylus pen
buttons to perform actions such as zooming,
panning, and so on.

When set to No, you need to use modifier keys
along with the stylus pen to perform actions.

renderIDPass Yes Specify whether or not an ID pass is rendered when
rendering from a node in the node graph.

The ID pass allows the Pixel Probe in the Monitor
tab to identify pieces of geometry under the
pointer, for which the name of a corresponding
scene graph location is then displayed in the Pixel
Probe toolbar.

Tip: You can also toggle on and off the
Render ID Pass preference in Katana's
main menu in the Render > 3D
Rendering > Render ID Pass menu, or
in the Monitor tab in the 3D > Render
ID Pass menu.

showColorTimingEditor No Specify whether or not to display the color timing

Preferences |

USER GUIDE
769

Control (UI) Default Value Function

editor.

showCommentEditor No Specify whether or not to display the comment
editor.

showOverlayControl No Specify whether or not to display the overlay
controls.

showPanel Yes Specify whether or not to display the monitor
panel at each render.

showPixelProbe No Specify whether or not to display the pixel probe.

showSwipeLine Yes Specify whether or not to display the swipe line.

ShowTextResolution Yes Specify whether or not to display the resolution
name for the image sizes in the monitor
information.

backgroundColor N/A Choose the color values.

For more information, refer to the Color Widget
Type in Common Parameter Widgets.

manipulatorLockedColor N/A

manipulatorNormalColor N/A

manipulatorSelectColor N/A

swipeLineColor N/A

NodeTags

Control (UI) Default Value Function

nodeTags

menuCategories constraint,lookfile,
resolve,output,color,
composite,source,
i/o,keying,transform,filter,foundry,views,
_macro

Enter the categories to display in
the node menu.

Preferences |

USER GUIDE
770

Nodegraph

Control (UI) Default Value Function

nodegraph

allowKeylessTabletInteraction Yes Specify whether or not to allow the tablet
interaction without pressing the modifier
keys.

When set to Yes, you can use the stylus
pen buttons to perform actions such as
zooming, panning, and so on.

When set to No, you need to use modifier
keys along with the stylus pen to perform
actions.

autoConnectOnCreate No Specify whether or not to auto-connect
new nodes based on selection.

autoScroll Yes Specify whether or not to auto-scroll
while selecting, dragging, and so on.

defaultShadingNodeViewState Expanded Specify whether new nodes added to a
shading network are expanded or
collapsed by default.

When showPagesConnectedOnly is
enabled, setting this control to
Connected Only displays the whole page
containing connected inputs and outputs
not just the connected inputs and outputs
themselves.

dimNodesUnconnectedToViewedNode No Specify whether or not to dim nodes
unconnected to the viewed node.

dimNonContributingNodes No Specify whether or not to dim nodes not
contributing to the viewed node.

Preferences |

USER GUIDE
771

Control (UI) Default Value Function

drawLowContrast Yes Specify whether or not to draw the node
graph with a low-contrast look.

findOnlyNodesInThisGroupDefault Yes Specify whether or not to set the default
state for the Show Only Nodes in this
Group checkbox in the find pop-up of the
Node Graph tab.

flagErrorsFileIn Yes Specify whether or not to flag FileIn node
errors automatically.

flagErrorsNodeConnection Yes Specify whether or not to flag node
connection errors automatically.

lockStickyNoteNodes No Specify whether or not to lock backdrop
nodes.

showExpressionLinks No Specify whether or not to display
expression links.

showNodeIcons Yes Specify whether or not to display icons on
nodes where available.

showOffscreenFlagArrows Yes Specify whether or not to display off-
screen flag arrows.

showPagesConnectedOnly No Specify whether the whole page or just
the connected inputs and outputs are
displayed when
defaultShadingNodeViewState is set to
Connected Only.

showRolloverNodeNames Yes Specify whether or not to display node
names on rollover.

showViewMasks No Specify whether or not to display the view
mask flags and link colors.

snapToGrid No Specify whether or not to snap nodes to
grid.

Preferences |

USER GUIDE
772

Control (UI) Default Value Function

stickyDrag No When this preference is set to Yes, nodes
that are dragged in the Node Graph tab
stick to the pointer when the mouse
button is released, so that they can be
moved without keeping the mouse
button held down. In this mode, nodes
are placed only when the mouse button is
clicked again. This grab-and-drop
behavior may help prevent repetitive
strain injury (RSI).

useColorFromInputPortForConnections Yes Specify whether the color of a connection
is determined by the color of the input
port on the target node or the output
port on the source node.

Nodes

Control (UI) Default Value Function

nodes > gaffer

syncSelection off Specify the default selection sync option for the
GafferThree.

Parameters

Control (UI) Default Value Function

parameters

cacheEditors Yes Specify whether or not to cache node
parameters editors.

Preferences |

USER GUIDE
773

Control (UI) Default Value Function

openCelParametersEditors No Specify whether or not to open CEL
parameters editors.

selectParameterValueOnFirstClick No Specify whether or not the text of parameter
values (including project settings and
preferences) is selected when first clicking into
a value field.

Note: By default, when clicking into
a value field, the text cursor is placed
where the text has been clicked, and
no text is selected.
This single-click-to-select behavior
may help prevent repetitive strain
injury (RSI).

stickyScrub No Allow modifying a number parameter by
clicking once on its label and moving the
mouse. A second click commits the
modification.

Python

Control (UI) Default Value Function

python

autoCompletionBehavior Shell Select the auto-completion behavior in the
Python tab. Choose from these two options:
• Shell - when pressing the Tab key, tokens are

completed based on matches with possible
completions. If there is more than one
possibility for completion, a list of
possibilities is printed to the result area of
the tab.

Preferences |

USER GUIDE
774

Control (UI) Default Value Function

• IDE - while typing in the command area of
the tab, possible completions are shown in a
pop-up widget. Select completions with the
up and down arrow keys, and chosen by
pressing the Tab or Return/Enter key. Press
Esc to close the pop-up widget.

showHelpTooltips No Specify whether or not to display tooltips with
help on the item under the pointer within the
Python tab, both in the result and the
command areas of the tab.

Scenegraph

Control (UI) Default Value Function

scenegraph

findLocationsFilterDefault Selected Sets the default filter used by the Find Scene
Graph Locations pop-up in the Scene Graph
tab.

showLightsColumn Yes Choose whether or not to display the Lights
column in the Scene Graph tab.

showRenderColumn Yes Determine whether to show Render Working
Set column in the Scene Graph tab.

The title of the Render column can be clicked
to turn the use of the render Working Set on.
The render Working Set determines the scene
graph locations for which geometry is
rendered in Preview Renders and Live Renders.

The Monitor tab contains a corresponding
button to turn the use of the render Working
Set on, in order to render only objects from the

Preferences |

USER GUIDE
775

Control (UI) Default Value Function

Render column of the Scene Graph tab. The
button is only shown when this preference is
set to Yes.

showViewerVisibilityColumn Yes Show Viewer Visibility Working Set column in
the Scene Graph tab.

The title of the Viewer Visibility column can
be clicked to turn the use of the
viewerVisibility Working Set on. The
viewerVisibility Working Set determines the
scene graph locations for which geometry is
drawn in the Viewer tab.

The Viewer tab contains a corresponding
button to turn the use of the viewerVisibility
Working Set on, in order to show only objects
from the Viewer Visibility column of the
Scene Graph tab. The button is only shown
when this preference is set to Yes.

scenegraph > userColumns

userColumns > Add N/A Select from the dropdown menu and define
the custom columns to display in the Scene
Graph tab.

Viewer

Control (UI) Default Value Function

viewer

interactiveProcessingDelay 250 The Viewer delays the processing of
interactive updates for a short period of time.
This allows updates to be processed in
batches, and increases responsiveness. This

Preferences |

USER GUIDE
776

Control (UI) Default Value Function

setting determines the length of this delay in
milliseconds.

showImagePlanes Yes Specify whether or not to display all image
planes.

showOverlayControl No Specify whether or not to display the overlay
controls.

showPanZoomEditor No Specify whether or not to display the
pan/zoom controls.

Preferences |

USER GUIDE

Keyboard Shortcuts

Keyboard shortcuts provide quick access to the features of Katana. The following tables show these
shortcuts.

Warning: Currently, widget focus is not correctly restored when a dialog is opened and closed,
causing certain keyboard shortcuts to stop working.

Conventions
The following conventions apply to instructions for mouse-clicks and key presses.
• LMB means click or press the left-mouse button.
• MMB means click or press the middle-mouse button
• RMB means click or press the right-mouse button.
• When you see the word “drag” after a mouse button, this tells you to press and hold the mouse button

while dragging the mouse pointer.
• Keyboard shortcut combinations with the Ctrl, Alt, and Shift keys tell you to press and hold the key and

then type the specified letter.

For example, “Press Ctrl+S” means hold down the Ctrl key, press S, and then release both keys.

Note: Keyboard shortcuts in the tables appear in upper case, but you do not type them as upper
case. If the Shift+modifier does not appear before the letter, press the letter key alone.

777

USER GUIDE
778

Note: In many Linux windows managers, the Alt key is used by default as a mouse modifier key.
This can cause problems in 3D applications where Alt is used for camera navigation in 3D
environments.

You can use key mapping to assign the mouse modifier to another key, such as the (Super or
Meta) key, but the method changes depending on which flavor of Linux you're using. Please refer
to the documentation on key mapping for your particular Linux distribution for more information.

General Shortcuts

Keyboard Shortcut(s) Action

Ctrl+\ Repeat the previous render.

Alt+middle-click and drag Pans any scrollable area. (When used in the Node Graph it zooms in and out.)

Ctrl+, Opens the Preferences dialog.

Ctrl+E Exports the currently selected portion of the script as highlighted in the Node
Graph. This saves the selected nodes as a script.

Ctrl+F Within the Node Graph, Parameters, Scene Graph, Attributes, and Project
Settings tabs, opens a Search dialog.

Ctrl+I Imports a script into the current script.

Ctrl+MMB Drag Allows dragging and dropping of attribute information.

Ctrl+Shift+MMB Drag Allows dragging and dropping of attribute information.

Ctrl+N Creates a new script. (Doesn’t work inside the Node Graph.)

Ctrl+O Opens a previously created script.

Ctrl+Q Quit the application.

Ctrl+R Redo the last undone action.

Ctrl+S Save the current script.

Ctrl+Shift+S Save the current script to a new file (Save As).

Keyboard Shortcuts |

USER GUIDE
779

Keyboard Shortcut(s) Action

Ctrl+Z Undo the last action.

Esc Cancel the current render.

Shift + Esc Cancel all renders.

F4 Show shelf items.

F5 Flush caches.

F6 Toggle implicit resolvers in the Scene Graph tab.

F7 Toggle the Render Only Selected Objects option in the Scene Graph tab.

F8 Toggle the Auto-Key All option.

Ctrl + P Start a Preview render from the current view node.

Ctrl + Shift + P Start a Live render from the current view node.

Spacebar Maximizes the pane currently below the mouse pointer. If the pane is already
maximized, Spacebar restores it to its previous size.

Backdrop Node Shortcuts

Keyboard Shortcut(s) Action

[Moves the Backdrop node the mouse is over to the back.

] Moves the Backdrop node the mouse is over to the front.

Alt+L Toggles the locked state of a Backdrop node.

Ctrl+LMB Selects everything within the border of a Backdrop node.

Double LMB Opens the Backdrop node editor.

Keyboard Shortcuts |

USER GUIDE
780

Curve Editor Shortcuts

Keyboard Shortcut(s) Action

A Frames all selected.

D Shows domain slider.

Delete Deletes keyframe.

Esc Exits insert mode.

F Frames selected.

H Shows heads up labels.

Insert Enters insert mode.

S Cycle snapping mode.

Dope Sheet Shortcuts

Keyboard Shortcut(s) Action

A Frame all.

Ctrl+A Select all.

H Toggles tooltips.

Home Frame global in/out.

W Frame working in/out.

Keyboard Shortcuts |

USER GUIDE
781

Messages Shortcuts

Keyboard Shortcut(s) Action

Ctrl+A Select all.

Crtl+C Copy message.

Delete Delete message.

Monitor Shortcuts

Keyboard Shortcut(s) Action

Period (.) Toggles the pixel probe display.

Grave Accent (`) Globally toggles the visibility of the monitor manipulators.

+/- Zooms into and out of the image.

1-8 Switches to catalog bookmark.

1-8 (Long Press) Sets a catalog bookmark.

Alt+K If mask display is enabled, steps to next mask.

Alt+RMB Drag Zooms into and out of the image.

Alt+Up Arrow/Down
Arrow

Adjusts the gamma of the image.

C Shows RGB channels as a color image.

Ctrl+Home Resets display exposure (fstop) offset to 0.

Ctrl+LMB drag Pixel probe.

Ctrl+Up Arrow/Down
Arrow

Increment/decrement display exposure (fstop) offset by 1/4 stop.

Keyboard Shortcuts |

USER GUIDE
782

Keyboard Shortcut(s) Action

Double LMB Sets the center of 2D render spiral.

F Fits images to Monitor tab.

Home Reset to 1:1 zoom level, with origin in lower-left corner.

K Toggles the mask display.

MMB drag Pans image.

Mouse wheel Zooms into and out of the image.

O Toggles the overlay image on/off.

O (press and hold) Sets and uses the current render as the overlay image.

R/G/B/A/L Shows red, green, blue, alpha, luminance channels as grayscale.

Shift+RMB Toggle Region of interest (ROI) enabled state.

Shift+RMB Drag Draws and enables Region of interest (ROI).

S Swaps front/back catalog display items.

Tab Switches between monitor and catalog views.

U Toggles the underlay image on/off.

U (press and hold) Sets and uses the current render as the underlay image.

Up Arrow/Page
Up/Down Arrow/Page
Down

Views next catalog item/Views previous catalog item.

Shift+Page Up Selects the previous available AOV.

Shift+Page Down Selects the next available AOV.

Shift+Home Toggles between the default and last selected AOV.

Keyboard Shortcuts |

USER GUIDE
783

Node Graph Shortcuts

Keyboard Shortcut(s) Action

Period (.) Adds a Dot node to the Node Graph. A Dot is only created if the mouse is over
a connection, you are connecting two nodes with one end connected, or a node
is selected.

Backtick (‘) Creates a connection between nodes. Press it first with the mouse over the
starting node, and a second time over the node to connect to.

/ Pans the view to the node at the other end of the connection. (Only works when
the mouse is hovering over one side of a connection.)

1-9 Begin or end connection with numbered output port.

A Frames the complete node tree within the Node Graph.

Alt+Any Arrow Nudges the selected node or nodes a small distance in the direction of the
arrow.

Alt+. (period) Dims the nodes that are unconnected to the viewed node.

Alt+D Toggles disabled state of selected nodes.

Alt+E Opens the currently selected node’s parameters settings within the Parameters
tab.

Ctrl+F Opens a Search dialog for the tab.

Alt+M Toggles the thumbnail state of selected nodes.

Alt+G Creates a GroupStack node with the currently selected node moved inside.

Alt+S Toggles snapping nodes to grid while dragging within the Node Graph. When
selected, moving nodes happens in steps that correspond to a grid.

Alt+T Toggles teleport link visibility.

Ctrl+C Copies the currently selected node or nodes to the buffer.

Ctrl+Backspace Goes up a level from level under mouse pointer.

Ctrl+Down Arrow Selects all nodes downstream of the currently selected node(s).

Keyboard Shortcuts |

USER GUIDE
784

Keyboard Shortcut(s) Action

Ctrl+MMB

Ctrl+Return

Enter group under mouse pointer.

Ctrl+Shift+Backspace Goes up to /root level from level under mouse pointer.

Ctrl+Up Arrow Selects all nodes upstream of the currently selected node(s).

Ctrl+V Pastes the buffer to the Node Graph.

Ctrl+X Deletes the currently selected node or nodes from the Node Graph and copies
them to the buffer.

D Toggles the disable state of the node currently under the mouse pointer.

Delete Deletes the selected node from the Node Graph.

E Opens the Parameter tab of the node currently under the mouse pointer in the
Parameters tab.

Esc Cancels whatever operation you are in the middle of, such as connecting nodes.

F Frames the currently selected node(s) within the Node Graph.

F2 When a single node is selected, opens a pop-up to edit the name of that node.

G Creates a Group node with the currently selected nodes moved inside.

J Displays the Jump-to menu, which comprises all Backdrop Nodes that have the
bookmark flag set. Selecting one of the menu options frames its corresponding
Backdrop Node within the Node Graph.

L Rearranges selected nodes, in the Node Graph, for clarity.

M Merges the selected nodes by connecting their outputs to a Merge node. This
functionality is the same as selecting Edit > Merge Selected Nodes from the
Node Graph tab menu.

N Displays the right-click node creation menu at the current mouse location.

P Creates PrimitiveCreate nodes in the Node Graph, with their name and
nodeType parameters set to match a specific type of primitive.

Q Toggles showing expression links within the Node Graph. When selected,

Keyboard Shortcuts |

USER GUIDE
785

Keyboard Shortcut(s) Action

nodes that derive their parameters via an expression that references another
node have this relationship shown via a black dashed line.

R Replaces the currently selected node with a node selected from the node
creation menu without disconnecting it, which is displayed when the key is
pressed. Typing additional characters filters the displayed list.

Return or Enter When the pointer is over a node, opens a pop-up to edit the name of that node.

Shift+~ Swaps inputs one and two on the node below the mouse pointer on a 2-input
node.

T Displays the node type of the node below the mouse pointer.

Tab Displays the node creation menu. Typing additional characters filters the
displayed list.

U Ungroups all nodes from within the currently selected Group node and brings
them into the current view, deleting the Group node.

V Makes the currently selected node the view node for the scene graph. After
pressing this key, the Scene Graph tab displays a snapshot of the scene at that
point within the script.

X Removes all connections to or from the selected node, extracting it from the
node tree. Expression references to or from the node remain unchanged.

Y Aligns selected nodes.

Shading Node Shortcuts

Keyboard Shortcut(s) Action

Alt+1 Fully collapse selected shading nodes' parameters and connections.

Alt+2 Expand selected shading nodes' connected ports only.

Alt+3 Fully expand selected shading nodes' parameters and connections.

Alt+Enter Show or hide the Filter function on selected shading nodes.

Keyboard Shortcuts |

USER GUIDE
786

Keyboard Shortcut(s) Action

Alt+H Show or hide the connections between selected shading nodes.

Tip: Hold Alt+H with no selection to temporarily show hidden
connections.

Parameters Shortcuts

Keyboard Shortcut(s) Action

D Toggles the disabled state of node.

Ctrl+F Opens a Search dialog for the tab.

LMB Drag Adjusts parameter value in Parameters tab.

Ctrl+LMB Drag Adjusts parameter value (finer grain).

Shift+LMB Drag Adjusts parameter value (coarser grain).

Python Console Shortcuts

Keyboard Shortcut(s) Action

Alt+Up Arrow Previous history.

Alt+Down Arrow Next history.

Ctrl+X Cut.

Ctrl+C Copy.

Ctrl+V Paste.

Ctrl+Return Execute entered script.

Keyboard Shortcuts |

USER GUIDE
787

Scene Graph Shortcuts

Keyboard Shortcut(s) Action

Ctrl + + Expands All/Expands branch.

Ctrl + - Collapses All/Collapses branch.

+ Expands location(s).

- Collapses location(s).

Left Arrow Selects parent location of focused location/Collapses location.

Right Arrow Selects first child location of focused location/Expands location.

Ctrl+Left Arrow Selects parent locations of selected child locations.

Ctrl+Right Arrow Selects all child locations of selected parent locations.

Ctrl+Up Arrow Moves selection up.

Ctrl+Down Arrow Moves selection down.

Click Working Sets: Sets states of selected locations to be Included.

Shift+Click Working Sets: Sets states of selected locations to be Included with Children.

Ctrl+Click Working Sets: Sets states of selected locations to be Excluded.

Ctrl+Shift+Click Working Sets: Sets states of selected locations to be Excluded with Children.

Alt+Click Working Sets: Resets states of selected locations to their minimum allowed
states.

Timebar Shortcuts

Keyboard Shortcut(s) Action

[Sets global in from current frame.

Keyboard Shortcuts |

USER GUIDE
788

Keyboard Shortcut(s) Action

] Sets global out from current frame.

+/- Zooms in and out of timeline.

Alt+LMB Drag Zooms in and out of timeline.

Ctrl+Left Arrow Move the current frame to the previous keyframe.

Ctrl+LMB Drag Selects a new active range.

Ctrl+Right Arrow Move the current frame to the next keyframe.

Home Sets active range from global in/out.

Left Arrow/Right Arrow Decrement the current frame by Inc. (Inc can be found on the
Timeline.)/Increment the current frame by Inc. (Inc can be found on the
Timeline.)

Mouse wheel Zooms into and out of the active range.

Viewer Shortcuts

Keyboard Shortcut(s) Action

Grave Accent (`) Displays the manipulators.

+/- Adjusts the size of the manipulators.

0 Selection > Subd level 0 (base).

1 Selection > Subd level 1.

2 Selection > Subd level 2.

3 Selection > Subd level 3.

4 Displays wireframe.

5 Displays shaded (filmlook).

6 Displays shaded (simple).

Keyboard Shortcuts |

USER GUIDE
789

Keyboard Shortcut(s) Action

7 Displays all lights.

8 Displays selected lights.

A Toggle quick editor.

Alt+L/R/M Mono mode, left/right/main view.

Alt+S Stereo mode.

Backspace Selection history backward.

Shift+Backspace Selection history forward.

Ctrl+B Displays proxies bounding box.

Ctrl+G Displays proxies geometry.

Ctrl+Shift+G Displays both proxies bounding box and geometry.

Ctrl+LMB Removes object from selection.

Ctrl+LMB drag Removes objects from selection.

Ctrl+Shift+LMB Adds object to selection.

Ctrl+Shift+LMB drag Adds objects to selection.

V Activate Snapping mode in the Hydra Viewer.

L Activate Lighting Tools in the Hydra Viewer.

I Activate Image-Based Selection in the Hydra Viewer.

` Turn on and off the Monitor Layer in the Hydra Viewer.

Shift+Page Up When the Monitor Layer in the Hydra Viewer is enabled , this selects the
previous available AOV.

Shift+Page Down When the Monitor Layer in the Hydra Viewer is enabled , this selects the next
available AOV.

Shift+Home When the Monitor Layer in the Hydra Viewer is enabled , this toggles
between the default and last selected AOV.

Keyboard Shortcuts |

USER GUIDE
790

Keyboard Shortcut(s) Action

C Toggles between the perspective and orthographic views for the default persp
camera.

D Makes rotate (world) manipulators appear.

Pressing D a second time makes the rotate (world) manipulators appear around
the COI.

E Makes rotate manipulators appear.

Esc Removes all manipulators from view.

G Displays grid.

H Hides selection.

LMB Selects object.

LMB Drag Selects objects.

N Displays normals.

P Pins manipulator.

Q Removes all transform manipulators from view.

R Makes scale manipulators appear.

S Makes translate (world) manipulators appear. Pressing it repeatedly toggles
between the Translate (world) and Translate Around COI manipulators.

Shift+~ Displays annotations.

T Changes background color to black.

Alt+T Changes background color to gray.

Shift+T Changes background color to white.

Tab Displays the manipulator measurement tool.

U Unhides selection.

V Look through the selected object.

Keyboard Shortcuts |

USER GUIDE
791

Keyboard Shortcut(s) Action

W Makes transform manipulators appear.

X, Y, or Z Switches the camera to look along the positive axis, aligned with the Center of
Interest. The COI position and distance are maintained and the camera can be
panned and tumbled as a perspective camera.

Shift+X, Y, or Z Switches the camera to look along that negative axis, aligned with the Center of
Interest. The COI position and distance are maintained and the camera can be
panned and tumbled as a perspective camera.

Keyboard Shortcuts |

REFERENCE GUIDE

Reference Guide
This manual aims to provide a complete reference for all the controls within each node in Katana. It does not
give you any instructions on using Katana. For details on installing and using Katana, read the User Guide.

792

REFERENCE GUIDE

2D Nodes
The nodes in this section are 2D nodes that you can use within Katana. These are listed alphabetically, and
each node includes a short description followed by a list of the node's parameters and their functions.

Color Nodes
The following section describes Katana's 2D Color nodes.

ImageBackgroundColor
Controls the background color of the input image using RGB, HSL, and/or HSV parameters.

Connection Type Connection Name Function

Input input The image sequence the colors of which you want to
modify.

Control (UI) Default Value Function

color

color 0.0, 0.0, 0.0, 1.0 The color (RGBA values) of every pixel in the image. You can
also use the below RGB, HSL, or HSV controls to set the
color.

For more information, refer to the Color Widget Type in the
Common Parameter Widgets.

793

REFERENCE GUIDE
794

ImageBrightness
This node multiplies the image's RGB channels to increase or decrease brightness.

Connection Type Connection Name Function

Input input The image sequence whose brightness you want to adjust.

out_mask An optional image to use as a mask. By default, the
brightness change is limited to the non-black areas of the
mask.

Control (UI) Default Value Function

[2D node controls] N/A Set the controls for the stereo view.

For more information, refer to the Common 2D Nodes
Widget Type in Common Parameter Widgets.

ImageBrightness parameters continued

brightness 1 Adjusts the brightness of the rgb channels in the image.

alpha 1 Adjusts the brightness of the alpha channel in the image.

ImageChannels
This node lets you:
• rearrange up to 4 channels from a single image (one input)
• combine channels from several inputs into one output. For example, you can use it to combine two

separate passes (such as the beauty pass and the reflection pass) into the same data stream.
• replace a channel with luminance, black (removing the alpha channel, for example), white (making the

alpha solid, for example), or any other constant color.

2D Nodes |

REFERENCE GUIDE
795

Connection Type Connection Name Function

Input i0

You can add as many
numbered input
ports as you want by

pressing in the
node.

The image sequence the channels of which you want to
modify.

Control (UI) Default Value Function

redSource i0 Select the input from which to take the red channel.

redChannel R Select what to use as the red channel:
• R - use the red channel from redSource.
• G - use the green channel from redSource.
• B - use the blue channel from redSource.
• A - use the alpha channel from redSource.
• Lum - use the luminance from redSource.
• 1 - set the red channel to white.
• 0 - set the red channel to black.
• Const - set the red channel to any constant color. You can

select the color using the constantColor controls.

greenSource i0 Select the input from which to take the green channel.

greenChannel G Select what to use as the green channel:
• R - use the red channel from greenSource.
• G - use the green channel from greenSource.
• B - use the blue channel from greenSource.
• A - use the alpha channel from greenSource.
• Lum - use the luminance from greenSource.
• 1 - set the green channel to white.
• 0 - set the green channel to black.

2D Nodes |

REFERENCE GUIDE
796

Control (UI) Default Value Function

• Const - set the green channel to any constant color. You
can select the color using the constantColor controls.

blueSource i0 Select the input from which to take the blue channel.

blueChannel B Select what to use as the blue channel:
• R - use the red channel from blueSource.
• G - use the green channel from blueSource.
• B - use the blue channel from blueSource.
• A - use the alpha channel from blueSource.
• Lum - use the luminance from blueSource.
• 1 - set the blue channel to white.
• 0 - set the blue channel to black.
• Const - set the blue channel to any constant color. You

can select the color using the constantColor controls.

alphaSource i0 Select the input from which to take the alpha channel.

alphaChannel A Select what to use as the alpha channel:
• R - use the red channel from alphaSource.
• G - use the green channel from alphaSource.
• B - use the blue channel from alphaSource.
• A - use the alpha channel from alphaSource.
• Lum - use the luminance from alphaSource.
• 1 - set the alpha channel to white.
• 0 - set the alpha channel to black.
• Const - set the alpha channel to any constant color. You

can select the color using the constantColor controls.

constantColor

color 0.0000, 0.0000,
0.0000, 1.0000

The color (RGBA values) of the pixels in any channels that
you have set to Const. You can also use the below RGB,
HSL, or HSV controls to set the color.

For more information, refer to the Color Widget Type in the
Common Parameter Widgets.

2D Nodes |

REFERENCE GUIDE
797

ImageClamp
This node constrains, or clamps, values in the selected channels to a specified minimum and/or maximum
range.

Connection Type Connection Name Function

Input input The image sequence the values of which you want to
clamp.

out_mask An optional image to use as a mask. By default, the clamp
effect is limited to the non-black areas of the mask.

Control (UI) Default Value Function

[2D node controls] N/A Set the controls for the stereo view.

For more information, refer to the Common 2D Nodes
Widget Type in Common Parameter Widgets.

ImageClamp parameters continued

clamp Both Sets which values are use to clamp the input:
• Both - min and max rgba values are clamped.
• Max - only the max rgba clamps are used.
• Min - only the min rgba clamps are used.

min

red 0 Sets the minimum values at which the rgba channels are
clamped.

For more information, refer to the Color Widget Type in the
Common Parameter Widgets.

green 0

blue 0

alpha 0

2D Nodes |

REFERENCE GUIDE
798

Control (UI) Default Value Function

max

red 16 Sets the maximum values at which the rgba channels are
clamped.

For more information, refer to the Color Widget Type in the
Common Parameter Widgets.

green 16

blue 16

alpha 1

inputs Unpremultiplied Select whether you are using a premultiplied or
unpremultiplied input image:
• Premultiplied - the ImageClamp node unpremultiplies

the input, applies the clamp effect, and premultiplies the
input again. This simulates applying the clamp before the
premultiplication was done, as color corrections are
typically applied on unpremultiplied images.

• Unpremultiplied - the ImageClamp node simply applies
the contrast change.

ImageContrast
This adjusts the input image's contrast around a fixed color point.

Connection Type Connection Name Function

Input input The image sequence the contrast of which you want to
modify.

out_mask An optional image to use as a mask. By default, the merge
is limited to the non-black areas of the mask.

2D Nodes |

REFERENCE GUIDE
799

Control (UI) Default Value Function

[2D node controls] N/A Set the controls for the stereo view.

For more information, refer to the Common 2D Nodes
Widget Type in Common Parameter Widgets.

contrast

rgb 1 Adjusts the image contrast in the r, g, and b channels.

r 1 Adjusts the image contrast in the red channel only.

g 1 Adjusts the image contrast in the green channel only.

b 1 Adjusts the image contrast in the blue channel only.

a 1 Adjusts the image contrast in the alpha channel only.

fixedPoint

fixedPoint 0.1800, 0.1800,
0.1800, 0.500

The point from which to influence the contrast. When
contrast is greater than one, colors are moved away from
this value, when the contrast is below one, colors are
moved towards this value. You can also use the below RGB,
HSL, or HSV controls to set the color.

For more information, refer to the Color Widget Type in the
Common Parameter Widgets.

contrastFunction Power Select the contrast function to use:
• Power
• Linear

inputs Unpremultiplied Select whether you are using a premultiplied or
unpremultiplied input image:
• Premultiplied - the ImageContrast node unpremultiplies

the input, applies the contrast change, and premultiplies
the input again. This simulates applying the contrast
change before the premultiplication was done, as color
corrections are typically applied on unpremultiplied
images.

• Unpremultiplied - the ImageContrast node simply
applies the contrast change.

2D Nodes |

REFERENCE GUIDE
800

ImageExposure
Allows you to adjust the exposure of the input sequence using f-stops or gain.

Connection Type Connection Name Function

Input input The image sequence the exposure of which you want to
adjust.

out_mask An optional image to use as a mask. By default, the
exposure effect is limited to the non-black areas of the
mask.

Control (UI) Default Value Function

[2D node controls] N/A Set the controls for the stereo view.

For more information, refer to the Common 2D Nodes
Widget Type in Common Parameter Widgets.

units: F-Stops

fsIntensity 0 Adjusts f-stop intensity.

units: Gain

gIntensity 1 Adjusts gain intensity.

units: F-Stops > fsColor

red 0 Adjusts f-stop exposure in the red channel.

green 0 Adjusts f-stop exposure in the green channel.

blue 0 Adjusts f-stop exposure in the blue channel.

fsAlpha 0 Adjusts f-stop exposure in the alpha channel.

units: Gain > gColor

2D Nodes |

REFERENCE GUIDE
801

Control (UI) Default Value Function

red 1 Adjusts gain exposure in the red channel.

green 1 Adjusts gain exposure in the green channel.

blue 1 Adjusts gain exposure in the blue channel.

gAlpha 1 Adjusts gain exposure in the alpha channel.

units F-Stops Select the units in which the exposure is altered:
• F-Stops - use the fsColor controls to adjust exposure.
• Gain - use the gColor controls to adjust exposure.

ImageFade
This node fades the input image to a color of your choosing. By default, the image is faded to black.

Connection Type Connection Name Function

Input input The image sequence that you want to fade to black (or a
color of your choosing).

out_mask An optional image to use as a mask. By default, the fade
effect is limited to the non-black areas of the mask.

Control (UI) Default Value Function

[2D node controls] N/A Set the controls for the stereo view.

For more information, refer to the Common 2D Nodes
Widget Type in Common Parameter Widgets.

ImageFade parameters continued

amount 1 Dissolves between the bg image at 0 and the full merge
effect at 1.

2D Nodes |

REFERENCE GUIDE
802

Control (UI) Default Value Function

fadeToColor

fadeToColor 0.0000, 0.0000,
0.0000, 0.0000

The color (RGBA values) of the fade color. You can also use
the below RGB, HSL, or HSV controls to set the color.

For more information, refer to the Color Widget Type in the
Common Parameter Widgets.

ImageGain
This node lets you adjust the gain in your input image. In other words, it multiplies a channel's values by a
given factor, which has the effect of lightening the channel while preserving the blackpoint.

Connection Type Connection Name Function

Input input The image sequence the gain of which you wish to modify.

out_mask An optional image to use as a mask. By default, the merge
is limited to the non-black areas of the mask.

Control (UI) Default Value Function

[2D node controls] N/A Set the controls for the stereo view.

For more information, refer to the Common 2D Nodes
Widget Type in Common Parameter Widgets.

units: F-Stops

fsIntensity 0 Adjusts f-stop intensity.

units: Gain

gIntensity 1 Adjusts gain intensity.

2D Nodes |

REFERENCE GUIDE
803

Control (UI) Default Value Function

units: F-Stops > fsColor

red 0 Adjusts f-stop in the red channel.

green 0 Adjusts f-stop in the green channel.

blue 0 Adjusts f-stop in the blue channel.

fsAlpha 0 Adjusts f-stop in the alpha channel.

units: Gain > gColor

red 1 Adjusts gain in the red channel.

green 1 Adjusts gain in the green channel.

blue 1 Adjusts gain in the blue channel.

gAlpha 1 Adjusts gain in the alpha channel.

units F-Stops Select the units in which the gain is altered:
• F-Stops - use the fsColor controls to adjust gain.
• Gain - use the gColor controls to adjust gain.

ImageGamma
Applies a constant gamma value to the selected channels. This lightens or darkens the mid-tones.

Connection Type Connection Name Function

Input input The image sequence the gamma of which you wish to
modify.

out_mask An optional image to use as a mask. By default, the merge
is limited to the non-black areas of the mask.

2D Nodes |

REFERENCE GUIDE
804

Control (UI) Default Value Function

[2D node controls] N/A Set the controls for the stereo view.

For more information, refer to the Common 2D Nodes
Widget Type in Common Parameter Widgets.

gamma

rgb 1 Adjusts gamma in the red, green, and blue channels.

r 1 Adjusts gamma in the red channel.

g 1 Adjusts gamma in the green channel.

b 1 Adjusts gamma in the blue channel.

a 1 Adjusts gamma in the alpha channel.

fixedPoint

fixedPoint 1.0000, 1.0000,
1.0000, 1.0000

The color (RGBA values). You can also use the below RGB,
HSL, or HSV controls to set the color.

For more information, refer to the Color Widget Type in the
Common Parameter Widgets.

inputs Unpremultiplied Select whether you are using a premultiplied or
unpremultiplied input image:
• Premultiplied - the ImageGamma node unpremultiplies

the input, applies the gamma change, and premultiplies
the input again. This simulates applying the gamma
change before the premultiplication was done, as color
corrections are typically applied on unpremultiplied
images.

• Unpremultiplied - the ImageGamma node simply applies
the gamma change.

ImageInvert
Inverts a channel's values. To invert a channel is to subtract its values from 1, which causes its blacks to
become white and its whites to become black. You may find this particularly useful to invert mattes.

2D Nodes |

REFERENCE GUIDE
805

Connection Type Connection Name Function

Input input The image sequence that values of which you want to
invert.

out_mask An optional image to use as a mask. By default, the invert
effect is limited to the non-black areas of the mask.

Control (UI) Default Value Function

[2D node controls] N/A Set the controls for the stereo view.

For more information, refer to the Common 2D Nodes
Widget Type in Common Parameter Widgets.

ImageInvert parameters continued

mode Additive Sets the invert calculation mode:
• Additive
• Multiplicative

mode: Additive

max 1.0000, 1.0000,
1.0000, 1.0000

The max color (RGBA values). You can also use the below
RGB, HSL, or HSV controls to set the color.

For more information, refer to the Color Widget Type in the
Common Parameter Widgets.

ImageLevels
This node controls the input, gamma, and output levels of the input image.

2D Nodes |

REFERENCE GUIDE
806

Connection Type Connection Name Function

Input input The image sequence the levels of which you want to adjust.

out_mask An optional image to use as a mask. By default, the levels
adjustment is limited to the non-black areas of the mask.

Control (UI) Default Value Function

[2D node controls] N/A Set the controls for the stereo view.

For more information, refer to the Common 2D Nodes
Widget Type in Common Parameter Widgets.

inputMin

inputMin 0.0000, 0.0000,
0.0000, 0.0000

Sets the minimum input level for the RGBA values. You can
also use the HSL or HSV controls to set the color.

For more information, refer to the Color Widget Type in the
Common Parameter Widgets.

inputMax

inputMax 1.0000, 1.0000,
1.0000, 1.0000

Sets the maximum input level for the RGBA values. You can
also use the HSL or HSV controls to set the color.

For more information, refer to the Color Widget Type in the
Common Parameter Widgets.

gamma

gamma 1.0000, 1.0000,
1.0000, 1.0000

Sets the gamma levels for the RGBA values. You can also
use the HSL or HSV controls to set the color.

For more information, refer to the Color Widget Type in the
Common Parameter Widgets.

outputMin

outputMin 0.0000, 0.0000,
0.0000, 0.0000

Sets the minimum output level for the RGBA values. You
can also use the HSL or HSV controls to set the color.

2D Nodes |

REFERENCE GUIDE
807

Control (UI) Default Value Function

For more information, refer to the Color Widget Type in the
Common Parameter Widgets.

outputMax

outputMax 1.0000, 1.0000,
1.0000, 1.0000

Sets the maximum output level for the RGBA values. You
can also use the HSL or HSV controls to set the color.

For more information, refer to the Color Widget Type in the
Common Parameter Widgets.

direction Forward The transform direction, with Forward being used to bake
in a color correction, and Inverse typically reversing out a
previously-baked in correction.

clampMin No When set to Yes, levels are clamped to the specified
inputMin and outputMin values.

clampMax No When set to Yes, levels are clamped to the specified
inputMax and outputMax values.

ImageSaturation
This node is used to correct the input image's saturation (color intensity).

Connection Type Connection Name Function

Input input The image sequence the saturation of which you want to
modify.

out_mask An optional image to use as a mask. By default, the merge
is limited to the non-black areas of the mask.

2D Nodes |

REFERENCE GUIDE
808

Control (UI) Default Value Function

[2D node controls] N/A Set the controls for the stereo view.

For more information, refer to the Common 2D Nodes
Widget Type in Common Parameter Widgets.

ImageSaturation parameters continued

saturation 1 Controls overall image saturation. Values less than 1 reduce
saturation, and the other way around.

coefficients

red 0.2126 Adjusts the image in conjunction with the saturation
control, but only affects the red channel.

green 0.7152 Adjusts the image in conjunction with the saturation
control, but only affects the green channel.

blue 0.0722 Adjusts the image in conjunction with the saturation
control, but only affects the blue channel.

normalize enabled When enabled, saturation calculations are normalized.

ImageThreshold
The ImageThreshold node sets the value of the output pixels of an image, based on whether the value is
above or below the value in the level parameter.

Connection Type Connection Name Function

Input input The image sequence the output pixel values of which you
want to set.

out_mask An optional image to use as a mask. By default, the merge
is limited to the non-black areas of the mask.

2D Nodes |

REFERENCE GUIDE
809

Control (UI) Default Value Function

[2D node controls] N/A Set the controls for the stereo view.

For more information, refer to the Common 2D Nodes
Widget Type in Common Parameter Widgets.

level

level 0.5000, 0.5000,
0.5000, 0.5000

For more information, refer to the Color Widget Type in the
Common Parameter Widgets.

enableLow Enabled If enabled, any channel values below their corresponding
level are set to the corresponding low value.

low

low 0.0000, 0.0000,
0.0000, 0.0000

The output low value.

For more information, refer to the Color Widget Type in the
Common Parameter Widgets.

enableHigh Enabled If enabled, any channel values greater than or equal to their
corresponding level are set to the corresponding high
value.

high

high 1.0000, 1.0000,
1.0000, 1.0000

The output high value.

For more information, refer to the Color Widget Type in the
Common Parameter Widgets.

OCIOCDLTransform
This node applies an ASC CDL grade. The calculation uses output = (i * s + o)^p where i is the input value,
s is slope, o is offset and p is power.

2D Nodes |

REFERENCE GUIDE
810

Connection Type Connection Name Function

Input input The place in the node graph where the ASC CDL grade is
applied.

Control (UI) Default Value Function

slope

r 1 Adjusts the slope value in the red channel.

g 1 Adjusts the slope value in the green channel.

b 1 Adjusts the slope value in the blue channel.

offset

r 0 Adjusts the offset value in the red channel.

g 0 Adjusts the offset value in the green channel.

b 0 Adjusts the offset value in the blue channel.

power

r 1 Adjusts the power value in the red channel.

g 1 Adjusts the power value in the green channel.

b 1 Adjusts the power value in the blue channel.

saturation 1 Scales the image saturation using the 709 ASC primaries.

direction forward The direction of the transform, with forward being used to
bake in the color transform, and inverse typically reversing
out a previously-baked in transform.

OCIOColorSpace
This node converts the input colorspace to another specified colorspace.

2D Nodes |

REFERENCE GUIDE
811

Connection Type Connection Name Function

Input input The place in the node graph where the colorspace
conversion is applied.

Control (UI) Default Value Function

inColorSpace linear Sets the input colorspace to convert from.

outColorSpace linear Sets the output colorspace to convert to.

context

Manually define keys and values for the OCIOColorspace node.

key1; key2; key3;
key4

N/A Set a key that corresponds to the value of the same number
in order to modify elements of the OCIO node, for example,
setting a key called SHOT now tells the node that the
corresponding value should be used for shots.

value1; value2;
value3; value4

N/A Set a value that corresponds to the key of the same number
in order to modify elements of the OCIO node, for example,
setting a value fora key called SHOT now tells the node that
this value should be used in this context.

OCIODisplay
This node is used to convert the input colorspace to display device-suitable values.

Connection Type Connection Name Function

Input input The place in the node graph where the colorspace
conversion is applied.

2D Nodes |

REFERENCE GUIDE
812

Control (UI) Default Value Function

inputColorSpace linear Sets the input colorspace to convert from.

display sRGB Sets the output display colorspace to convert to.

view sRGB Specifies the colorspace transform to apply to the scene or
image, from the options Film, Log, or Raw.

exposure

rgb 0 Sets the exposure level for the r, g, and b channels together.

r 0 Sets the exposure level for the red channel.

g 0 Sets the exposure level for the green channel.

b 0 Sets the exposure level for the blue channel.

context

Manually define keys and values for the OCIODisplay node.

key1; key2; key3;
key4

N/A Set a key that corresponds to the value of the same number
in order to modify elements of the OCIO node, for example,
setting a key called SHOT now tells the node that the
corresponding value should be used for shots.

value1; value2;
value3; value4

N/A Set a value that corresponds to the key of the same number
in order to modify elements of the OCIO node, for example,
setting a value fora key called SHOT now tells the node that
this value should be used in this context.

OCIOFileTransform
This node applies a LUT transform using a specified file.

Connection Type Connection Name Function

Input input The place in the node graph where the LUT transform is
applied.

2D Nodes |

REFERENCE GUIDE
813

Control (UI) Default Value Function

src N/A Specifies the src file path and name to use for the
transform. This can be any file format that OpenColorIO
supports: .3dl, .cc, .ccc, .csp, .cub, .cube, .lut (Houdini),
.mga, .m3d, .spi1d, .spi3d, .spimtx, .vf

cccid N/A When src points to a .ccc file, specify the id to lookup.
OpenColorIO::Contexts (envvars) are obeyed.

direction forward The direction of the transform, with forward being used to
bake in a LUT transform, and inverse typically reversing out
a previously-baked in LUT transform.

interpolation linear Specifies the interpolation method. This is ignored if the file
used is not a LUT. The following interpolation methods are
listed from fastest to most accurate:

• nearest

• linear

• tetrahedral

• best

context

Manually define keys and values for the OCIOFileTransform node.

key1; key2; key3;
key4

N/A Set a key that corresponds to the value of the same number
in order to modify elements of the OCIO node, for example,
setting a key called SHOT now tells the node that the
corresponding value should be used for shots.

value1; value2;
value3; value4

N/A Set a value that corresponds to the key of the same number
in order to modify elements of the OCIO node, for example,
setting a value fora key called SHOT now tells the node that
this value should be used in this context.

2D Nodes |

REFERENCE GUIDE
814

OCIOLogConvert
This node can be used to override the Kodak-recommended settings when making Cineon conversions in
either direction (lin to log or log to lin). It's rare that you would want to override these settings, but if it
becomes necessary you can use the OCIOLogConvert node. If you do, you should also check rawData in the
ImageRead and ImageWrite node controls to skip the automatic conversion.

Connection Type Connection Name Function

Input input The place in the node graph where you want the log to lin
or lin to log conversion to be applied.

Control (UI) Default Value Function

operation Lin To Log Select the operation to perform:
• Log To Lin - convert from a logarithmic (Cineon) format

to Katana's linear colorspace.
• Lin To Log - convert from Katana's linear colorspace to a

logarithmic (Cineon) format.

OCIOLookTransform
This node provides a way to apply per-shot color correction as specified using the OpenColorIO look
mechanism.

Connection Type Connection Name Function

Input input The place in the node graph where the color correction is
applied.

2D Nodes |

REFERENCE GUIDE
815

Control (UI) Default Value Function

look N/A Sets which looks to apply, referencing the OCIO
configuration. You can chain looks together using a list
delimited by commas or colons. To indicate direction, you
can also use the + and - modifiers.

direction forward The direction of the transform, with forward being used to
bake in a transform, and inverse typically reversing out a
previously-baked in transform.

inColorSpace linear Sets the input colorspace to convert from.

outColorSpace linear Sets the output colorspace to convert to.

ignoreErrors disabled When enabled, a missing OpenColorIO look forces this fail.

When disabled, a missing OpenColorIO look is treated as a
normal colorspace conversion.

context

Manually define keys and values for the OCIOLookTransform node.

key1; key2; key3;
key4

N/A Set a key that corresponds to the value of the same number
in order to modify elements of the OCIO node, for example,
setting a key called SHOT now tells the node that the
corresponding value should be used for shots.

value1; value2;
value3; value4

N/A Set a value that corresponds to the key of the same number
in order to modify elements of the OCIO node, for example,
setting a value fora key called SHOT now tells the node that
this value should be used in this context.

Composite Nodes
The following section describes Katana's 2D Composite nodes.

2D Nodes | Composite Nodes

REFERENCE GUIDE
816

ImageIn
This node layers images together using the In compositing algorithm: Bf. It only shows the areas of the
background that overlap with the alpha of the foreground. It can be useful for combining mattes.

You can also specify a different compositing algorithm using the operation control.

Connection Type Connection Name Function

Input bg The background image.

fg The foreground image.

out_mask An optional image to use as a mask. By default, the merge
is limited to the non-black areas of the mask.

Control (UI) Default Value Function

[2D node controls] N/A Set the controls for the stereo view.

For more information, refer to the Common 2D Nodes
Widget Type in Common Parameter Widgets.

ImageIn parameters continued

operation In If you don't want layer the images together using the In
compositing operation, select the operation to use instead.

The following conventions apply to the below operation
descriptions:
• F refers to the fg input.
• f refers to the fg input's alpha channel.
• B refers to the bg input.
• b refers to the bg input's alpha channel.

operation
(continued)

The available operations (based on the Porter & Duff paper)
are:

2D Nodes | Composite Nodes

REFERENCE GUIDE
817

Control (UI) Default Value Function

• Atop - Fb+B(1-f). This shows the shape of the
background, with the foreground covering the
background where the images overlap.

• Average - (F+B)/2. This produces the average of the two
images. The result is darker than the original images, but
accentuates highlights.

• Difference - abs(F-B). This shows how much the pixels
differ and is useful for comparing two very similar images.

• Divide - B/F. This divides the background values by the
foreground values.

• Exclusion - F+B-2FB. This is a more photographic form of
Difference.

• From - F-B. This subtracts the background from the
foreground. For subtracting the foreground from the
background instead, see Minus.

• Geometric - 2FB/(F+B). This is another way of averaging
two images. Visually, it's close to Min.

• Hypot - sqrt(F*F+B*B). This resembles the Add and
Screen operations. The result is not as bright as Add, but
brighter than Screen. Hypot works with values above 1. It
can be is useful for adding reflections, as an alternative to
Screen.

• In - Bf. This only shows the areas of the background that
overlap with the alpha of the foreground. It can be useful
for combining mattes.

• Matte - Ff*B(1-f). This is a premultiplied Over. Use
unpremultiplied images with this operation.

• Max - max(F,B). This takes the maximum values of both
images. This is a good way to combine mattes and useful
for bringing aspects like bright hair detail through.

operation
(continued)

• Min - min(F,B). This takes the minimum values of both
images.

• Minus - B-F. This subtracts the foreground from the
background. For subtracting the background from the

2D Nodes | Composite Nodes

REFERENCE GUIDE
818

Control (UI) Default Value Function

foreground instead, see From.
• Multiply - FB. This multiplies the values of the foreground

by the values of the background. It can be used to
composite darker values from the foreground with the
background image - dark gray smoke shot against a white
background, for example.

• Out - B(1-f). This only shows the areas of the background
that do not overlap with the alpha of the foreground. This
can be useful for combining mattes.

• Over - F+B(1-f). This layers the foreground over the
background according to the alpha of the foreground.
This is the most commonly used operation. It's used when
layering a foreground element over a background plate.

• Plus - F+B. This produces the sum of the foreground and
background. Note that the add algorithm may result in
pixel values higher than 1.0.

• Screen - F+B-FB. This is similar to Hypot, but clamps pixel
values to 1.0. This is mostly useful for combining mattes.

• Under - F(1-b)+B. This is the reverse of the Over
operation. It layers the background over the foreground
according to the alpha of the background.

amount 1 Dissolves between the bg image at 0 and the full merge
effect at 1.

displayWindow Background The frame size to output in the event that the fg and bg
inputs are different sizes:
• Background - output the frame size of the bg input.
• Foreground - output the frame size of the fg input.
• Union - output a combination of the bg and fg inputs'

frame sizes.
• Intersection - output an intersection of the bg and fg

inputs' frame sizes. This restricts the output to the area
where the two frame sizes overlap.

clampAlpha enabled When enabled, the output alpha channel is clamped to the
0-1 range. Color channels (RGB) are not affected.

2D Nodes | Composite Nodes

REFERENCE GUIDE
819

ImageMerge
This node is a generic merge node that is able to perform all the other merge operations supported by
Katana.

Connection Type Connection Name Function

Input bg The background image.

fg The foreground image.

out_mask An optional image to use as a mask. By default, the merge
is limited to the non-black areas of the mask.

Control (UI) Default Value Function

[2D node controls] N/A Set the controls for the stereo view.

For more information, refer to the Common 2D Nodes
Widget Type in Common Parameter Widgets.

ImageMerge parameters continued

operation Merge If you don't want layer the images together using the
Merge compositing operation, select the operation to use
instead.

The following conventions apply to the below operation
descriptions:
• F refers to the fg input.
• f refers to the fg input's alpha channel.
• B refers to the bg input.
• b refers to the bg input's alpha channel.

operation
(continued)

The available operations (based on the Porter & Duff paper)
are:

2D Nodes | Composite Nodes

REFERENCE GUIDE
820

Control (UI) Default Value Function

• Atop - Fb+B(1-f). This shows the shape of the
background, with the foreground covering the
background where the images overlap.

• Average - (F+B)/2. This produces the average of the two
images. The result is darker than the original images, but
accentuates highlights.

• Difference - abs(F-B). This shows how much the pixels
differ and is useful for comparing two very similar images.

• Divide - B/F. This divides the background values by the
foreground values.

• Exclusion - F+B-2FB. This is a more photographic form of
Difference.

• From - F-B. This subtracts the background from the
foreground. For subtracting the foreground from the
background instead, see Minus.

• Geometric - 2FB/(F+B). This is another way of averaging
two images. Visually, it's close to Min.

• Hypot - sqrt(F*F+B*B). This resembles the Add and
Screen operations. The result is not as bright as Add, but
brighter than Screen. Hypot works with values above 1. It
can be is useful for adding reflections, as an alternative to
Screen.

• In - Bf. This only shows the areas of the background that
overlap with the alpha of the foreground. It can be useful
for combining mattes.

• Matte - Ff*B(1-f). This is a premultiplied Over. Use
unpremultiplied images with this operation.

• Max - max(F,B). This takes the maximum values of both
images. This is a good way to combine mattes and useful
for bringing aspects like bright hair detail through.

operation
(continued)

• Min - min(F,B). This takes the minimum values of both
images.

• Minus - B-F. This subtracts the foreground from the
background. For subtracting the background from the

2D Nodes | Composite Nodes

REFERENCE GUIDE
821

Control (UI) Default Value Function

foreground instead, see From.
• Multiply - FB. This multiplies the values of the foreground

by the values of the background. It can be used to
composite darker values from the foreground with the
background image - dark gray smoke shot against a white
background, for example.

• Out - B(1-f). This only shows the areas of the background
that do not overlap with the alpha of the foreground. This
can be useful for combining mattes.

• Over - F+B(1-f). This layers the foreground over the
background according to the alpha of the foreground.
This is the most commonly used operation. It's used when
layering a foreground element over a background plate.

• Plus - F+B. This produces the sum of the foreground and
background. Note that the add algorithm may result in
pixel values higher than 1.0.

• Screen - F+B-FB. This is similar to Hypot, but clamps pixel
values to 1.0. This is mostly useful for combining mattes.

• Under - F(1-b)+B. This is the reverse of the Over
operation. It layers the background over the foreground
according to the alpha of the background.

amount 1 Dissolves between the bg image at 0 and the full merge
effect at 1.

displayWindow Background The frame size to output in the event that the fg and bg
inputs are different sizes:
• Background - output the frame size of the bg input.
• Foreground - output the frame size of the fg input.
• Union - output a combination of the bg and fg inputs'

frame sizes.
• Intersection - output an intersection of the bg and fg

inputs' frame sizes. This restricts the output to the area
where the two frame sizes overlap.

clampAlpha enabled When enabled, the output alpha channel is clamped to the
0-1 range. Color channels (RGB) are not affected.

2D Nodes | Composite Nodes

REFERENCE GUIDE
822

ImageOut
This node layers images together using the Out compositing algorithm: B(1-f). Only shows the areas of the
background that do not overlap with the alpha of the foreground. This can be useful for combining mattes.

Connection Type Connection Name Function

Input bg The background image.

fg The foreground image.

out_mask An optional image to use as a mask. By default, the merge
is limited to the non-black areas of the mask.

Control (UI) Default Value Function

[2D node controls] N/A Set the controls for the stereo view.

For more information, refer to the Common 2D Nodes
Widget Type in Common Parameter Widgets.

ImageOut parameters continued

operation Out If you don't want layer the images together using the Out
compositing operation, select the operation to use instead.

The following conventions apply to the below operation
descriptions:
• F refers to the fg input.
• f refers to the fg input's alpha channel.
• B refers to the bg input.
• b refers to the bg input's alpha channel.

operation
(continued)

The available operations (based on the Porter & Duff paper)
are:
• Atop - Fb+B(1-f). This shows the shape of the

2D Nodes | Composite Nodes

REFERENCE GUIDE
823

Control (UI) Default Value Function

background, with the foreground covering the
background where the images overlap.

• Average - (F+B)/2. This produces the average of the two
images. The result is darker than the original images, but
accentuates highlights.

• Difference - abs(F-B). This shows how much the pixels
differ and is useful for comparing two very similar images.

• Divide - B/F. This divides the background values by the
foreground values.

• Exclusion - F+B-2FB. This is a more photographic form of
Difference.

• From - F-B. This subtracts the background from the
foreground. For subtracting the foreground from the
background instead, see Minus.

• Geometric - 2FB/(F+B). This is another way of averaging
two images. Visually, it's close to Min.

• Hypot - sqrt(F*F+B*B). This resembles the Add and
Screen operations. The result is not as bright as Add, but
brighter than Screen. Hypot works with values above 1. It
can be is useful for adding reflections, as an alternative to
Screen.

• In - Bf. This only shows the areas of the background that
overlap with the alpha of the foreground. It can be useful
for combining mattes.

• Matte - Ff*B(1-f). This is a premultiplied Over. Use
unpremultiplied images with this operation.

• Max - max(F,B). This takes the maximum values of both
images. This is a good way to combine mattes and useful
for bringing aspects like bright hair detail through.

operation
(continued)

• Min - min(F,B). This takes the minimum values of both
images.

• Minus - B-F. This subtracts the foreground from the
background. For subtracting the background from the
foreground instead, see From.

2D Nodes | Composite Nodes

REFERENCE GUIDE
824

Control (UI) Default Value Function

• Multiply - FB. This multiplies the values of the foreground
by the values of the background. It can be used to
composite darker values from the foreground with the
background image - dark gray smoke shot against a white
background, for example.

• Out - B(1-f). This only shows the areas of the background
that do not overlap with the alpha of the foreground. This
can be useful for combining mattes.

• Over - F+B(1-f). This layers the foreground over the
background according to the alpha of the foreground.
This is the most commonly used operation. It's used when
layering a foreground element over a background plate.

• Plus - F+B. This produces the sum of the foreground and
background. Note that the add algorithm may result in
pixel values higher than 1.0.

• Screen - F+B-FB. This is similar to Hypot, but clamps pixel
values to 1.0. This is mostly useful for combining mattes.

• Under - F(1-b)+B. This is the reverse of the Over
operation. It layers the background over the foreground
according to the alpha of the background.

amount 1 Dissolves between the bg image at 0 and the full merge
effect at 1.

displayWindow Background The frame size to output in the event that the fg and bg
inputs are different sizes:
• Background - output the frame size of the bg input.
• Foreground - output the frame size of the fg input.
• Union - output a combination of the bg and fg inputs'

frame sizes.
• Intersection - output an intersection of the bg and fg

inputs' frame sizes. This restricts the output to the area
where the two frame sizes overlap.

clampAlpha enabled When enabled, the output alpha channel is clamped to the
0-1 range. Color channels (RGB) are not affected.

2D Nodes | Composite Nodes

REFERENCE GUIDE
825

ImagePremultiply
This node premultiplies (mult) the rgb channels by the alphaChannel when an image is connected to the
alpha input. Otherwise, a is read from the input leaving the alpha channel unchanged.

Also see ImageUnpremultiply.

Connection Type Connection Name Function

Input input The image sequence you want to premultiply. If no alpha
input is connected, this input should contain an alpha
channel to use for premultiplying the color channels.

alpha An optional input for attaching a separate channel that is
used to premultiply the input image. If this input is
connected, you can use alphaChannel to select the
channel to use.

out_mask An optional image to use as a mask. By default, the
premultiplication is limited to the non-black areas of the
mask.

Control (UI) Default Value Function

[2D node controls] N/A Set the controls for the stereo view.

For more information, refer to the Common 2D Nodes
Widget Type in Common Parameter Widgets.

ImagePremultiply parameters continued

alphaChannel A If a separate alpha input is provided, choose which of its
channels to use to premultiply.

If no separate alpha input is provided, the alpha from input
is used and this control is disabled.

2D Nodes | Composite Nodes

REFERENCE GUIDE
826

ImageUnpremultiply
This node divides the RGB channels by the alphaChannel when an image is connected to the alpha input.
Otherwise, a is read from the input leaving the alpha channel unchanged.

Also see ImagePremultiply.

Connection Type Connection Name Function

Input input The image sequence you want to unpremultiply. If no alpha
input is connected, this input should contain an alpha
channel to use for unpremultiplying the color channels.

alpha An optional input for attaching a separate channel that is
used to unpremultiply the input image. If this input is
connected, you can use alphaChannel to select the
channel to use.

out_mask An optional image to use as a mask. By default, the
unpremultiplication is limited to the non-black areas of the
mask.

Control (UI) Default Value Function

[2D node controls] N/A Set the controls for the stereo view.

For more information, refer to the Common 2D Nodes
Widget Type in Common Parameter Widgets.

ImageUnpremultiply parameters continued

alphaChannel A If a separate alpha input is provided, choose which of its
channels to use to unpremultiply.

If no separate alpha input is provided, the alpha from input
is used and this control is disabled.

2D Nodes | Composite Nodes

REFERENCE GUIDE
827

ImageZMerge
The ImageZMerge node applies a simple A over B composite. A and B are determined by examining the
corresponding depth image and making A the image that has the lower (closer) depth value. A depth of 0 is
assumed to be infinitely far away. An accumulated depth for the result is also available as the second output.
Inputs are ordered as follows: Image1, Depth1, Image2, Depth2.

Connection Type Connection Name Function

Input i0 The input ports you want to set for different parts of the
node graph.

You can add as many numbered input ports as you want by

pressing in the node.

i1

i2

i3

Control (UI) Default Value Function

depthChannel N/A Specifies the channel (R, G, B, or A) that contains the depth
values in the depth images.

Filter Nodes
The following section describes Katana's 2D Filter nodes.

ImageBlur
Adds blur to an image or matte using Box, Triangle, Gaussian, Bell, BSpline, or Mitchell filter algorithms. The
blur value is calculated for image pixels by examining their neighbors within the constraints of the xAmount
and yAmount controls, and applying the selected algorithms.

2D Nodes | Filter Nodes

REFERENCE GUIDE
828

Connection Type Connection Name Function

Input input The image sequence you want to blur.

out_mask An optional image to use as a mask. By default, the blur
effect is limited to the non-black areas of the mask.

Control (UI) Default Value Function

[2D node
controls]

N/A Set the controls for the stereo view.

For more information, refer to the Common 2D
Nodes Widget Type in Common Parameter
Widgets.

ImageBlur parameters continued

xAmount 0 Sets the horizontal radius (in pixels) within
which pixels are compared to calculate the
blur. Higher values widen the compare area,
producing more blur.

yAmount xAmount Sets the vertical radius (in pixels) within which
pixels are compared to calculate the blur.
Higher values widen the compare area,
producing more blur.

By default, this value is the same as xAmount.

filter Gaussian Select the filtering algorithm to use:
• Box
• Triangle
• Gaussian
• Bell
• BSpline
• Mitchell

borderExtend Clamp Select the border extend method for pixels
required beyond the image borders:

2D Nodes | Filter Nodes

REFERENCE GUIDE
829

Control (UI) Default Value Function

• Mirror
• Clamp
• Background

useOverscan globals.compDefaults.useOverscan Sets whether to use upstream overscan (if
available) during the border extension process.
If overscan is available (and of usable quality),
this typically yields superior results around
frame edges.

However, if you are unsure of this procedure
or the integrity of overscanned areas is
unknown, it's safer to leave this disabled.

Overscan refers to image pixel data outside of
the displayWindow and can be inspected
using options in the Monitor.

For information on explicitly manipulating
these regions, see the ImageCrop node.

channelAmounts

red 1 Applies a multiplier to the blur amount for the
red channel.

green 1 Applies a multiplier to the blur amount for the
green channel.

blue 1 Applies a multiplier to the blur amount for the
blue channel.

alpha 1 Applies a multiplier to the blur amount for the
alpha channel.

I/O Nodes
The following section describes Katana's 2D I/O nodes.

2D Nodes | I/O Nodes

REFERENCE GUIDE
830

ImageRead
This node loads images from disk, using the native resolution and the frame range for the sequence. It
converts all imported sequences to Katana's linear colorspace automatically, but there are options to control
this. Note that Katana's image processing operations are written assuming they are working on linear
images, so be careful if you change the default input colorspace conversion. All of Katana's image processing
is implemented in floating point, so files are converted to float at input.

Control (UI) Default Value Function

file N/A The image sequence to load.

For more information, refer to the
Asset and File Path Widget Types in
the Common Parameter Widgets.

image

rawData disabled When enabled, Katana skips the
automatic colorspace conversion.
Note that Katana is inherently a
floating-point system. Thus, if integer
data is loaded (at any bit-depth), the
pixels are mapped to the range of [0,
1].

colorspace auto Select the colorspace for the file on
disk. Upon load, the image sequence
is converted from this colorspace to
Katana's native floating-point linear
colorspace. The default value, auto,
means Katana tries to determine the
bit depth from the file header and the
colorspace from the file name. If
Katana gets this wrong or the file is
not named in a standard way, you can
use this control to force Katana to
assume the image data is in the
selected colorspace and bit depth.

2D Nodes | I/O Nodes

REFERENCE GUIDE
831

Control (UI) Default Value Function

You can also use this control to avoid
the colorspace conversion entirely by
specifying lnzf or ncf, which indicate
that the file is already linear. Bear in
mind, however, that most image
processing operations in Katana
presume linear input data. The results
of image processing operations in
Katana are not defined, tested, or
supported for non-linear image data.
All operators have been implemented
assuming input images are linear.

Note: This option only appears when
rawData is disabled.

isProxy disabled When enabled, Katana assumes the
loaded image sequence is a proxy
rather than a full-resolution image.
This is preferable to manually resizing
the image, as it is more efficient when
proxy-rendering is enabled.

image > isProxy: enabled > fullResFrame

[resolution] Dependent on Project Settings When isProxy is enabled, you can use
this control to select the resolution for
the full-resolution image.

left timing.missingFrameBounds.left Sets the left position of the rectangle.

bottom timing.missingFrameBounds.bottom Sets the bottom position of the
rectangle.

width timing.missingFrameBounds.width Sets the width of the rectangle.

height timing.missingFrameBounds.height Sets the height of the rectangle.

timing

2D Nodes | I/O Nodes

REFERENCE GUIDE
832

Control (UI) Default Value Function

frame frame Sets the frame number actually read
from disk prior to applying the
inMode, outMode, firstFrame, and
lastFrame settings. When a
downstream node requests an image
from an ImageRead node, ImageRead
evaluates this control to determine the
frame number to read from disk (by
default this is the current time). The
result is compared against the
firstFrame and lastFrame values and,
if necessary, any remapping of the
actual frame number is done based on
the inMode and outMode settings.

You can retime or offset your input by
using an expression or a curve here,
but note that currently Katana only
reads the nearest frame and doesn't
generate in-between frames (no
optical flow interpolation). The value is
forced to an integer at the time it's
used, so you don't need to worry
about this if you don't want to.

inMode Black Sets what to do when a frame is
required at a time value prior to
firstFrame:
• BlackfirstFrame to black.
• Freeze
• Repeat
• Mirror

outMode Black Sets what to do when a frame is
required at a time value after
lastFrame:
• Black -lastFrame to black.

2D Nodes | I/O Nodes

REFERENCE GUIDE
833

Control (UI) Default Value Function

• Freeze
• Repeat
• Mirror

firstFrame globals.inTime Sets the first valid frame of the
sequence of images on disk. If a frame
prior to firstFrame is required, its
contents are determined based on
inMode.

If the file control has frame range
values in it and this control is left at its
default value, the value in the file
control is obeyed.

lastFrame globals.outTime Sets the last valid frame of the
sequence of images on disk. If a frame
beyond lastFrame is required, its
contents are determined based on
outMode.

If the file control has frame range
values in it and this control is left at its
default value, the value in the file
control is obeyed.

lockSettings disabled When enabled, the firstFrame,
lastFrame, inMode, and outMode
values aren't automatically updated
when a new file sequence is chosen.

missingFrames Error Specifies what to do if a frame is not
found:
• Error - have the render fail with an

error.
• Black - replace any missing frames

with black.
• Nearest - replace any missing

2D Nodes | I/O Nodes

REFERENCE GUIDE
834

Control (UI) Default Value Function

frames with the nearest frame.
• Checkerboard - replace any missing

frames with a checkerboard image.

Note: If no frames in the
image sequence are present,
the render fails regardless of
this control's setting.

advanced

includeInErrorChecking enabled When enabled, Katana includes this
node when it automatically checks
ImageRead nodes for errors.

When disabled, Katana excludes this
node when it automatically checks
ImageRead nodes for errors.

ImageWrite
ImageWrite writes its incoming image to a file on disk. The ImageWrite node, unless defaults are overridden,
converts images from Katana's linear colorspace to the colorspace named in the filename. Katana image
processing nodes work entirely in floating point, so images are also converted from floating point to the bit
depth specified in the options for the format.

ImageWrite contains controls (channels and outputFrame) to force the output regardless of what may be
coming into the node. However, if the output format cannot support the settings (for example, .jpeg doesn't
support an alpha channel), the extra information is discarded.

The ImageWrite node supports the following file formats: .exr, .rla, .cin, .png, .tif, .tiff, .jpg, .jpeg, .dpx, and
.hist.

Connection Type Connection Name Function

Input in The incoming image that you want written to a file on disk.

2D Nodes | I/O Nodes

REFERENCE GUIDE
835

Control (UI) Default Value Function

passName comp Sets the name used in the directories generated for
this ImageWrite node. The passName should be
unique for each ImageWrite node in the scene.

activeViews main Determines which views generate output images
when hot-rendered or batch-rendered
• Enable All - All views generate output images.
• main - Only the main view generates output

images.
• left - Only the left view generates output images.
• right - Only the right view generates output

images.

singleFrame disabled When enabled, Katana only renders a single frame
(for example, image_res.0001.exr) rather than an
image sequence (for example, image_res.#.exr). You
can specify the frame number using the frame
control below.

This also produces a render error when rendering on
any frame other than the specified frame.

singleFrame: enabled

frame globals.inTime Sets the frame to render when singleFrame is
enabled.

inputs

[identifier] N/A Defines short input identifiers. The identifier is
included in the input/output input names and is used
as a prefix for the output asset rep.

%V is replaced with the view name.

%v is replaced with the appropriate asset token.

2D Nodes | I/O Nodes

REFERENCE GUIDE
836

Control (UI) Default Value Function

Note: Input identifiers have no effect on
file names, only assets.

mode file Sets whether to write a file or define a dependency:
• file
• dependency

file N/A Sets the file path and name for the rendered image
(s).

Note: If mode is set to dependency, this
control is hidden.

inputs > mode: file > image

proxyOnCue enabled

channels Input Selects the channels to render:
• RGBA - Render the red, green, blue, and alpha

channels. If any of the color channels are missing
from the input, they are filled with 0 (pure black). If
the alpha channel is missing, it is filled with 1 (pure
white or fully opaque).

• RGB - Render the red, green, and blue channels. If
any of these channels are missing from the input,
they are filled with 0 (pure black).

• A - Only render the alpha channel. If this channel is
missing from the input, it is filled with 1 (pure white
or fully opaque).

• Input - Render all channels that exist in the input. If
the file format does not support the input channel
configuration, required but missing channels are
filled with 0 (color channels) or 1 (alpha).

rawData disabled When enabled, Katana skips the automatic
colorspace conversion (that is, the conversion from

2D Nodes | I/O Nodes

REFERENCE GUIDE
837

Control (UI) Default Value Function

its native linear floating-point format to the output
colorspace).

colorspace linear Katana converts from linear to this colorspace when
writing the file to disk. The default value, auto, means
Katana tries to determine the output colorspace from
the file name.

colorConvert enabled When enabled, Katana converts rendered image data
from its native linear colorspace to the output
colorspace specified in the file name. This is desirable
in nearly every situation.

A case where you would want to set this to disabled
is if you know the data being rendered is in a
colorspace other than linear (such as the re-
projection of a log plate) and you want to name the
output file log without a linear to log conversion.

fileFormat exr Sets the file format to output:
• auto - Katana tries to determine the output format

from the file name.
• exr
• rla
• cin
• png
• tif
• tiff
• jpg
• jpeg
• dpx
• hist

inputs > mode: file > image > fileFormat: exr

exrCompression Wavelet Defines the exr compression method to use. All
methods are lossless (with the exception of Pixar 24,

2D Nodes | I/O Nodes

REFERENCE GUIDE
838

Control (UI) Default Value Function

which is lossless but restricts the pixels to 24-bit
float). Wavelet is generally preferable as it offers
~2:1 compression even on grainy data.

exrBitDepth 16 Sets the floating point precision of the rendered exr
file:
• 16 - half float. This is recommended for all color

passes.
• 32 - full float. This is recommended for all ncf data

arbitrary output variables (AOVs).

exrType Tiled Sets whether the exr file is written to support:
• Tiled - random tile access.
• Scanline - random scanline access.

comments N/A Optional field for any comments you want to store in
the output file's comment metadata field. Currently,
this is only supported on the exr file format.

inputs > mode: file > image > fileFormat: exr > exrType: Tiled

exrTileWidth 256 Sets the tile width to use when writing to tiled exr
files.

exrTileHeight 256 Sets the tile height to use when writing to tiled exr
files.

exrTileWorldAlign disabled When enabled (in conjunction with shrinkwrapping),
the data rectangle is adjusted (top+left) so that the
internal tile boundaries are aligned with world
coordinates. This improves memory usage /
performance for programs that process image tiles
(such as Katana).

Note: This does not guarantee that tiles
are aligned - it merely attempts to meet
this condition.

2D Nodes | I/O Nodes

REFERENCE GUIDE
839

Control (UI) Default Value Function

inputs > mode: file > image > fileFormat: rla

rlaBitDepth auto Sets the bit depth of the rendered file. The default
value, auto, means Katana tries to determine the bit
depth from the colorspace. The other options are:
• 8-bit
• 10-bit
• 16-bit
• 32-bit

inputs > mode: file > image > fileFormat: png

pngBitDepth auto Sets the bit depth of the rendered file. The default
value, auto, means Katana tries to determine the bit
depth from the colorspace. The other options are:
• 8-bit
• 16-bit

inputs > mode: file > image > fileFormat: tif or tiff

tifCompression LZW The tiff compression method to use:
• None - No compression method is used.
• LZW - The LZW compression method is used. This

is lossless, so it is usually preferable to use it unless
there is an issue with compatibility in the target
reader.

tifBitDepth auto The bit depth of the rendered file. The default value,
auto, means Katana tries to determine the bit depth
from the colorspace.The other options are:
• 8-bit
• 16-bit
• 32-bit

tifPredictor None The predictor type to use when tifCompression is
enabled:
• None - No prediction is used.

2D Nodes | I/O Nodes

REFERENCE GUIDE
840

Control (UI) Default Value Function

• Horizontal - Horizontal prediction is used. This can
result in smaller file sizes, but may present
compatibility issues for some programs, such as
MAXON's Cinema4D.

inputs > mode: file > image > fileFormat: jpg or jpeg

jpgQuality 100 The quality to use when generating the jpg file.
Higher values generate larger file sizes, with 100
representing the best quality image and 0
representing the lowest.

inputs > mode: file > bounds

displayWindow input The frame size to write to the file:
• input - Use the frame size from the input. This

crops off image data outside the frame or pads the
frame with black if the image bounds do not fill the
frame already.

• manual - Crop the output to the specified frame
size, padding with black if necessary.

dataWindow shrinkwrap The image area to write to the file:
• shrinkwrap - Make sure the area is no larger than

the frame size. This is the typical choice. If the
format supports separate data and display windows
(for example, the exr format does), the data window
is clipped to the frame.

• displayWindow - Write whatever area the input
image data window covers (even if it exceeds the
frame size). This only works with formats like exr
that support a data window different from the
display window. This is useful for writing out
overscan images where the data extends beyond
the frame.

• manual - Crop the image area to the specified size,
padding with black if necessary.

2D Nodes | I/O Nodes

REFERENCE GUIDE
841

Control (UI) Default Value Function

Note: Make sure other applications you
are using support the selection you make.
For example, if you select displayWindow,
any other applications that read the output
need to be able to handle separate data
and display windows. You also need to use
a format (like exr) that supports the
concept, otherwise the data window is still
clipped to the frame.

inputs > mode: file > bounds > overscan

left 0 Overscan specifies the number of pixels to pad the
render request in each direction during a disk render
(including batch renders). The display window is
unchanged, but this expands the data window to
include any extra input data that has been made
available by the expanded render request.

Note that if dataWindow is set to shrinkwrap, the
data window is still shrunk inward to encompass only
the non-zero pixels in the image. Overscan simply
enlarges the area that is initially rendered and under
consideration for shrinkwrapping.

Overscan has no effect when dataWindow is set to
manual. You must include the desired overscan
amount directly in the manual data window that you
set.

bottom 0

right 0

top 0

inputs > mode: file > bounds > displayWindow: manual

displayWIndowResolution 512sq Sets the resolution of the display window using the
dropdown menu.

This is a useful override if there exists different
resolution names with the same resolution width and
height.

2D Nodes | I/O Nodes

REFERENCE GUIDE
842

Control (UI) Default Value Function

width 512 Defines the display window resolution manually.

height 512

postScripts > Add

Add Post Script N/A Allows you to add post script commands.

farmSettings

setActiveFrameRange disabled Sets how the active frame range for rendering is
defined:

When enabled, the activeFrameRange controls are
displayed, which define the active frame range for
rendering.

When disabled, Katana assumes that the active frame
range is the same as the range between
globals.inTime and globals.outTime.

These settings affect outline file generation and
guarantee that even if the node is called to render, it
only writes files for frames in the active range.

farmFileName N/A Defines the farm file name and path.

versionUp Auto Sets whether the outputs of this node are versioned
up when rendered on the queue:
• Auto - use the global setting specified in the

outline file.
• Yes - outputs version up.
• No - outputs don't version up.

threadable enabled Determines whether the queue is allowed to assign
multiple cores to a frame of this render.

When enabled, the queue may optionally thread the
render.

When disabled, the queue must use only one core.

2D Nodes | I/O Nodes

REFERENCE GUIDE
843

Control (UI) Default Value Function

memory N/A Sets the memory requirement for the farm layer.
Memory can be defined as m for megabyte or g for
gigabyte. For example, 512m or 2g.

excludeFromFarmOutput
Generation

disabled When enabled, this node does not appear in any
generated farm file (however, the node is still
renderable if called directly).

Enabling this control hides the
forceFarmOutputGeneration control.

forceFarmOutputGeneration disabled When enabled, this node always appears in
generated farm files (regardless of whether it has any
valid outputs).

Note: If
excludeFromFarmOutputGeneration is
also enabled, the node does not appear in
the generated farm file
(excludeFromFarmOutputGeneration
overrides forceFarmOutputGeneration).

farmSettings > setActiveFrameRange: enabled > activeFrameRange

start 1 Sets the first frame in the active frame range when
setActiveFrameRange is enabled.

end 1 Sets the last frame in the active frame range when
setActiveFrameRange is enabled.

Source Nodes
The following section describes Katana's 2D Source nodes.

2D Nodes | Source Nodes

REFERENCE GUIDE
844

ImageCheckerboard
The ImageCheckerboard allows you to create a checkerboard pattern. You can specify the checkers' size and
colors and the checkerboard's bounds.

Control (UI) Default Value Function

bounds

[resolution] Dependent on Project
Settings

Select the size of the image.

N/A For more information, refer to the Rectangle Widget Type
in the Common Parameter Widgets.

left 0 Set the left position of the ROI in the Monitor tab.

bottom 0 Set the bottom position of the ROI in the Monitor tab.

width globals.width Set the width of the ROI in the Monitor tab.

height global.height Set the height of the ROI in the Monitor tab.

color1

color1 0.1000, 0.1000,
0.1000, 1.0000

The color (RGBA values) of the pixels for the first color in
the checkerboard.

For more information, refer to the Color Widget Type in the
Common Parameter Widgets.

color2

color2 0.5000, 0.5000,
0.5000, 1.000

The color (RGBA values) of the pixels for the second color in
the checkerboard.

For more information, refer to the Color Widget Type in the
Common Parameter Widgets.

ImageCheckerboard parameters (Cont.)

checkerSize 64.0, 64.0 Sets the size of the checkers under width and height.

2D Nodes | Source Nodes

REFERENCE GUIDE
845

ImageColor
Generates an image where every pixel is the same color. By default, the image is white.

Control (UI) Default Value Function

bounds

[resolution] Dependent on Project
Settings

Select the size of the image.

bounds > N/A For more information, refer to the Rectangle Widget Type
in the Common Parameter Widgets.

left 0 Lets you offset the image by adding this number of pixels
to the left side of the image.

bottom 0 Lets you offset the image by adding this number of pixels
below the image.

width globals.width The width of the image in pixels.

The default setting, globals.width, resizes the image to the
width of the resolution indicated on the Project Settings
tab.

height globals.height The height of the image in pixels.

The default setting, globals.height, resizes the image to
the height of the resolution indicated on the Project
Settings tab.

ImageColor parameters continued

infiniteExtent Disabled When enabled, the color extends beyond the bounds.

color

color 1.0, 1.0, 1.0, 1.0 The color (RGBA values) of every pixel in the image. You can
also use the RGB, HSL, or HSV controls to set the color.

For more information, refer to the Color Widget Type in the
Common Parameter Widgets.

2D Nodes | Source Nodes

REFERENCE GUIDE
846

ImageRamp
Generates a gradation with various parameters.

Control (UI) Default Value Function

bounds

[resolution] Dependent on
Project Settings

Sets the size of the display window using the
dropdown menu.

bounds > N/A For more information, refer to the Rectangle Widget
Type in the Common Parameter Widgets.

left 0 Set the left position of the ROI in the Monitor tab.

bottom 0 Set the bottom position of the ROI in the Monitor tab.

width globals.width Set the width of the ROI in the Monitor tab.

height global.height Set the height of the ROI in the Monitor tab.

ImageRamp parameters continued

type Horizontal Set the pattern for the gradation from the options:
• Horizontal
• Vertical
• Diagonal
• Linear
• Corner
• Radial

interpolationColorspaces linear Specify the colorspace used for the color fields.

type: Horizontal or Vertical

start > color 1.0000, 1.0000,
1.0000, 1.0000

The color (RGBA values) at the start of the ImageRamp.
Alternatively, you can also use the color options below
to set the color.

For more information, refer to the Color Widget Type

2D Nodes | Source Nodes

REFERENCE GUIDE
847

Control (UI) Default Value Function

in the Common Parameter Widgets.

end > color 0.0000, 0.0000,
0.0000, 0.0000

The color (RGBA values) at the end of the ImageRamp.
Alternatively, you can also use the color options below
to set the color.

For more information, refer to the Color Widget Type
in the Common Parameter Widgets.

type: Diagonal

start > color 1.0000, 1.0000,
1.0000, 1.0000

The color (RGBA values) at the start of the ImageRamp.
Alternatively, you can also use the color options below
to set the color.

For more information, refer to the Color Widget Type
in the Common Parameter Widgets.

end > color 0.0000, 0.0000,
0.0000, 0.0000

The color (RGBA values) at the end of the ImageRamp.
Alternatively, you can also use the color options below
to set the color.

For more information, refer to the Color Widget Type
in the Common Parameter Widgets.

sense Left to Right Set whether the start color begins on the left and
transitions to the end color on the right, or the other
way around.

type: Linear

start > color 1.0000, 1.0000,
1.0000, 1.0000

The color (RGBA values) at the start of the ImageRamp.
Alternatively, you can also use the color options below
to set the color.

For more information, refer to the Color Widget Type
in the Common Parameter Widgets.

start > Start globals.width,
globals.height

Set the position in the Monitor tab, or with global
manipulators turned on, reposition the start point in
the Monitor tab to adjust the values in the Start field.

2D Nodes | Source Nodes

REFERENCE GUIDE
848

Control (UI) Default Value Function

inner > add point N/A Add a point to the gradation, where a specific color
can be set to a specific position. By default, when you
add a point, the name is filled in the blank box with p_
0, ascending in number as you add more points. This
can be changed to a more meaningful name.

end > color 0.0000, 0.0000,
0.0000, 0.0000

The color (RGBA values) at the end of the ImageRamp.
Alternatively, you can also use the color options below
to set the color.

For more information, refer to the Color Widget Type
in the Common Parameter Widgets.

end > End globals.width,
globals.height

Set the position in the Monitor tab, or with global
manipulators turned on, reposition the end point in
the Monitor tab to adjust the values in the End field.

type: Corner

bottomLeft 1.0000, 0.0000,
0.0000, 1.0000

The color (RGBA values) at the bottom-left corner of
the ImageRamp. Alternatively, you can also use the
color options below to set the color.

For more information, refer to the Color Widget Type
in the Common Parameter Widgets.

bottomRight 0.0000, 1.0000,
0.0000, 1.0000

The color (RGBA values) at the bottom-right corner of
the ImageRamp. Alternatively, you can also use the
color options below to set the color.

For more information, refer to the Color Widget Type
in the Common Parameter Widgets.

topRight 0.0000, 0.0000,
1.0000, 1.0000

The color (RGBA values) at the top-right corner of the
ImageRamp. Alternatively, you can also use the color
options below to set the color.

For more information, refer to the Color Widget Type
in the Common Parameter Widgets.

topLeft 0.0000, 0.0000, The color (RGBA values) at the top-left corner of the

2D Nodes | Source Nodes

REFERENCE GUIDE
849

Control (UI) Default Value Function

0.0000, 0.0000 ImageRamp. Alternatively, you can also use the color
options below to set the color.

For more information, refer to the Color Widget Type
in the Common Parameter Widgets.

type: Radial

start > color 1.0000, 1.0000,
1.0000, 1.0000

The color (RGBA values) at the start of the ImageRamp.
Alternatively, you can also use the color options below
to set the color.

For more information, refer to the Color Widget Type
in the Common Parameter Widgets.

start > Start globals.width,
globals.height

Set the position in the Monitor tab, or with global
manipulators turned on, reposition the start point in
the Monitor tab to adjust the values in the Start field.

end > color 0.0000, 0.0000,
0.0000, 0.0000

The color (RGBA values) at the end of the ImageRamp.
Alternatively, you can also use the color options below
to set the color.

For more information, refer to the Color Widget Type
in the Common Parameter Widgets.

radial > confineTo Circle disabled Set whether the start and end colors in the radial
pattern are confined to a circle.

radial > radius 778 Specify the radius of the circle.

radial > aspectRatio 1 Specify the aspect ratio of the circle.

radial > innerRadius 0 Specify the radius of the inner circle, as set by the start
color.

radial > fallOff 0.5 Controls the profile of the fall off between the start
and end radii.

2D Nodes | Source Nodes

REFERENCE GUIDE
850

ImageText
An ImageText node is a type of 2D node that generates an image with text written into it.

Connection Type Connection Name Function

Input scenegraph A 3D scene from which attributes can be referenced in the
text parameter of an ImageText node (see below).

Control (UI) Default Value Function

bounds

[resolution] Dependent on
Project Settings

Select the size of the text frame.

left 0 Lets you offset the text frame by this number of pixels
from the left.

bottom 0 Lets you offset the text frame by this number of pixels
from the bottom.

width globals.width The width of the text frame in pixels.

The default setting, globals.width, resizes the text frame
to the width of the resolution indicated on the Project
Settings tab.

Note: You can only edit this field when the
initial resolution is modified.

height globals.height The height of the text frame in pixels.

The default setting, globals.height, resizes the text frame
to the height of the resolution indicated on the Project
Settings tab.

2D Nodes | Source Nodes

REFERENCE GUIDE
851

Control (UI) Default Value Function

Note: You can only edit this field when the
initial resolution is modified.

text N/A Enter the text you want to display here.

You can optionally query scene graph values from an
incoming 3D scene by:
• Connecting a 3D scene as input
• Creating a text GroupAttribute at /root, containing the

attributes you are interested in using as children.
• Reference attrs within the text node using the

{attr:ATTRNAME} syntax.

fontSource Builtin Select:
• Builtin - to use a built-in font (either Arial or Courier) for

the text.
• File - to use a font from an external font file for the text.

Enter the file path to the font or use the file browser to
browse to it. Fonts are loaded using FreeType2, which
supports TrueType and OpenType fonts among others.

fontSource: Builtin

font Arial Lets you select a font for the text when fontSource is set
to Builtin: either Arial or Courier.

fontSource: File

fontFile N/A Lets you select a font for the text when fontSource is set
to File.

parameters continued

size 18.0, size[0] Sets the pixel size of the font.

Note that because of the way fonts are generated from
control splines that vary in size, you rarely get a character
that is exactly this size.

2D Nodes | Source Nodes

http://www.freetype.org/freetype2/index.html

REFERENCE GUIDE
852

Control (UI) Default Value Function

No character ever renders larger than this size.

position getDisplayWindow
().width/2,

getDisplayWindow
().height/2

The pixel position at which the justified text is placed.

For example, if you set hjustify to Left and vjustify to
Top, the left side of the baseline of the first line of text is
placed at this location.

If you set hjustify to Center and vjustify to Bottom, the
baseline of the last line of text is centered on this position
horizontally.

hjustify Center Sets how to align the text horizontally:
• Left - align the text along the left edge of the text frame,

placing the left side of the text block at the location
defined by position. This leaves the right edge of the
text ragged.

• Center - align the text from the center of the text frame,
placing the center of the text block at the location
defined by position. This leaves both edges of the text
ragged.

• Right - align the text along the right edge of the text
frame, placing the right side of the text block at the
location defined by position. This leaves the left edge of
the text ragged.

vjustify Center Sets how to align the text vertically:
• Top - align the text along the top edge of the text frame,

placing the top baseline of the text block at the location
defined by position.

• Center - align the text from the center of the text frame,
placing the center baseline of the text block at the
location defined by position.

• Bottom - align the text along the bottom of the text
frame, placing the bottom baseline of the text block at
the location defined by position.

The baseline is the imaginary line upon which most letters

2D Nodes | Source Nodes

REFERENCE GUIDE
853

Control (UI) Default Value Function

rest.

lineSpace 0 If you have several lines of text, this adjusts the spacing
between each line. By using negative values, you can make
the letters overlap.

wrapMode None Sets how to wrap long lines of text to fit inside the text
frame:
• None - long lines are not wrapped to fit inside the text

frame. Some parts of the text may fall outside the frame
and not be visible.

• Word - long lines are split into several lines at word
boundaries.

• Exact - long lines are split into several lines at the closest
point in the text that fits the text frame width, regardless
of word boundaries.

wrapMode: Word or Exact

wrapWidth bounds.width The width to use when calculating when to wrap the text.

color

color 1.0, 1.0, 1.0, 1.0 The color (RGBA values) of the rendered text. You can also
use the below RGB, HSL, or HSV controls to set the color of
the text.

For more information, refer to the Color Widget Type in
the Common Parameter Widgets.

parameters continued

antiAliasingGamma 2.2 Gamma applied after text rasterization but before
applying color. This affects anti-aliasing appearance.

missingAttributes Ignore Specifies behavior when missing 3D scene graph attributes
are encountered:
• Ignore - the missing attributes are ignored.
• Error - the missing attributes cause a render error.

2D Nodes | Source Nodes

REFERENCE GUIDE
854

Transform Nodes
The following section describes Katana's 2D Transform nodes.

ImageCrop
This node removes, or crops, image information outside a defined area, though Katana has both a data
window and a display window (to use the EXR terminology).
• The display window is the image frame.
• The data window is the area that actually contains pixels.

Note: The data window may be larger or smaller than the display window. If it is larger, image data
exists that can be pulled into the frame by downstream operations. If smaller, savings in processing
time and memory are achieved by not explicitly storing pixel values for all the constant color
outside the useful image area.

Connection Type Connection Name Function

Input input The image sequence that you want to crop.

Control (UI) Default Value Function

bounds

[resolution] Dependent on Project
Settings

Sets the size of the display window using the dropdown
menu.

bounds > N/A For more information, refer to the Rectangle Widget Type
in the Common Parameter Widgets.

left 0 Offset the display window by this number of pixels from the

2D Nodes | Transform Nodes

REFERENCE GUIDE
855

Control (UI) Default Value Function

left side of the data window.

bottom 0 Offset the display window by this number of pixels from the
bottom side of the data window.

width globals.width Adjusts the width of the display window in pixels.

height globals.height Adjusts the height of the display window in pixels.

ImageCrop parameters continued

reformat disabled When enabled, reposition the cropped area to the origin
and changes the display window.

reformat: enabled

allowOverscan disabled This allows the node to generate overscan (if possible).

Overscan refers to image pixel data outside of the display
window and can be inspected using options in the Monitor.

ImageOrient
This node allows you to rotate, flip, and flop the input image around its center. A flip on the x axis mirrors the
image vertically. A flop on the on the y axis mirrors the image horizontally.

Connection Type Connection Name Function

Input input The image sequence that you want to orient.

out_mask An optional image to use as a mask. By default, the merge
is limited to the non-black areas of the mask.

Control (UI) Default Value Function

[2D node controls] N/A Set the controls for the stereo view.

2D Nodes | Transform Nodes

REFERENCE GUIDE
856

Control (UI) Default Value Function

For more information, refer to the Common 2D Nodes
Widget Type in Common Parameter Widgets.

ImageOrient parameters continued

orientation No Change Select how to rotate the input image:
• No Change - Do not rotate the image.
• Rotate 90 - Rotate the image 90 degrees clockwise.
• Rotate 180 - Rotate the image 180 degrees clockwise.
• Rotate 270 - Rotate the image 270 degrees clockwise.
• Flip - Mirror the image vertically (turning the image

upside down).
• Flop - Mirror the image horizontally.
• FlipFlop - Mirror the image vertically and horizontally.

This is the same as Rotate 180.

ImagePosition
This node applies an integer, non-resampled offset to the input image.

If you are looking to do a transform with sub-pixel re-sampling, see ImageTransform2D instead.

Connection Type Connection Name Function

Input input The image sequence you want to offset.

out_mask An optional image to use as a mask. By default, the offset is
limited to the non-black areas of the mask.

Control (UI) Default Value Function

[2D node controls] N/A Set the controls for the stereo view.

2D Nodes | Transform Nodes

REFERENCE GUIDE
857

Control (UI) Default Value Function

For more information, refer to the Common 2D Nodes
Widget Type in Common Parameter Widgets.

offset

x 0 The number of pixels by which you want to offset the
input image along the x axis. For example, if you enter 2
in this field, 2 is added to the x values.

y 0 The number of pixels by which you want to offset the
input image along the y axis. For example, if you enter 2
in this field, 2 is added to the y values.

adjustDisplayWindow disabled When enabled, the displayWindow is repositioned along
with the image content.

Note: This is very rarely desired, as convention
dictates that the displayWindow should always
have the lower-left corner pinned to 0, 0.

ImageReformat
Reformat lets you resize your image sequence width and height using the incoming displayWindow to
determine the scale factor. This also allows you to use plates of varying image resolution on a single recipe
without running into issues when combining them.

Note: If no resize is needed, filtering is NOT applied (unlike in the ImageTransform2D node, which
always applies filtering).

Connection Type Connection Name Function

Input bg The background image.

out_mask An optional image to use as a mask. By default, the merge
is limited to the non-black areas of the mask.

2D Nodes | Transform Nodes

REFERENCE GUIDE
858

Control (UI) Default Value Function

[2D node controls] N/A Set the controls for the stereo view.

For more information, refer to the Common 2D Nodes
Widget Type in Common Parameter Widgets.

resolution

[resolution] Dependent on
Project Settings

The format to which you want to output the image
sequence.

The default setting resizes the image to the format
indicated in the Project Settings.

width globals.width Sets a custom reformat width.

Note: You can only edit this field when the
initial resolution is modified.

height globals.height Sets a custom reformat height.

Note: You can only edit this field when the
initial resolution is modified.

preserveAspect enabled When enabled, Katana preserves the input image's
aspect ratio.

allowOverscan disabled This allows the node to generate overscan (if possible).

Overscan refers to image pixel data outside of the
displayWindow and can be inspected using options in
the Monitor.

preserveAspect: enabled

center enabled When enabled, Katana pads the output image if any
gaps remain after reformatting while preserving the
original aspect ratio.

2D Nodes | Transform Nodes

REFERENCE GUIDE
859

Control (UI) Default Value Function

filtering

downFilter Lanczos3 The filter kernel to use for downsampling:
• Gaussian
• Triangle
• Box
• Bell
• BSpline
• Sinc
• Lanczos2
• Lanczos3
• Lanczos5
• Mitchell
• Bilinear
• Bicubic
• Nearest

upFilter Mitchell The filter kernel to use for upsampling:
• Gaussian
• Triangle
• Box
• Bell
• BSpline
• Sinc
• Lanczos2
• Lanczos3
• Lanczos5
• Mitchell
• Bilinear
• Bicubic
• Nearest

highlightCompensation enabled When enabled, Katana adaptively compresses pixel

2D Nodes | Transform Nodes

REFERENCE GUIDE
860

Control (UI) Default Value Function

values prior to transform filtering and re-expands them
afterward. This helps to reduce the ringing in high-
contrast areas that can be a problem in linear floating
point images.

clampOutput enabled Filtering can introduce negative values and send values
above 1.0.

When clampOutput is enabled, Katana clamps the RGB
channels low at 0 and the alpha channel between 1 and
0 after the image is filtered. This is recommended for
transforms on color/alpha images.

When clampOutput is disabled, no clamping is done
and values below 0 and above 1 are allowed. This is
recommended for transforms applied to images that
contain data that may (correctly) range more widely.

ImageTransform2D
ImageTransform2D lets you not only translate elements, but also rotate, scale, and shear them.

Connection Type Connection Name Function

Input input The image sequence you want to transform.

out_mask An optional image to use as a mask. By default, the merge
is limited to the non-black areas of the mask.

Control (UI) Default Value Function

[2D node controls] N/A Set the controls for the stereo view.

For more information, refer to the

2D Nodes | Transform Nodes

REFERENCE GUIDE
861

Common 2D Nodes Widget Type in
Common Parameter Widgets.

transform

order trsx Sets the operation order for translate (t),
rotate (r), scale (s), and shear (x).

translate x, y 0, 0 Translates the image along the x and y
axes.

rotate 0 Rotates the image around the pivot x y
coordinates.

aspectRatio 1 Sets the pixel aspect ratio. This allows you
to maintain aspect ratio when rotating
anamorphic images.

scale x, y 1, 1 Scales the image width and height
around the pivot x y coordinates.

shear x, y 0, 0 Shears the image around the pivot x y
coordinates.

pivot x, y (getDisplayWindow().x1+
getDisplayWindow().x0)/2,

(getDisplayWindow().y1+
getDisplayWindow().y0)/2

Sets the center of rotation, scale, and
shear on the x and y axes.

invert disabled When enabled, any transform you
applied using the translate, rotate, scale,
shear, or pivot controls is inverted.

filtering

downFilter Lanczos3 The filter kernel to use for downsampling:
• Gaussian
• Triangle
• Box
• Bell
• BSpline

2D Nodes | Transform Nodes

REFERENCE GUIDE
862

• Sinc
• Lanczos2
• Lanczos3
• Lanczos5
• Mitchell - remapped pixels receive

some smoothing, plus blurring to hide
pixelation.

• Bilinear - gives good results, but can
produce square artifacts at extreme
zoom.

• Bicubic - provides more rounded
results, slightly blurrier but without the
square artifacts.

• Nearest - preserves edge detail, but
gives quite "blocky" textures.

upFilter Lanczos3 The filter kernel to use for upsampling:
• Gaussian
• Triangle
• Box
• Bell
• BSpline
• Sinc
• Lanczos2
• Lanczos3
• Lanczos5
• Mitchell - remapped pixels receive

some smoothing, plus blurring to hide
pixelation.

• Bilinear - gives good results, but can
produce square artifacts at extreme
zoom.

• Bicubic - provides more rounded
results, slightly blurrier but without the
square artifacts.

2D Nodes | Transform Nodes

REFERENCE GUIDE
863

• Nearest - preserves edge detail, but
gives quite "blocky" textures.

highlightCompensation enabled When enabled, Katana adaptively
compresses pixel values prior to
transform filtering and re-expands them
afterward. This helps to reduce the
ringing in high-contrast areas that can be
a problem in linear floating point images
(as we have in Katana).

clampOutput enabled Filtering can introduce negative values
and send values above 1.0.

When clampOutput is enabled, Katana
clamps the RGB channels low at 0 and the
alpha channel between 1 and 0 after the
image is filtered. This is recommended for
transforms on color/alpha images.

When clampOutput is disabled, no
clamping is done and values below 0 and
above 1 are allowed. This is
recommended for transforms applied to
images that contain data that may
(correctly) range more widely.

onlyApplyMotion disabled When enabled, Katana does not apply the
node's full transform. Instead, it only
applies the motion-vector component of
the transform to the incoming image.

If you apply onlyApplyMotion to the
incoming image, and then transform the
result by the node (with motion blur
disabled), the results are similar (except
for sampling differences).

motionBlur

enable globals.compDefaults. When enabled, you can add motion blur

2D Nodes | Transform Nodes

REFERENCE GUIDE
864

motionBlur.enable to the transform.

linearParamSubframeInterp enabled When enabled, use a fast sampling of the
parameters using slerped end points for
each sub-frame of motion blur. This is
preferable in all cases except where
lengthy blur strokes undergo subframe
acceleration.

shutter globals.compDefaults.
motionBlur.shutter.i0,

globals.compDefaults.
motionBlur.shutter.i1

Sets the open and close time of the
shutter when motion blurring, relative to
the current frame. Changing the second
number is the primary way to control the
amount of motion blur applied. For
example, a value of 0.5 corresponds to
half a frame. Increasing the value
produces more blur, and decreasing the
value less.

numSamples globals.compDefaults.
motionBlur.numSamples

Sets the number of motion blur samples
to compute and merge.

Increase the value to produce more
samples for higher quality, or decrease it
to shorten the processing time. The
higher the value, the smoother the result.

2D Nodes | Transform Nodes

REFERENCE GUIDE

3D Nodes
The nodes in this section are 3D nodes that you can use within Katana. These are listed alphabetically, and
each node includes a short description followed by a list of the node's parameters and their functions.

Constraint Nodes
The following section describes Katana's 3D Constraint nodes.

AimConstraint
Applies an aim constraint to an object in the scene graph.

Note: Aim constraints are undefined if baseAimAxis and baseUpAxis are collinear.

Note: Applying an aim constraint to a location that is already correctly oriented is likely to result in
an arbitrary rotation about the aim axis.

Connection Type Connection Name Function

Input input The object to which you want to apply the aim constraint.

Control (UI) Default Value Function

basePath None Describes the scene graph location of the object to
constrain. The basePath parameter options are available

865

REFERENCE GUIDE
866

Control (UI) Default Value Function

in either the scene graph widget or dropdown menu
to the right of the parameter.

For more information, refer to the Scene Graph Location
Widget Type in the Common Parameter Widgets.

targetPath None Describes the object(s) location to which the basePath
object is constrained. The targetPath parameter options

are available by clicking Add Locations or dropdown
menu.

For more information, refer to the Scene Graph Location
and Locations Widget Types in Common Parameter
Widgets.

targetOrigin Object Sets how the center of the target object is calculated:
• Object - uses the local origin of the object as the target.
• Bounding Box - uses the center of the object's

bounding box as the target.
• Face Center Average - uses the face center average of

the object as the target.
• Face Bounding Box - uses the face center average of

the object's bounding box as the target.

baseAimAxis 0.0, 0.0, -1.0 The axis of the base object that is pointed at the target.

Adjusting these values changes the axis of the object that
is aimed at the target.

baseUpAxis 0.0, 1.0, 0.0 The axis of the base object that is pointed upwards
relative to the target.

Adjusting these values changes the rotation of the base
object, while keeping the aim constant.

targetUpAxis 0.0, 1.0, 0.0 The world space axis from the target object's position that
defines the up direction for the base object

Adjusting these values changes the axis of the base

3D Nodes |

REFERENCE GUIDE
867

Control (UI) Default Value Function

object's up axis.

allowMissingTargets No When set to Yes, silently ignore the constraint if its target
is not in the scene graph.

When set to No, produce an error on constraint
resolution if the target is missing.

addToConstraintList No Adds base path to globals.constraintList at /root/world.

This is only needed for cases in which one constraint
depends on another constraint already being evaluated.
The globals.constraintList is used to specify the order of
evaluation of constraints.

setRelativeTargets No Stores target paths in the scene graph constraint
definition as paths relative to the base path.

Targets should still be specified as absolute paths in this
node's parameters.

BillboardConstraint
Applies an aim constraint to an object in a scene. To get the best possible aim, the constraint only rotates
around the axis defined by baseRotateAxis.

Connection Type Connection Name Function

Input input The object to which you want to apply the constraint.

Control (UI) Default Value Function

basePath N/A Describes the scene graph location of the object to
constrain. The basePath parameter options are available

3D Nodes |

REFERENCE GUIDE
868

Control (UI) Default Value Function

in either the scene graph widget or dropdown menu
to the right of the parameter.

For more information, refer to the Scene Graph Location
Widget Type in the Common Parameter Widgets.

targetPath N/A Describes the object(s) location to which the basePath
object is constrained. The targetPath parameter options

are available by clicking Add Locations or dropdown
menu.

For more information, refer to the Scene Graph Location
and Locations Widget Types in Common Parameter
Widgets.

targetOrigin object Sets how the center of the target object is calculated:
• object - uses the local origin of the object as the target.
• boundingBox - uses the center of the object's

bounding box as the target.

baseAimAxis 0.0, 0.0, -1.0 The axis of the base object that is pointed at the target.

Adjusting these values changes the axis of the object that
is aimed at the target.

baseRotateAxis 0.0, 1.0, 0.0 The axis of the base object that is rotated to maintain
orientation to the target.

Adjusting these values changes the rotation of the base
object, while keeping the aim constant.

allowMissingTargets No When set to Yes, silently ignore the constraint if its target
is not in the scene graph.

When set to No, produce an error on constraint
resolution if the target is missing.

addToConstraintList No Adds base path to globals.constraintList at /root/world.

This is only needed for cases in which one constraint

3D Nodes |

REFERENCE GUIDE
869

Control (UI) Default Value Function

depends on another constraint already being evaluated.
The globals.constraintList is used to specify the order of
evaluation of constraints.

setRelativeTargets No Stores target paths in the scene graph constraint
definition as paths relative to the base path.

Targets should still be specified as absolute paths in this
node's parameters.

CameraScreenWindowConstraint
This node is used to orient, scale, and position the base scene graph location so that it sits at a specified
distance from the camera and fits the camera screen window exactly. This is mainly useful for registering
primitive plane objects with the camera for rendering through the 2D ImagePlane and MultiPlane nodes, but
there are also other creative applications.

Connection Type Connection Name Function

Input input The place in the node graph where you want to constrain
the base scene graph location to the camera screen
window.

Control (UI) Default Value Function

basePath N/A Describes the scene graph location of the object to
constrain. This should be plane geometry. The basePath
parameter options are available in either the scene graph

widget or dropdown menu to the right of the
parameter.

For more information, refer to the Scene Graph Location
Widget Type in the Common Parameter Widgets.

3D Nodes |

REFERENCE GUIDE
870

Control (UI) Default Value Function

targetPath N/A Describes the camera location to which the basePath
object is constrained. The targetPath parameter options

are available in either a scene graph widget or
dropdown menu to the right of the parameter.

For more information, refer to the Scene Graph Location
Widget Type in the Common Parameter Widgets.

distance 1 Sets distance from the camera at which the base scene
graph location is constrained.

planeType XY The type of plane that is constrained:
• XY
• XZ

addToConstraintList No Adds base path to globals.constraintList at /root/world.

This is only needed for cases in which one constraint
depends on another constraint already being evaluated.
The globals.constraintList is used to specify the order of
evaluation of constraints.

setRelativeTargets No Stores target paths in the scene graph constraint
definition as paths relative to the base path.

Targets should still be specified as absolute paths in this
node's parameters.

ClippingConstraint
This node adjusts the camera's near and far clipping planes to fit just in front of and behind the target (along
the axis from the camera). You can view the results of the ClippingConstraint node by turning on Scenegraph
Implicit Resolvers at the top.

Connection Type Connection Name Function

Input input The place in the node graph where you want to constrain
the camera's clipping planes.

3D Nodes |

REFERENCE GUIDE
871

Control (UI) Default Value Function

basePath N/A Describes the scene graph location of the object to
constrain. The basePath parameter options are available

in either the scene graph widget or dropdown menu
to the right of the parameter.

For more information, refer to the Scene Graph Location
Widget Type in the Common Parameter Widgets.

targetPath N/A Describes the object(s) location to which the basePath
object is constrained. The targetPath parameter options

are available by clicking Add Locations or dropdown
menu.

For more information, refer to the Scene Graph Location
and Locations Widget Types in Common Parameter
Widgets.

pad

near 0 Sets the amount of space to leave between the nearest
extent of the target and the camera's near clipping plane.

far 0 Sets the amount of space to leave between the farthest
extent of the target and the camera's far clipping plane.

ClippingConstraint parameters continued

respectMotionBlur Yes When set to Yes, constraints are adjusted to allow for the
target's motion within the time the shutter is open.

allowMissingTargets No When set to Yes, silently ignore the constraint if its target
is not in the scene graph.

When set to No, produce an error on constraint
resolution if the target is missing.

addToConstraintList No Adds base path to globals.constraintList at /root/world.

This is only needed for cases in which one constraint
depends on another constraint already being evaluated.

3D Nodes |

REFERENCE GUIDE
872

Control (UI) Default Value Function

The globals.constraintList is used to specify the order of
evaluation of constraints.

setRelativeargets No Stores target paths in the scene graph constraint
definition as paths relative to the base path.

Targets should still be specified as absolute paths in this
node's parameters.

DollyConstraint
This node translates the camera along its look at (or local Z) axis, moving it towards or away from the target.
DollyConstraint ensures that the target fits exactly in the camera's screen window and is useful for turntable
setup.

See also FOVConstraint.

Connection Type Connection Name Function

Input input The place in the node graph where you want to apply the
camera translation.

Control (UI) Default Value Function

basePath N/A Describes the scene graph location of the camera or light
to dolly. The basePath parameter options are available in

either the scene graph widget or dropdown menu to
the right of the parameter.

For more information, refer to the Scene Graph Location
Widget Type in the Common Parameter Widgets.

targetPath N/A Sets the location of the object(s) to fit within the field of
view. The targetPath parameter options are available by

3D Nodes |

REFERENCE GUIDE
873

Control (UI) Default Value Function

clicking Add Locations or dropdown menu.

For more information, refer to the Scene Graph Location
and Locations Widget Types in Common Parameter
Widgets.

targetBounds box The type of bounds to use for the target object(s):
• box - the camera is constrained to fit the bounding box

of the target object(s).
• sphere - the camera is constrained to fit a sphere that

encloses the bounding box of the target objects(s).

angleOffset 0 Sets the angle to add to the FOV in the dolly calculation.

allowMissingTargets No When set to Yes, silently ignore the constraint if its target
is not in the Scene Graph.

When set to No, produce an error on constraint
resolution if the target is missing.

addToConstraintList No Adds base path to globals.constraintList at /root/world.

This is only needed for cases in which one constraint
depends on another constraint already being evaluated.
The globals.constraintList is used to specify the order of
evaluation of constraints.

setRelativeTargets No Stores target paths in the scene graph constraint
definition as paths relative to the base path.

Targets should still be specified as absolute paths in this
node's parameters.

FOVConstraint
This node constrains the field of view of a camera to fit the target geometry. FOVConstraint closes or opens
the field of view of a camera from all sides while the center of the frame remains the same. If an object is
located at the edge of a light's view, the FOVConstraint should be combined with an AimConstraint to
tighten the view right on the object.

3D Nodes |

REFERENCE GUIDE
874

See also DollyConstraint.

Connection Type Connection Name Function

Input input The place in the node graph where you want to constrain
the field of view of a camera.

Control (UI) Default Value Function

basePath N/A Describes the scene graph location of the object to
constrain. The basePath parameter options are available

in either the scene graph widget or dropdown menu
to the right of the parameter.

For more information, refer to the Scene Graph Location
Widget Type in the Common Parameter Widgets.

targetPath N/A Describes the object(s) location to which the basePath
object is constrained. The targetPath parameter options

are available by clicking Add Locations or dropdown
menu.

For more information, refer to the Scene Graph Location
and Locations Widget Types in Common Parameter
Widgets.

targetBounds box Sets the type of bounds to use for the target object(s).
• box - the field of view is constrained to fit the bounding

box of the target object(s). This can be very useful for
shadow maps, as it produces a tight fitting bounding
box.

• sphere - the field of view is constrained to fit a sphere
that encloses the bounding box of the target object(s).
This can be very useful for turntables when you don't
want the field of view to change as the object rotates.

angleOffset 0 Sets the angle added to the FOV during calculation.

allowMissingTargets No When set to Yes, silently ignore the constraint if its target

3D Nodes |

REFERENCE GUIDE
875

Control (UI) Default Value Function

is not in the scene graph.

When set to No, produce an error on constraint
resolution if the target is missing.

addToConstraintList No Adds base path to globals.constraintList at /root/world.

This is only needed for cases in which one constraint
depends on another constraint already being evaluated.
The globals.constraintList is used to specify the order of
evaluation of constraints.

setRelativeTargets No Stores target paths in the scene graph constraint
definition as paths relative to the base path.

Targets should still be specified as absolute paths in this
node's parameters.

OrientConstraint
OrientConstraint matches the rotation (orientation) of the object in basePath to the object in targetPath.
See also ParentChildConstraint and PointConstraint.

Connection Type Connection Name Function

Input input The place in the node graph where you want to constrain
the rotation (orientation) of an object.

Control (UI) Default Value Function

basePath N/A Sets the location of the object to constrain. The basePath

parameter options are available by clicking the
dropdown menu.

3D Nodes |

REFERENCE GUIDE
876

Control (UI) Default Value Function

For more information, refer to the Scene Graph Location
Widget Type in Common Parameter Widgets.

targetPath N/A Sets the location of the object(s) to constrain the object in
basePath to. The targetPath parameter options are

available by clicking the dropdown menu.

For more information, refer to the Scene Graph Location
Widget Type in Common Parameter Widgets.

targetOrientation Object Sets the type of bounds to use for the target object(s):
• Object
• Face

When targetOrientation: Face

targetFaceIndex 0 This is the faceset index to use as the target. You can
orient to match the object itself, or a particular face of it,
for example, selecting a poly by index of
geometry.poly.startIndex.

OrientConstraint parameters continued

xAxis Enabled Constrains the x Axis.

yAxis Enabled Constrains the y Axis.

zAxis Enabled Constrains the z Axis.

allowMissingTargets No When set to Yes, silently ignore the constraint if its target
is not in the scene graph.

When set to No, produce an error on constraint
resolution if the target is missing.

addToConstraintList No Adds base path to globals.constraintList at /root/world.

This is only needed for cases in which one constraint
depends on another constraint already being evaluated.
The globals.constraintList is used to specify the order of
evaluation of constraints.

3D Nodes |

REFERENCE GUIDE
877

Control (UI) Default Value Function

setRelativeTargets No Stores target paths in the scene graph constraint
definition as paths relative to the base path.

Targets should still be specified as absolute paths in this
node's parameters.

ParentChildConstraint
Constrains the translate, rotate, and scale values of one object (the parent) to another (the child). See also
OrientConstraint and PointConstraint.

Connection Type Connection Name Function

Input input The place in the node graph where you want to constrain
the translation, rotation, and scale values of a parent object
to those of the child.

Control (UI) Default Value Function

basePath None Defines the child object. The location parameter options

are available by clicking the dropdown menu.

For more information, refer to the Scene Graph Location
Widget Type in Common Parameter Widgets.

targetPath None Defines the parent object. The location parameter

options are available by clicking the dropdown menu.

For more information, refer to the Scene Graph Location
Widget Type in Common Parameter Widgets.

addToConstraintList No Adds base path to globals.constraintList at /root/world.

This is only needed for cases in which one constraint

3D Nodes |

REFERENCE GUIDE
878

Control (UI) Default Value Function

depends on another constraint already being evaluated.
The globals.constraintList is used to specify the order of
evaluation of constraints.

setRelativeTargets No Stores target paths in the scene graph constraint
definition as paths relative to the base path.

Targets should still be specified as absolute paths in this
node's parameters.

PointConstraint
Applies a constraint that translates the base object to a point defined by the target object(s). See also
OrientConstraint and ParentChildConstraint.

Connection Type Connection Name Function

Input input The place in the node graph where you want to constrain
the translation of the base object to that of the target
object.

Control (UI) Default Value Function

basePath None Defines the location of the object to constrain. The
location parameter options are available by clicking the

dropdown menu.

For more information, refer to the Scene Graph Location
Widget Type in Common Parameter Widgets.

targetPath None Defines the location of the object(s) to constrain the
object in basePath to. If you set multiple targets, then the
constraint moves to the average center of the objects. The

3D Nodes |

REFERENCE GUIDE
879

Control (UI) Default Value Function

parameter options are available by clicking Add

Locations or dropdown menu.

For more information, refer to the Scene Graph Location
and Locations Widget Types in Common Parameter
Widgets.

baseOrigin Object Sets how the center of the base object is calculated:
• Object - uses the local origin of the object as the

position of the base object.
• Bounding Box - uses the center of the object's

bounding box as the position of the base object.

targetOrigin Object Sets how the center of the target object is calculated:
• Object - uses the local origin of the object as the target.
• Bounding Box - uses the center of the object's

bounding box as the target.
• Face Center Average - uses the face center average of

the object as the target.
• Face Bounding Box - uses the face center average of

the object's bounding box as the target.

allowMissingTargets No When set to Yes, silently ignore the constraint if its target
is not in the scene graph.

When set to No, produce an error on constraint
resolution if the target is missing.

xAxis disabled Constrains the x Axis.

yAxis disabled Constrains the y Axis.

zAxis disabled Constrains the z Axis.

addToConstraintList No Adds base path to globals.constraintList at /root/world.

This is only needed for cases in which one constraint
depends on another constraint already being evaluated.
The globals.constraintList is used to specify the order of

3D Nodes |

REFERENCE GUIDE
880

Control (UI) Default Value Function

evaluation of constraints.

setRelativeTargets No Stores target paths in the scene graph constraint
definition as paths relative to the base path.

Targets should still be specified as absolute paths in this
node's parameters.

ReflectionConstraint
ReflectionConstraint transforms the base object to a mirrored position opposite the target plane object.

Connection Type Connection Name Function

Input in The place in the node graph where you want to transform
the base object.

Control (UI) Default Value Function

basePath N/A Sets the object to constrain. The materialAssign

parameter options are available by clicking the
dropdown menu.

For more information, refer to the Scene Graph Location
Widget Type in Common Parameter Widgets.

targetPath N/A Sets the object(s) to which the object in basePath is
constrained. The materialAssign parameter options are

available by clicking the dropdown menu.

For more information, refer to the Scene Graph Location
Widget Type in Common Parameter Widgets.

targetFaceIndex 0 The face number that forms the basis for the reflection

3D Nodes |

REFERENCE GUIDE
881

Control (UI) Default Value Function

transform

addToConstraintList No Adds base path to globals.constraintList at /root/world.

This is only needed for cases in which one constraint
depends on another constraint already being evaluated.
The globals.constraintList is used to specify the order of
evaluation of constraints.

setRelativeTargets No Stores target paths in the scene graph constraint
definition as paths relative to the base path.

Targets should still be specified as absolute paths in this
node's parameters.

ScaleConstraint
This node constrains the base object to the scale of the target object.

Connection Type Connection Name Function

Input input The place in the node graph where you want to constrain
the scale of the base object to the target object.

Control (UI) Default Value Function

basePath None Sets the object to constrain. The basePath parameter

options are available by clicking the dropdown menu.

For more information, refer to the Path Selection Widget
Types in Common Parameter Widgets.

targetPath None Sets the object(s) to which the object in basePath is
constrained. The targetPath parameter options are

3D Nodes |

REFERENCE GUIDE
882

Control (UI) Default Value Function

dropdown menu.

For more information, refer to the Path Selection Widget
Types in Common Parameter Widgets.

addToConstraintList No Adds base path to globals.constraintList at /root/world.

This is only needed for cases in which one constraint
depends on another constraint already being evaluated.
The globals.constraintList is used to specify the order of
evaluation of constraints.

setRelativeTargets No Stores target paths in the scene graph constraint
definition as paths relative to the base path.

Targets should still be specified as absolute paths in this
node's parameters.

ScreenCoordinateConstraint
ScreenCoordinateConstraint modifies the camera screen window to fit the target object(s).

Connection Type Connection Name Function

Input input The place in the node graph where you want to constrain
the camera screen window to fit the target object.

Control (UI) Default Value Function

basePath None Sets the object to constrain. The basePath parameter

options are available by clicking the dropdown menu.

For more information, refer to the Scene Graph Location
Widget Type in Common Parameter Widgets.

3D Nodes |

REFERENCE GUIDE
883

Control (UI) Default Value Function

targetPath None Sets the object(s) to which the object in basePath is
constrained. The targetPath parameter options are

available by clicking Add Locations or dropdown
menu.

For more information, refer to the Scene Graph Location
and Locations Widget Types in Common Parameter
Widgets.

respectMotionBlur Yes When set to Yes, constraints are adjusted to allow for the
target's motion within the time the shutter is open.

keepAspectRatio Yes When set to Yes, maintain the aspect ratio of the screen
window.

When set to No, modify the aspect ratio of the screen
window to fill as much of the frame as possible.

allowMissingTargets No When set to Yes, silently ignore the constraint if its target
is not in the scene graph.

When set to No, produce an error on constraint
resolution if the target is missing.

addToConstraintList No Adds base path to globals.constraintList at /root/world.

This is only needed for cases in which one constraint
depends on another constraint already being evaluated.
The globals.constraintList is used to specify the order of
evaluation of constraints.

setRelativeTargets No Stores target paths in the scene graph constraint
definition as paths relative to the base path.

Targets should still be specified as absolute paths in this
node's parameters.

Input Nodes
The following section describes Katana's 3D Input nodes.

3D Nodes | Input Nodes

REFERENCE GUIDE
884

AttributeFile_In
This node reads in an attribute file from a specified location and applies the attribute changes to the scene
graph locations specified by the CEL statement.

Connection Type Connection Name Function

Input input The place in the node graph where you want to read in an
attribute file.

Control (UI) Default Value Function

CEL N/A The scene graph locations are specified using the Collection
Expression Language (CEL). The CEL parameter options are
available by clicking Add Statements.

For more information, refer to the CEL Reference document
found on the documentation HTML page (accessed
through Help > Documentation) or the CEL Statement
Widget Type in Common Parameter Widgets.

File Path N/A Describes the filepath to an Attributes File.

For more information, refer to the Asset and File Path
Widget Types in the Common Parameter Widgets.

Custom File Parser N/A Specifies the .so file with the Attributes File parser. Leave it
empty to use the default one.

For more information, refer to the Asset and File Path
Widget Types in the Common Parameter Widgets.

Attribute Group
Name

attributeFile Specifies the name of the group attribute where the
attributes from the file are stored. When empty, the
attributes are stored directly under the location (without a
group attribute).

3D Nodes | Input Nodes

REFERENCE GUIDE
885

Control (UI) Default Value Function

Apply When immediate Determines when the script runs:
• immediate - the filter runs at the locations specified by

the CEL statement as they are evaluated at this node's
point in the graph.

• deferred or during katana standard resolve - the script
and its arguments are added as attributes under the
scenegraphLocationModifers group attribute. When
deferred, they are run later by the implicit
ScenegraphLocationModifierResolve filter added at
render time. When during katana standard resolve, they
are evaluated by a LookFileResolve node or by the first
implicit resolver if no LookFileResolve node is present.
(They may be tested either by enabling implicit scene
graph resolvers in the Scene Graph tab or with a
ScenegraphLocationModifierResolve node.)

• during material resolve - the script and its arguments
are added as attributes under the material. Scene
GraphLocationModifers group attribute. This is primarily
intended for material scene graph locations. The material
resolve process evaluates the script at the locations at
which the material is assign or applied. This can be useful
for building randomization or procedural control over
shader parameters at the material level without having to
apply materialOverride attributes at the geometry level.

Recursive Enable No When applying in a non-immediate state, enabling this
results in the script running at every location beneath the
assigned locations. In general this is more efficient than
using an equivalent recursive CEL statement.

timing

mode Current Frame Sets the timing mode to apply to the asset:
• Current Frame - uses the current frame to access the

attribute file.
• Hold Frame - uses the frame specified by holdTime to

access the attribute file.

3D Nodes | Input Nodes

REFERENCE GUIDE
886

Control (UI) Default Value Function

• Clamp Range - forces Katana to only apply the attributes
stored in the attributes file between the inTime and
outTime frames. For before and after the clamp range,
the frames specified by inTime and outTime respectively
are used.

timing > mode: Hold Frame

holdTime globals.inTime
(an expression)

Specifies which frame to use.

timing > mode: Clamp Range

inTime globals.inTime
(an expression)

Specifies the start frame for the clamp range. It is also used
for all frames before the inTime.

outTime globals.outTime
(an expression)

Specifies the end frame for the clamp range. It is also used
for all frames after the outTime.

Lookfile Nodes
The following section describes Katana's 3D Lookfile nodes.

LookFileBake
Bakes a Look File for a scene graph location(s) specified in the rootLocations field.

Connection Type Connection Name Function

Input orig The original, or pre-existing scene graph to which the
default or additional inputs are compared.

default A second scene graph that has a different pass to compare
to the default. The Look File saves the difference between
the original and default pass, or any additional passes.

3D Nodes | Lookfile Nodes

REFERENCE GUIDE
887

Control (UI) Default Value Function

rootLocations

rootLocations /root/world Sets the scene graph location(s) to bake the
Look File information for. Any location under
/root/world can be used, but it is
recommended that components or assembly
locations are specified. The rootlocations
parameter options are available by clicking

Add Locations or dropdown menu.

For more information, refer to the Scene Graph
Location and Locations Widget Types in
Common Parameter Widgets.

passes

passes None Passes are typically render passes, but could
also be auxiliary baking passes for generating
point clouds or brickmaps. A Look File can
have one or multiple passes.

To add a pass, select Add > Add Pass Input.

A new pass input is created on the node, and a
pass name field is added to the pass list. To
change the pass name, simply change the
name text field supplied.

Note: All pass names must be
unique.

LookFileBake parameters continued

saveTo None Sets where to store the baked Look File.

For more information, refer to the Asset and
File Path Widget Types in the Common
Parameter Widgets.

3D Nodes | Lookfile Nodes

REFERENCE GUIDE
888

Control (UI) Default Value Function

options

outputFormat as directory Specifies whether to bake the Look File to a
single archive (currently Zip), or instead to a
per-pass directory representation.

The directory option is higher performance
and recommended for heavy-weight use cases.

includeGlobalAttributes No When set to Yes, attributes on /root are stored
in the baked Look File.

alwaysIncludeSelectedMaterialTrees No When set to Yes, include all material locations
at or below the paths specified by
selectedMaterialTreeRootLocations without
regard to whether they are assigned to
geometry within the scope of the
rootLocations paths.

LookFileBake parameters continued

Write Look File N/A Click to bake the Look File.

LookFileLightAndConstraintActivator
Katana maintains a list of lights, cameras, and constraints at /root/world within the scene graph. When a
Look File brings in a light or constraint, the lists at /root/world need to be updated. The
LookFileLightAndConstraintActivator node activates LookFile lights and constraints by updating the
respective lists. It is also used to add constraints from LookFiles to the global constraint list. This list is used
to specify the order in which constraints are evaluated, so this only has to be done if the constraints from the
LookFile need to be evaluated in a specific order. Because it reads its input from a LookFile-resolved scene,
you should place it after either a LookFileManager or LookFileResolve node.

Choose Search Entire Incoming Scene... or Search Incoming Scene From Scene Graph Selection... from
the Action menu to find available lights and constraints.
• Entries are organized by asset, location, and then light and constraint paths.
• Gray entries are pending -- found by the searching tools but not yet enabled in the scene.
• Pending entries are not saved from session to session.

3D Nodes | Lookfile Nodes

REFERENCE GUIDE
889

• Locations (entries immediately below the asset entries) may be refreshed individually by choosing Search
From Selected Locations from the right-click menu. This option is only available when one or more
location entries are selected.

To enable a pending entry, choose Enable from the right-click menu at any point within the hierarchy.

Enable and disable operations executed in this manner always act upon the selected entries and all of their
children. Individual light and constraint paths may also be enabled by clicking on the checkbox next their
names.

To enable everything at once:
1. First, choose Search Entire Incoming Scene... from the Action menu.
2. When that has completed, choose Select All from the Action menu right-click on any entry and choose

Enable.

Connection Type Connection Name Function

Input in The place in the node graph where you want to activate
LookFile lights and constraints by updating those lists.

Control (UI) Default Value Function

Action N/A Searches the scene graph for lights and constraints brought
in by Look Files then enables or disables the results as
required.

LookFileManager
LookFileManager decodes incoming Look Files that have been set up in another scene. Each Look File piece
of imported geometry passed into this node must be assigned through a LookFileAssign node. Once the
Look File is assigned, LookFileManager decodes the Look File into the passes set up by the look
development artist using a LookFileBake node.

3D Nodes | Lookfile Nodes

REFERENCE GUIDE
890

Connection Type Connection Name Function

Input in The place in the node graph where you want to decode
incoming look files from other scenes.

Control (UI) Default Value Function

Look Files N/A Lists the Look Files that are being edited by the
LookFileManager.

Passes default Lists any passes associated with the Look Files.

Add Override N/A Allows you to add overrides to selected Look Files.

LookFileMaterialsIn
This node loads materials from a Look File into the local scene to allow additional edits before they are
applied to the scene.

Connection Type Connection Name Function

Input in The place in the node graph where you want to load a look
file's materials.

Control (UI) Default Value Function

lookfile N/A Sets the Look File path and name.

For more information, refer to the Asset and File Path
Widget Types in the Common Parameter Widgets.

passName N/A Sets the pass name to use from the Look File.

3D Nodes | Lookfile Nodes

REFERENCE GUIDE
891

Control (UI) Default Value Function

For more information, refer to the Look File Widget Type
in the Common Parameter Widgets.

asReference No When set to Yes, the material is loaded as a reference.

Reading the material by reference causes any materials
assigned to keep a reference to the Katana Look File from
which they got their material.

locationForMaterials Load at original
location

Sets where in the scene graph to import the materials
from:
• Load at original location - the materials maintain the

same location.
• Load at specified location - provides a parameter,

userLocation, that acts as a namespace for the material
palette. For instance, a material at
/root/materials/geo/chrome with userLocation
default_pass is placed at
/root/materials/lookfile/default_pass/geo/chrome.

locationForMaterials: Load at specified location

userLocation N/A Specify the location that acts as a namespace for the
material palette.

LookFileMaterialsOut
Use this node to write incoming materials into a Look File. This is useful for creating a material library that
can be read into other scenes.

Connection Type Connection Name Function

Input in The place in the node graph where you want to write
incoming materials to a look file.

3D Nodes | Lookfile Nodes

REFERENCE GUIDE
892

Control (UI) Default Value Function

saveTo N/A Sets the location of the Look File to contain the material.

For more information, refer to the Asset and File Path
Widget Types in the Common Parameter Widgets.

options

outputFormat as archive Specifies whether to write the Look File to a single archive
(currently Zip), or instead to a per-pass directory
representation.

The directory option is higher performance and
recommended for heavy-weight use cases.

Write Look File N/A Click to write the material to the specified Look File.

LookFileMultiBake
LookFileMultiBake is a convenient SuperTool that wraps multiple LookFileBake nodes into a single node.
Passes are shared between nodes, and the Look Files can be baked individually or all at once.

Connection Type Connection Name Function

Input orig The original, or pre-existing scene graph to which the
default or additional inputs are compared.

default A second scene graph or LookFileBake node that has
different passes to compare to the default. The Look File
saves the difference between the original and default pass,
or any additional passes.

Control (UI) Default Value Function

N/A Creates a new LookFileBake and adds it to

3D Nodes | Lookfile Nodes

REFERENCE GUIDE
893

Control (UI) Default Value Function

the LookFileBake list.

When an entry has been added

rootLocations /root/world Sets one or more scene graph path(s) to
the location(s) to be created. The locations
parameter options are available by clicking

Add Locations or dropdown menu.

For more information, refer to the Scene
Graph Location and Locations Widget
Types in Common Parameter Widgets.

N/A Brings up a searchable list to aid in
selection.

saveTo N/A Sets where to store the baked Look File.

For more information, refer to the Asset
and File Path Widget Types in the Common
Parameter Widgets.

Passes

name pass Passes are typically render passes, but
could also be auxiliary baking passes for
generating point clouds or brickmaps. A
LookFile can have one or multiple passes.
To add a pass, select Add > Add Pass
Input.

A new pass input is created on the node,
and a pass name field is added to the pass
list. To change the pass name, simply
change the name text field supplied.

Note: All pass names must be
unique.

3D Nodes | Lookfile Nodes

REFERENCE GUIDE
894

Control (UI) Default Value Function

LookFileMultiBake parameters continued

includeGlobalAttributes No When set to Yes, attributes on /root are
stored in the baked Look File.

alwaysIncludeSelectedMaterial
Trees

No If enabled, this includes all material
locations at or below the paths specified by
selectedMaterialTreeRootLocations
without regard to whether they are
assigned to geometry within the scope of
the rootLocations paths.

When alwaysIncludeSelectedMaterialTrees: yes

selectedMaterialTreeRootLocations /root/materials/geo Sets one or more scene graph path(s) to
the location(s) to be created. The locations
parameter options are available by clicking

Add Locations or dropdown menu.

For more information, refer to the Scene
Graph Location and Locations Widget
Types in Common Parameter Widgets.

Write

Write All Look Files... N/A Click to bake all the Look Files.

Writes Selected Look Files... N/A Click to bake the selected Look Files.

Control (UI) Function

LookFileBake list [Right-click menu]

Delete Selected Entries Deletes the selected entries.

3D Nodes | Lookfile Nodes

REFERENCE GUIDE
895

LookFileOverrideEnable
LookFileOverrideEnable allows you to bring into the scene materials from a specific Look File/pass so you
can override them before the Look File is resolved using the LookFileResolve node.

Connection Type Connection Name Function

Input in The place in the node graph where you want to bring into
set up an override on a look file or pass before it's resolved.

Control (UI) Default Value Function

lookfile N/A Selects the Look File to import materials from.

For more information, refer to the Asset and File Path
Widget Types in the Common Parameter Widgets.

versionsToOverride Only this Version Specifies on which version of the Look File the overrides
are reflected.

locationForMaterials Use asset name Sets where to import the materials in the scene graph.
• Use asset name - the materials are imported in a

unique location based on the lookfile asset fields.
• User-specified - provides a parameter, userLocation,

for you to specify a namespace for the materials.

When locationForMaterials: User-specified

userLocation N/A Specifies a namespace for the materials. For instance, a
material at /root/materials/geo/chrome with
userLocation default_pass is placed at
/root/materials/default_pass/geo/chrome.

LookFileOverrideEnable parameters continued

passName default Specifies the name of the Look File/pass you want to
override. The entry 'default' displays if the field is left

3D Nodes | Lookfile Nodes

REFERENCE GUIDE
896

Control (UI) Default Value Function

empty.

For more information, refer to the Look File Widget Type
in the Common Parameter Widgets.

loadAsReference No When set to Yes, the material is loaded as a reference.
Reading the material by reference causes any materials
assigned to keep a reference to the Katana Look File from
which they got their material.

enforceVersion No When set to Yes, you are enforcing this version to be
resolved by making the LookFileResolve node resolve the
asset in the LookFileOverrideEnable node instead of the
one in the LookFileAssign node.

LookFileResolve
This node applies a specific pass from assigned Look Files to the scene.

Connection Type Connection Name Function

Input A The place in the node graph where you want a specific pass
to be applied to the scene.

Control (UI) Default Value Function

passName N/A Sets the name of the Look File pass to use. If no look file
pass is specified when attempting to resolve, the pass falls
back to the default pass when KATANA_LOOKFILE_
DEFAULT_PASS_FALLBACK is set to 1. In this case, no error
is generated and the default pass is used, otherwise Katana
produces an error location.

3D Nodes | Lookfile Nodes

REFERENCE GUIDE
897

Control (UI) Default Value Function

Note: The lookfile.resolvedPass attribute
always reports the requested pass and is,
therefore, not affected by this fall-back.

For more information, refer to the Look File Widget Type in
the Common Parameter Widgets.

Flush Caches N/A Click to flush the Look File cache and force a reload.

UsdMaterialBake
The UsdMaterialBake node is a SuperTool that can be used to export material assignments, variants, shaders,
and lights. Exported USD data can then be imported back into Katana or other Digital Content Creation
(DCC) packages that support USD. The UsdMaterialBake node works by looking for the differences between
the node’s orig and the default inputs followed by each of the variant inputs in turn, if they exist. Anything
differences found between orig and default or orig and variant can then be baked to a USD file and
exported out of Katana. Typically, the node’s origin input is connected to a scenegraph location containing
the information you want to bake out.

For more information on creating locations, see LocationCreate.

Note: For versions of Katana before 4.5v1, you must to enable the USD plug-in using environment
variables. For more information on how to do this, see Loading USD Plug-ins into Katana.

Connection Type Connection Name Function

Input orig The original, or pre-existing scenegraph to which the
default or additional inputs are compared.

default A second scenegraph that has a different pass to compare
to the default. UsdMaterialBake saves the difference
between the original and default pass, or any additional
passes.

3D Nodes | Lookfile Nodes

REFERENCE GUIDE
898

Control (UI) Default Value Function

rootLocations

rootLocations /root/world Sets the scenegraph location(s) to bake the USD
information for. Any location under /root/world
can be used, but it is recommended that
components or assembly locations are specified.
The rootlocations parameter options are

available by clicking Add Locations or
dropdown menu.

For more information, refer to the Scene Graph
Location and Scene Graph Locations Widget
Types in Common Parameter Widgets.

Variants

default default Allows you to write variants of your asset to a
single USD file.

Additional variants can be added by pressing the
+ button to the right of the Variants parameter.
When additional variants are created, a new port
reflecting the name of the variant becomes
available on the UsdMaterialBake node.
Additional information such as Network
Materials or light data can then be plugged into
the node, allowing you to bake out shading or
lighting variants.

saveTo None Specifies where the exported USD file should be
saved to.

For more information, refer to the Asset and File
Path Widget Types in the Common Parameter
Widgets.

looksFilename shadingVariants Allows you to set the name of the USD file to be
written.

looksFileFormat USD Allows you to specify what USD format to write

3D Nodes | Lookfile Nodes

REFERENCE GUIDE
899

Control (UI) Default Value Function

out. The available USD formats are:
• .usd
• .usda
• .usdc

alwaysCreateVariantSet No When enabled, the USD file creates a variantSet
type under the specified rootPrimName.

variantSets are always created if there are
multiple variants to bake.

createCompleteUsdAssemblyFile No When enabled, you can specify a payload .usd
file so an assembly can be written out. Assembly
USD files are written out as in the .usda format.

Assembly USD files contain your geometry with
all materials and shading assignments already
applied. This means that additional nodes such
as NetworkMaterialEdit or MaterialAssign are
not needed on import, your asset is ready out of
the box.

assemblyFilename assembly Specifies a filename so the assembly can be
written out. Assembly USD files are written out
as in the .usda format.

Note: The assemblyFilename
parameter is only available when
createCompleteUsdAssemblyFile is
set to Yes.

payloadFilename N/A Allows you to specify the location of the payload
USD file containing the geometry needed to
export an assembly.

3D Nodes | Lookfile Nodes

REFERENCE GUIDE
900

Control (UI) Default Value Function

Note: The payloadFilename
parameter is only available when
createCompleteUsdAssemblyFile is
set to Yes.

rootPrimName /root Allows you to specify the root prim name that
your data is written under. When imported, all
data written through the UsdMaterialBake is
contained under that root name.

variantSetName shadingVariants Similarly to looksFilename, this parameter
allows you to specify a name for variant sets
written from the UsdMaterialBake.

Output Nodes
The following section describes Katana's 3D Output nodes.

Render
The Render node takes a scene as input and renders images. The first input on this node is the scene to
render. Additional inputs are dependency connections, which are used to track dependencies between
passes. Each Render node is intended to be a single invocation of RenderMan or another renderer.

The Render node is really only used to track render settings, asset names, and which previously defined
output passes are to be used. To set up passes, use RenderOutputDefine. To change render settings (like the
active camera) use RenderSettings. To change RenderMan global settings, use PrmanGlobalSettings.

Input Information:
• Don't delete the port 'input' on the render node, or the node becomes unusable.
• Additional inputs to the Render node are dependency inputs and are only used when generating outline

files for rendering.

3D Nodes | Output Nodes

REFERENCE GUIDE
901

Connection Type Connection Name Function

Input input

Add numbered input
ports (i1, i2, i3) by

pressing in the
node.

The scene that you want to render out as an image.

Control (UI) Default
Value

Function

passName Render Sets the passName to identify this render node and
is used to build the name of assets written from the
Render node.

When the passName is changed, the name of the
Render node is also updated to stay in sync with
the pass name. This is a parameter rather than just
using the node name itself so you can have more
control over this; node names must be unique
within a Node Graph, while passName can be
duplicated among different Render nodes if you
need to for some reason.

lock disabled When enabled, the asset information for this
Render node is no longer updated.

This is useful when you're sharing a Render node
between shots and want to use expressions to
reference the original output of the Render node. A
locked Render node cannot be used to HotRender
because the asset it produces is locked. It can be
referenced in expressions with 'getRenderLocation'.

outputs

outputs N/A Manages which available outputs are active.

3D Nodes | Output Nodes

REFERENCE GUIDE
902

Control (UI) Default
Value

Function

farmGlobalSettings

setActiveFrameRange disabled When enabled, activeFrameRange parameters are
exposed to define the active frame range for
rendering.

When disabled, the active frame range is assumed
to be the same as
globals.inTime and globals.outTime.

setActiveFrameRange: enabled

activeFrameRange > start 1 When setActiveFrameRange is enabled, sets the
start of the active frame range.

activeFrameRange > end 1 When setActiveFrameRange is enabled, sets the
end of the active frame range.

Render parameters continued

dependAll disabled When enabled, farm dependencies wait until all
frames of this node are rendered before rendering
themselves.

farmFileName N/A The name you want to give to the generated farm
file.

renderInternalDependencies disabled When enabled, internal dependencies of this node
(input Render nodes that don't have any external
(shot tree) outputs of their own) are rendered in the
same farm process as this node.

excludeFromFarmOutputGeneration disabled When enabled, this node does not appear in any
generated farm file (however, the node is still
renderable if called directly).

forceFarmOutputGeneration disabled When enabled, this node always appears in a
generated farm file (regardless of whether it has
any valid outputs).

3D Nodes | Output Nodes

REFERENCE GUIDE
903

Control (UI) Default
Value

Function

Note: If
excludeFromFarmOutputGeneration is
also set, the node does not appear in the
generated farm file
(excludeFromFarmOutputGeneration
overrides forceFarmOutputGeneration).

Procedural Nodes
The following section describes Katana's 3D Procedural nodes.

Alembic_In
The Alembic_In node enables you to import Alembic assets. Alembic is an open source scene information
interchange framework that distills complex, animated scenes into non-procedural, application-
independent, baked geometric results. It stores only the baked information and not how that information
was obtained. You can export to Alembic from most popular 3D applications.

Alembic caches are retrieved with reference to time, not a particular frame; because of this, Katana needs to
know what frame rate to use when querying the alembic file.

Control (UI) Default Value Function

name /root/world/geo/asset Specifies the scene graph location where
the Alembic asset is to be placed. The
name parameter options are available in

either the scene graph widget or
dropdown menu to the right of the
parameter.

3D Nodes | Procedural Nodes

REFERENCE GUIDE
904

Control (UI) Default Value Function

For more information, refer to the Create
Scene Graph Location Widget Type in the
Common Parameter Widgets.

abcAsset N/A Specifies where to retrieve the asset, an
Alembic (.abc) file.

For more information, refer to the Asset
and File Path Widget Types in the Common
Parameter Widgets.

addForceExpand Yes When set to a particular location in the
scene graph, it forces expansion of the
hierarchy under that location rather than
stopping when a bounding box is reached.

addBounds Root Specifies where the overall bounds should
be placed: the root location, its direct
children, both, or none of these. Adding the
bounds to the root has the disadvantage of
producing the wrong bounds when the
same root location is used by several
Alembic_In nodes (the last one loaded
overwrites the bounds added by the other
ones).

Adding the bounds to the direct children of
the root location has the disadvantage of
repeating the same overall bounds on each
child, which means that these bounds can
be potentially bigger than the real bounds
of that child.

fps 24 Sets how many frames constitute a second
inside the Alembic file.

addToCameraList No For archives expected to contain cameras,
this enables a light-weight traversal of the
archive at /root/world so that the camera

3D Nodes | Procedural Nodes

REFERENCE GUIDE
905

Control (UI) Default Value Function

paths may be included in
globals.cameraList.

This parameter is disabled by default as it
does work at a shallower point in the scene,
independent of any downstream actions.

In typical cases, the initial traversal is trivial
and is then cached. Even so it's good
practice to enable this only when necessary.

timing

mode Current Frame Sets the timing mode to apply to the asset:
• Current Frame - uses the current frame

to access the Alembic asset.
• Hold Frame - uses the frame specified by

holdTime to access the Alembic asset.
• Clamp Range - forces Katana to only

retrieve geometry from between the
inTime and outTime frames. The frames
specified by inTime and outTime are
used for frames before and after the
clamp range respectively.

timing > mode: Hold Frame

holdTime globals.inTime
(an expression)

The frame to retrieve from the Alembic
asset.

timing > mode: Clamp Range

inTime globals.inTime
(an expression)

The start frame for retrieving geometry
from the Alembic asset.

outTime globals.outTime
(an expression)

The end frame for retrieving geometry from
the Alembic asset.

advanced

3D Nodes | Procedural Nodes

REFERENCE GUIDE
906

Control (UI) Default Value Function

useOnlyShutterOpenCloseTimes No When set to Yes, it forces the Alembic
cache to only use the time samples
corresponding to shutter open and close
times when 'maxTimeSamples' is set to 2
in a RenderSettings node.

RendererProceduralArgs
The RendererProceduralArgs node allows you to use and declare renderer procedurals, such as native Arnold
or RenderMan procedurals. For example you can use procedurals to generate hair or other geometry.
Procedurals are assigned to scene graph locations of type 'renderer procedural' with the
RendererProceduralAssign node.

Connection Type Connection Name Function

Input in The place in the node graph where you want to declare and
use procedurals from a native renderer.

Control (UI) Default Value Function

name RendererProceduralArgs Sets the name of the procedural.

action create new location Determines what action the node takes:
• create new location - creates a new scene graph

location of type "renderer procedural arguments"
beneath /root/materials/proc with the name
specified by the name parameter.

• inherit from existing location - creates a new scene
graph location of type "renderer procedural
arguments" beneath the location specified by
inheritsFrom.location parameter with the name
specified by the name parameter.

3D Nodes | Procedural Nodes

REFERENCE GUIDE
907

Control (UI) Default Value Function

• edit existing location - displays the incoming values
of a single scene graph location of type "renderer
procedural arguments" or "renderer procedural"
specified by the edit.location parameter - applies
the specified edits to the values at that location.

• edit multiple locations - edits values at the
locations specified by the CEL statement from the
edit.CEL parameter. This does not display incoming
values because they could differ from location to
location. This means that you must specify the dso
path for the procedural in order to display settable
parameters.

action (continued) • define overrides - accepts drag-and-dropped
attributes from rendererProcedural attribute groups.
This can be used in two ways:

1. When aimed (via CEL) at locations within the
renderable scene, it creates a
rendererProceduralOverride attribute. At resolve
time, these values override equivalent values in the
rendererProcedural attribute of scene graph
locations of type "RendermanProcedural" beneath.
This is useful for making global changes to many
different procedurals at once, regardless of
whether they share the same source.

2. When aimed (via CEL) at locations of type
"renderer procedural arguments", it modifies the
rendererProcedural directly in the same manner as
the "edit multiple locations" action.

• remove overrides - removes or masks inherited
attributes in the rendererProceduralOverride at the
scene graph locations specified by the CEL statement
of the overrides.CEL parameter.

When action is: create new location

namespace N/A Specifies the scene graph location under

3D Nodes | Procedural Nodes

REFERENCE GUIDE
908

Control (UI) Default Value Function

/root/materials where to place the procedural.

procedural N/A Brings up the file browser or your studio's asset
management browser and enables you to select the
procedural to use.

For more information, refer to the Asset and File Path
Widget Types in the Common Parameter Widgets.

args N/A Specifies the args file attributes.

useInfiniteBounds Yes Controls whether the declaration of the procedural
includes bounds that the renderer can use to defer
evaluation of the procedural until it needs data from
inside those bounds.

When set to Yes, nearly infinite bounds are used.
When set to No, no bounds are used.

includeCameraInfo None Specifies the format in which the camera information is
passed to the procedural by the render plug-in.

It includes the following: camera's transform, field of
view, and screen window.
• None - no camera information is passed to the

procedural.
• As Parameters - the camera information is passed

into the procedural as arguments to the procedural.
So the procedural you're specifying args for needs to
be expecting to receive this camera information, and
know what to do with it.

• As Attributes - the camera information is put into
the RIB stream as a "user" attribute. So the
procedural needs to know to look for this attribute if
it wants to use it.

The Parameters and Attributes formats are the
following:

• string cameraInfo_path - path to the camera.

3D Nodes | Procedural Nodes

REFERENCE GUIDE
909

Control (UI) Default Value Function

• float cameraInfo_fov - the Field of View.
• float cameraInfo_near - distance to the near

clipping plane.
• float cameraInfo_far - distance to the far

clipping plane.
• float cameraInfo_left - screen window left.
• float cameraInfo_right - screen window right.
• float cameraInfo_top - screen window top.
• float cameraInfo_bottom - screen window

bottom.
• float[16] cameraInfo_xform - the camera

transform.

When includeCameraInfo is: As Parameters or As Attributes

cameraInfo
> whichCamera

Render Camera • Render Camera - selects the render camera.
• Other Camera - lets you set the path for the camera

using cameraPath

When action is: inherit from existing location

InheritsFrom
> location

N/A Specifies the location to use in the Scene Graph tab.
The location parameter options are available by

clicking the dropdown menu.

For more information, refer to the Scene Graph
Location Widget Type in Common Parameter Widgets.

procedural N/A Brings up the file browser or your studio's asset
management browser and enables you to select the
procedural to use.

For more information, refer to the Asset and File Path
Widget Types in the Common Parameter Widgets.

args N/A Specifies the args file attributes.

useInfiniteBounds Yes Controls whether the declaration of the procedural

3D Nodes | Procedural Nodes

REFERENCE GUIDE
910

Control (UI) Default Value Function

includes bounds that the renderer can use to defer
evaluation of the procedural until it needs data from
inside those bounds.

When set to Yes, nearly infinite bounds are used.
When set to No, no bounds are used.

includeCameraInfo None Specifies the format in which the camera information is
passed to the procedural by the render plug-in.

It includes the following: camera's transform, field of
view, and screen window.
• None - no camera information is passed to the

procedural.
• As Parameters - the camera information is passed

into the procedural as arguments to the procedural.
So the procedural you're specifying args for needs to
be expecting to receive this camera information, and
know what to do with it.

• As Attributes - the camera information is put into
the RIB stream as a "user" attribute. So the
procedural needs to know to look for this attribute if
it wants to use it.

The Parameters and Attributes formats are the
following:

• string cameraInfo_path - path to the camera.
• float cameraInfo_fov - the Field of View.
• float cameraInfo_near - distance to the near

clipping plane.
• float cameraInfo_far - distance to the far

clipping plane.
• float cameraInfo_left - screen window left.
• float cameraInfo_right - screen window right.
• float cameraInfo_top - screen window top.
• float cameraInfo_bottom - screen window

3D Nodes | Procedural Nodes

REFERENCE GUIDE
911

Control (UI) Default Value Function

bottom.
• float[16] cameraInfo_xform - the camera

transform.

When includeCameraInfo is: As Parameters or As Attributes

cameraInfo
> whichCamera

Render Camera • Render Camera - selects the render camera.
• Other Camera - lets you set the path for the camera

using cameraPath

When action is: edit existing location

edit > location N/A Specifies the location to use in the Scene Graph tab.
The location parameter options are available by

clicking the dropdown menu.

For more information, refer to the Scene Graph
Location Widget Type in Common Parameter Widgets.

procedural N/A Brings up the file browser or your studio's asset
management browser and enables you to select the
procedural to use.

For more information, refer to Asset and File Path
Widget Types in Common Parameter Widgets.

args N/A Specifies the args file attributes.

useInfiniteBounds Yes Controls whether the declaration of the procedural
includes bounds that the renderer can use to defer
evaluation of the procedural until it needs data from
inside those bounds.

When set to Yes, nearly infinite bounds are used.
When set to No, no bounds are used.

includeCameraInfo None Specifies the format in which the camera information is
passed to the procedural by the render plug-in.

It includes the following: camera's transform, field of
view, and screen window.

3D Nodes | Procedural Nodes

REFERENCE GUIDE
912

Control (UI) Default Value Function

• None - no camera information is passed to the
procedural.

• As Parameters - the camera information is passed
into the procedural as arguments to the procedural.
So the procedural you're specifying args for needs to
be expecting to receive this camera information, and
know what to do with it.

• As Attributes - the camera information is put into
the RIB stream as a "user" attribute. So the
procedural needs to know to look for this attribute if
it wants to use it.

The Parameters and Attributes formats are the
following:

• string cameraInfo_path - path to the camera.
• float cameraInfo_fov - the Field of View.
• float cameraInfo_near - distance to the near

clipping plane.
• float cameraInfo_far - distance to the far

clipping plane.
• float cameraInfo_left - screen window left.
• float cameraInfo_right - screen window right.
• float cameraInfo_top - screen window top.
• float cameraInfo_bottom - screen window

bottom.
• float[16] cameraInfo_xform - the camera

transform.

When includeCameraInfo is: As Parameters or As Attributes

cameraInfo
> whichCamera

Render Camera • Render Camera - selects the render camera.
• Other Camera - lets you set the path for the camera

using cameraPath

When action is: edit multiple locations

3D Nodes | Procedural Nodes

REFERENCE GUIDE
913

Control (UI) Default Value Function

edit > CEL N/A Sets the CEL specification of scene graph locations on
which the assignment acts.

The scene graph locations are specified using the
Collection Expression Language (CEL). The CEL
parameter options are available by clicking Add
Statements.

For more information, refer to the CEL Reference
document found on the documentation HTML page
(accessed through Help > Documentation) or the CEL
Statement Widget Type in Common Parameter
Widgets.

procedural N/A Brings up the file browser or your studio's asset
management browser and enables you to select the
procedural to use.

For more information, refer to Asset and File Path
Widget Types in Common Parameter Widgets.

args N/A Specifies the args file attributes.

useInfiniteBounds Yes Controls whether the declaration of the procedural
includes bounds that the renderer can use to defer
evaluation of the procedural until it needs data from
inside those bounds.

When set to Yes, nearly infinite bounds are used.

When set to No, no bounds are used.

includeCameraInfo None Specifies the format in which the camera information is
passed to the procedural by the render plug-in.

It includes the following: camera's transform, field of
view, and screen window.
• None - no camera information is passed to the

procedural.
• As Parameters - the camera information is passed

3D Nodes | Procedural Nodes

REFERENCE GUIDE
914

Control (UI) Default Value Function

into the procedural as arguments to the procedural.
So the procedural you're specifying args for needs to
be expecting to receive this camera information, and
know what to do with it.

• As Attributes - the camera information is put into
the RIB stream as a "user" attribute. So the
procedural needs to know to look for this attribute if
it wants to use it.

The Parameters and Attributes formats are the
following:

• string cameraInfo_path - path to the camera.
• float cameraInfo_fov - the Field of View.
• float cameraInfo_near - distance to the near

clipping plane.
• float cameraInfo_far - distance to the far

clipping plane.
• float cameraInfo_left - screen window left.
• float cameraInfo_right - screen window right.
• float cameraInfo_top - screen window top.
• float cameraInfo_bottom - screen window

bottom.
• float[16] cameraInfo_xform - the camera

transform.

When includeCameraInfo is: As Parameters or As Attributes

cameraInfo
> whichCamera

Render Camera • Render Camera - selects the render camera.
• Other Camera - lets you set the path for the camera

using cameraPath

When action is: define overrides

overrides > CEL N/A Sets the CEL specification of scene graph locations on
which the assignment acts.

The scene graph locations are specified using the

3D Nodes | Procedural Nodes

REFERENCE GUIDE
915

Control (UI) Default Value Function

Collection Expression Language (CEL). The CEL
parameter options are available by clicking Add
Statements.

For more information, refer to the CEL Reference
document found on the documentation HTML page
(accessed through Help > Documentation) or the CEL
Statement Widget Type in Common Parameter
Widgets.

attrs Drop Attributes Here Middle-click and drag attributes from the Attributes
tab to this hotspot to use that attribute.

When action is: remove overrides

overrides > CEL N/A Sets the CEL specification of scene graph locations on
which the assignment acts.

The scene graph locations are specified using the
Collection Expression Language (CEL). The CEL
parameter options are available by clicking Add
Statements.

For more information, refer to the CEL Reference
document found on the documentation HTML page
(accessed through Help > Documentation) or the CEL
Statement Widget Type in Common Parameter
Widgets.

Resolve Nodes
The following section describes Katana's 3D Resolve nodes.

ConstraintResolve
This node resolves all constraints stored on the locations referenced in globals.constraintList at /root/world.

3D Nodes | Resolve Nodes

REFERENCE GUIDE
916

Connection Type Connection Name Function

Input input The place in the node graph where you want all constraints
in the globals.constraintList to be resolved.

MaterialResolve
Resolves materials in the scene graph. At scene graph locations with materialAssign attributes, it finds the
material that is referenced and copies its material attributes to the scene graph location. Results of this
operation can be viewed in the Attributes tab. It can also be used to apply material overrides set by the
Material node.

Connection Type Connection Name Function

Input input The place in the node graph where you want to resolve
materials in the scene graph.

Source Nodes
The following section describes Katana's 3D Source nodes.

AttributeFile_In
This node reads in an attribute file from a specified location and applies the attribute changes to the scene
graph locations specified by the CEL statement.

Connection Type Connection Name Function

Input input The place in the node graph where you want to read in an
attribute file.

3D Nodes | Source Nodes

REFERENCE GUIDE
917

Control (UI) Default Value Function

CEL N/A The scene graph locations are specified using the Collection
Expression Language (CEL). The CEL parameter options are
available by clicking Add Statements.

For more information, refer to the CEL Reference document
found on the documentation HTML page (accessed
through Help > Documentation) or the CEL Statement
Widget Type in Common Parameter Widgets.

File Path N/A Describes the filepath to an Attributes File.

For more information, refer to the Asset and File Path
Widget Types in the Common Parameter Widgets.

Custom File Parser N/A Specifies the .so file with the Attributes File parser. Leave it
empty to use the default one.

For more information, refer to the Asset and File Path
Widget Types in the Common Parameter Widgets.

Attribute Group
Name

attributeFile Specifies the name of the group attribute where the
attributes from the file are stored. When empty, the
attributes are stored directly under the location (without a
group attribute).

Apply When immediate Determines when the script runs:
• immediate - the filter runs at the locations specified by

the CEL statement as they are evaluated at this node's
point in the graph.

• deferred or during katana standard resolve - the script
and its arguments are added as attributes under the
scenegraphLocationModifers group attribute. When
deferred, they are run later by the implicit
ScenegraphLocationModifierResolve filter added at
render time. When during katana standard resolve, they
are evaluated by a LookFileResolve node or by the first
implicit resolver if no LookFileResolve node is present.
(They may be tested either by enabling implicit scene
graph resolvers in the Scene Graph tab or with a

3D Nodes | Source Nodes

REFERENCE GUIDE
918

Control (UI) Default Value Function

ScenegraphLocationModifierResolve node.)
• during material resolve - the script and its arguments

are added as attributes under the material. Scene
GraphLocationModifers group attribute. This is primarily
intended for material scene graph locations. The material
resolve process evaluates the script at the locations at
which the material is assign or applied. This can be useful
for building randomization or procedural control over
shader parameters at the material level without having to
apply materialOverride attributes at the geometry level.

Recursive Enable No When applying in a non-immediate state, enabling this
results in the script running at every location beneath the
assigned locations. In general this is more efficient than
using an equivalent recursive CEL statement.

timing

mode Current Frame Sets the timing mode to apply to the asset:
• Current Frame - uses the current frame to access the

attribute file.
• Hold Frame - uses the frame specified by holdTime to

access the attribute file.
• Clamp Range - forces Katana to only apply the attributes

stored in the attributes file between the inTime and
outTime frames. For before and after the clamp range,
the frames specified by inTime and outTime respectively
are used.

timing > mode: Hold Frame

holdTime globals.inTime
(an expression)

Specifies which frame to use.

timing > mode: Clamp Range

inTime globals.inTime
(an expression)

Specifies the start frame for the clamp range. It is also used
for all frames before the inTime.

outTime globals.outTime
(an expression)

Specifies the end frame for the clamp range. It is also used
for all frames after the outTime.

3D Nodes | Source Nodes

REFERENCE GUIDE
919

CameraCreate
The CameraCreate node is used to create a scene graph containing a camera. CameraCreate does not load
the camera from any file or asset but instead builds an entirely new camera from the parameters you specify
on this node.

Note: LightCreate and CameraCreate are identical, except for the type of scene graph locations
they create, and the population of the lightList vs. cameraList.

Tip: To lock a camera's position after it's created, set makeInteractive on the CameraCreate to
No.

Control (UI) Default Value Function

name /root/world/cam/camera This is the scene graph location where the camera is
created. For example, the default value of
/root/world/cam/camera creates a camera at the
location /root/world/cam/camera. The name
parameter options are available in either the scene

graph widget or dropdown menu to the right of
the parameter.

For more information, refer to the Create Scene
Graph Location Widget Type in the Common
Parameter Widgets.

projection perspective Toggles the projection type of the camera:
• perspective
• orthographic

fov 70 Controls the field of view angle in degrees.

near 0.1 Sets the near clipping plane distance.

3D Nodes | Source Nodes

REFERENCE GUIDE
920

Control (UI) Default Value Function

far 100000 Sets the far clipping plane distance.

screenWindow

left -1 This set of four number parameters controls the
screen window placement on the imaging plane.
They are, in order, left, right, bottom and top bounds
of the screen window.

right 1

bottom -1

top 1

centerOfInterest 20 Offsets the center of interest of the camera.

orthographicWidth 30 Sets the orthographic projection width.

includeInCameraList Yes When enabled, the camera is visible in the camera list
on the /root/world location, under the Scene Graph
tab.

transform

transform N/A Transforms the camera according to the SRT or
matrix controls.

For more information, refer to the Transform
Controls Widget Type in the Common Parameter
Widgets.

transform > Tools N/A Adjusts the camera to match selected scene graph
selection options in the dropdown menu.

For more information, refer to the Transform Tools
Widget Type in the Common Parameter Widgets.

CameraCreate parameters continued

makeInteractive Yes When set to Yes, you can drag objects in the Viewer
and Katana retains the information from the Viewer.

3D Nodes | Source Nodes

REFERENCE GUIDE
921

CameraImagePlaneCreate
Note: Although CameraImagePlaneCreate nodes are available in Katana versions 4.5v1 and above,
the ability to set up Image Planes is no longer supported due to the OpenSceneGraph-based
Viewer being replaced with the Hydra Viewer.

Creates attributes on a camera that describe an image plane. In the Viewer, the camera displays the image
plane.

Connection Type Connection Name Function

Input input The place in the node graph where you want to create
attributes on a camera for an image plane.

Control (UI) Default Value Function

cameraLocation N/A This is the scene graph location where the target
camera resides. For example, the default value of
/root/world/cam/camera references a camera at the
location /root/world/cam/camera.

For more information, refer to the Scene Graph
Location Widget Type in the Common Parameter
Widgets.

name plane Sets the name of the image plane created.

imagePath N/A Sets the filepath of the image or sequence to display in
the image plane. Supported file formats include .cin,
.dpx, .rla, .iff, .tif, .jpg, .tga, .rgb, and .tga. Floating
point data (.exr, .tif, .zfile) is not currently supported.

3D Nodes | Source Nodes

REFERENCE GUIDE
922

Control (UI) Default Value Function

Note: Image sequences must contain a
padded frame number.

For more information, refer to the Asset and File Path
Widget Types in the Common Parameter Widgets.

frame 1 Sets the frame of the image sequence to use.

depth 10000 Sets the distance from the camera to image plane.

alpha 1 Sets the image plane's alpha value.

displayOnlyIfCurrent No When set to Yes, this image plane is only displayed
when looking through the camera it is attached to.

When set to No, you can see the image plane in all
views.

displayMode RGBA Sets the image plane display mode:
• None
• Outline
• RGB
• RGBA

fit Best Controls how the image file fits into the image plane if
there is a mismatch between aspect ratios:
• Fill - the image is scaled as required to fill the plane,

without being squashed or stretched. Any excess is
cropped.

• Best - the image is scaled as required to display it
entirely within the plane, without being squashed,
stretched or cropped.

• Horizontal - the image is scaled as required so that
its aspect ratio is maintained within the horizontal
bounds of the plane. Any excess at the top or bottom
is cropped.

• Vertical - the image is scaled as required so that its

3D Nodes | Source Nodes

REFERENCE GUIDE
923

Control (UI) Default Value Function

aspect ratio is maintained within the vertical bounds
of the plane. Any excess at the left or right is
cropped.

• To Size - the image is stretched or squashed to fit
with the plane both horizontally and vertically.

Note: To control the image's SRT values
directly, enable the
manualPlacementSettings checkbox.

crop

left 0 Sets the amount of manual crop to apply to the edges
of the image plane.

bottom 0

right 1

top 1

CameraImagePlaneCreate parameters continued

manualPlacementSettings No When set to Yes, you can adjust the image manually
using its SRT values. Otherwise, the image plane
placement is synced to the camera.

manualPlacementSettings: Yes > size

Size controls the width and height of the image plane.

x 1 Adjusts the size of the image plane along the x axis.

y 1 Adjusts the size of the image plane along the y axis.

manualPlacementSettings: Yes > offset

Offset controls how much the center of the image plane is offset from the center of the viewing frustum of
the camera.

x 0 Adjusts the offset of the image plane along the x axis.

3D Nodes | Source Nodes

REFERENCE GUIDE
924

Control (UI) Default Value Function

y 0 Adjusts the offset of the image plane along the y axis.

manualPlacementSettings: Yes

rotate 0 Adjusts the rotation of the image plane around the
view vector.

CollectionCreate
Collections are used to store a CEL statement. They are stored as attributes in the location given by the
location parameter (see below). As they are simply attributes within the scene graph, collections can be
included within Katana look files.

Connection Type Connection Name Function

Input in The place in the node graph where you want to create a
collection.

Control (UI) Default Value Function

location N/A The scene graph location where the collection is saved.
The location parameter options are available in either the

scene graph widget or dropdown menu to the right
of the parameter.

For more information, refer to the Scene Graph Location
Widget Type in the Common Parameter Widgets.

name N/A Sets the name of the collection.

CEL N/A Specifies scene graph locations to store as part of this
collection.

The scene graph locations are specified using the

3D Nodes | Source Nodes

REFERENCE GUIDE
925

Control (UI) Default Value Function

Collection Expression Language (CEL). The CEL parameter
options are available by clicking Add Statements.

For more information, refer to the CEL Reference
document found on the documentation HTML page
(accessed through Help > Documentation) or the CEL
Statement Widget Type in Common Parameter Widgets.

stripDisabledBlocks No When set to Yes, this removes parts of a collection
expression that have been disabled by pressing the D key
over a CEL editor panel.

CEL statement parts that are disabled are normally
wrapped in #IGNORE(...) statements.

When stripDisabledBlocks is set to Yes, #IGNORE(...)
blocks are removed from the resulting collection
expression.

This optional optimization means extra work upfront, but
results in CEL statements that are potentially much
shorter.

CoordinateSystemDefine
Creates a named coordinate system accessed by PRMan shaders. The list of all global named coordinate
systems can be found in /root/world, globals.coordinateSystems.

Connection Type Connection Name Function

Input input The place in the node graph where you want to create a
named coordinate system.

3D Nodes | Source Nodes

REFERENCE GUIDE
926

Control (UI) Default Value Function

scope global Specifies how the coordinate system is defined. The
options are:
• global
• relative scope

coordinateSystemName N/A Specifies the unique name of the coordinate system to
create.

scope: global

referenceLocation N/A Specifies the scene graph location whose global
transform defines the coordinate system.

For more information, refer to the Scene Graph
Location Widget Type in the Common Parameter
Widgets.

scope: relative scoped

baseLocation N/A Specifies the scene graph location whose scoped
transform defines the base coordinate system.

For more information, refer to the Scene Graph
Location Widget Type in the Common Parameter
Widgets.

relativeLocation N/A Specifies the scene graph location whose scoped
transform defines the relative coordinate system.

For more information, refer to the Scene Graph
Location Widget Type in the Common Parameter
Widgets.

InfoCreate
This node creates a hierarchy of info locations, each tagged with the specified xml block. If leafName is
specified, locations named with the leafName are created as children of the specified locations. If leafName

3D Nodes | Source Nodes

REFERENCE GUIDE
927

is left empty, info locations are created directly at the specified locations.

Images can be embedded using standard syntax, however the node cannot reference web servers (must be
links in the file system).

Extra scene graph locations can be baked into Look Files (.klf) and are added as new scene graph locations
in the scene when a Look File is resolved. A common use of the InfoCreate node is to provide documentation
and/or version specific information (either baked in a Look File or as an InfoCreate node in a macro).

Control (UI) Default Value Function

leafName info If a leafName is populated, the info is created below each
specified item in the locations parameter array.

Common leaf names are: readme, info, and user.

locations /root/world If leafName is not populated, info locations are created
directly at the specified locations. If leafName is specified,
locations named with the leafName are created as children
of the specified locations. The locations parameter options

are available by clicking Add Locations or dropdown
menu.

For more information, refer to the Scene Graph Location
and Locations Widget Types in Common Parameter
Widgets.

Note: An empty or invalid location value
generates a location of type error under /root.

text (html editor) view editor and
preview

Sets the mode for the html editor:
• view editor and preview - the top section of the editor is

html source and the bottom section of the editor is a
rendered preview.

• view only editor - shows only the top section of editor
(html source).

• view only preview - shows only the bottom section of
editor (rendered preview).

3D Nodes | Source Nodes

REFERENCE GUIDE
928

LightCreate
This node is used to create a scene graph containing a light. LightCreate does not load the light from any file
or asset but instead builds an entirely novel light from the parameters you specify on this node. This node is
not used generally, the GafferThree node is often used instead.

Note: LightCreate requires a light shader to function properly.

LightCreate and CameraCreate are identical, except for the type of scene graph locations they create, and
the population of the lightList vs. cameraList.

Control (UI) Default Value Function

name /root/world/lgt/light Sets the scene graph location where the light is created.
For example, the default value of /root/world/lgt/light
creates a light at the location /root/world/lgt/light. The
name parameter options are available in either the scene

graph widget or dropdown menu to the right of the
parameter.

For more information, refer to the Create Scene Graph
Location Widget Type in the Common Parameter
Widgets.

projection perspective Sets the light projection mode:
• perspective
• othographic

fov 70 Controls the field of view angle in degrees.

near 0.1 Sets the near clipping plane distance.

far 100000 Sets the far clipping plane distance.

screenWindow

3D Nodes | Source Nodes

REFERENCE GUIDE
929

Control (UI) Default Value Function

left -1 This set of four number parameters controls the screen
window placement on the imaging plane. They are, in
order, left, right, bottom and top bounds of the screen
window.

right 1

bottom -1

top 1

LightCreate parameters continued

centerOfInterest 20 Offsets the center of interest of the light.

orthographicWidth 30 Sets the orthographic projection width.

radius 1 Sets the light's radius.

initialState on Determines whether the newly-added light location is
initially on or off.

previewColor

previewColor 1, 1, 0 Specifies the color of the light in the Viewer. This value
does not affect the color value of the light when
rendering, it's used for testing the placement of lights.

For more information, refer to the Color Widget Type in
the Common Parameter Widgets.

manipulators > Add

Add Entry N/A Adds entries to the manipulators list.

manipulators > manipulator

name N/A The name of the manipulator you've created.

preset default The preset manipulator type.

selected Handles When selected, how the manipulator displays:
• Handles - the manipulator is shown with handles.
• Outline - the manipulator is shown as an outline around

the light.
• None - the manipulator display doesn't change when

3D Nodes | Source Nodes

REFERENCE GUIDE
930

Control (UI) Default Value Function

selected.

visible Outline When visible, how the manipulator displays:
• Handles - the manipulator is shown with handles.
• Outline - the manipulator is shown as an outline around

the light.
• None - the manipulator display doesn't appear.

transform

transform N/A Transforms the light according to the SRT or matrix
controls.

For more information, refer to the Transform Controls
Widget Type in the Common Parameter Widgets.

transform > Tools N/A Adjusts the light to match selected scene graph selection
options in the dropdown menu.

For more information, refer to the Transform Tools
Widget Type in the Common Parameter Widgets.

LightCreate parameters continued

makeInteractive Yes When set to Yes, you can drag objects in the Viewer and
Katana retains the information from the Viewer.

LocationCreate
Allows you to create a scene graph location of any type. Often used in macros to generate one or more
scene graph location without the overhead or type-specific attributes created by the other Create nodes.

Control (UI) Default Value Function

type group Sets the type attribute of the scene graph location(s) to be
created (as seen in the 'Type' column of the scene graph).

3D Nodes | Source Nodes

REFERENCE GUIDE
931

Control (UI) Default Value Function

locations /root/world Sets one or more scene graph path(s) to the location(s) to
be created. The locations parameter options are available

by clicking Add Locations or dropdown menu.

For more information, refer to the Scene Graph Location
and Locations Widget Types in Common Parameter
Widgets.

attrs None Drag string or number attributes here to have them added
to the scene graph location(s) created by this node.

Material
This node defines a material, which is a set of shader calls and associated parameters. Materials are assigned
to geometry using the MaterialAssign node.

Connection Type Connection Name Function

Input in The place in the node graph where you want to define a
material.

Control (UI) Default Value Function

name Material Sets the node name. It's a good idea to use a meaningful
name such as "mtl_red".

action create new material Determines the node's behavior:
• create new material - creates a new scene graph location

of type geometry material or light material beneath
/root/materials/(geo|lgt) with the name specified by the
name parameter.

• create from LookFile - creates a new scene graph
location of type geometry material or light material

3D Nodes | Source Nodes

REFERENCE GUIDE
932

Control (UI) Default Value Function

from a specified LookFile with the name specified by the
name parameter.

• create child material - creates a new scene graph
location of type geometry material or light material
beneath the location specified by inheritsFrom.location
parameter with the name specified by the name
parameter.

• edit material - displays the incoming values of a single
scene graph material location specified by the
edit.location parameter. This is useful for making
changes when the original Material node, which created
this location, is not within the current session, or for
multiple branches of a graph.

action (continued) • override materials - accepts drag-and-dropped
attributes from material attribute groups. This can be used
in two ways:

•When aimed at locations within the renderable scene, it
creates a materialOverride attribute. At resolve time,
these values override equivalent values in the material
attribute of renderable scene graph locations beneath.
This is useful for making global changes to the
assigned instances of many different materials at once,
regardless of whether they share the same source.

•When aimed at locations of type geometry material or
lightmaterial, it modifies the material directly. This
does not display incoming values because they could
differ from location to location. This means that you
must specify the shader in order to display adjustable
parameters.

When action is: create new material

namespace N/A Specifies the scene graph location where the material is
placed.

makeInteractive No When set to Yes, you can drag objects in the Viewer and

3D Nodes | Source Nodes

REFERENCE GUIDE
933

Control (UI) Default Value Function

Katana retains the information from the Viewer.

Add shader N/A Click to add a renderer-specific shader to the material. The
shaders that are available change depending on the
renderers installed.

When action is: create from LookFile

namespace N/A Specifies the scene graph location where the material is
placed.

makeInteractive No When set to Yes, you can drag objects in the Viewer and
Katana retains the information from the Viewer.

lookfile N/A Selects the Look File to import materials from.

For more information, refer to the Asset and File Path
Widget Types in the Common Parameter Widgets.

materialPath N/A Allows you to select materials from the Look File.

asReference Yes When set to Yes, the material is loaded as a reference.
Reading the material by reference causes any materials
assigned to keep a reference to the Katana Look File from
which they got their material.

When action is: create child material

makeInteractive No When set to Yes, you can drag objects in the Viewer and
Katana retains the information from the Viewer.

Add shader N/A Click to add a renderer-specific shader to the material. The
shaders that are available change depending on the
renderers installed.

inheritsFrom >
location

N/A Sets the scene graph path to the location to be created. The

location parameter options are available by clicking the
dropdown menu.

For more information, refer to the Scene Graph Location
Widget Type in Common Parameter Widgets.

3D Nodes | Source Nodes

REFERENCE GUIDE
934

Control (UI) Default Value Function

When action is: edit material

makeInteractive No When set to Yes, you can drag objects in the Viewer and
Katana retains the information from the Viewer.

Add shader N/A Click to add a renderer-specific shader to the material. The
shaders that are available change depending on the
renderers installed.

edit > location N/A Sets the scene graph path to the location to be created. The
locations parameter options are available by clicking the

dropdown menu.

For more information, refer to the Scene Graph Location
Widget Type in Common Parameter Widgets.

When action is: override materials

CEL N/A The scene graph locations are specified using the Collection
Expression Language (CEL). The CEL parameter options are
available by clicking Add Statements.

For more information, refer to the CEL Reference document
found on the documentation HTML page (accessed
through Help > Documentation) or the CEL Statement
Widget Type in Common Parameter Widgets.

attrs N/A Middle-click and drag attributes from the Attributes tab to
this hotspot to use that attribute.

PrimitiveCreate
Adds a primitive geometry element to a scene such as sphere, cube, or cylinder as well as renderer
procedural, rib archive, brickmap and clipping plane.

Tip: You can directly create PrimitiveCreate nodes by pressing P in the Node Graph.

3D Nodes | Source Nodes

REFERENCE GUIDE
935

Control (UI) Default Value Function

name /root/world/geo/primitive Describes the scene graph location where the object is
created. The name parameter options are available in

either the scene graph widget or dropdown menu
to the right of the parameter.

For more information, refer to the Create Scene Graph
Location Widget Type in the Common Parameter
Widgets.

type sphere Sets the type of primitive created (plane or sphere, for
example)

transform

transform N/A Transforms the primitive according to the SRT or
matrix controls.

For more information, refer to the Transform Controls
Widget Type in the Common Parameter Widgets.

transform > Tools N/A Adjusts the primitive to match selected scene graph
selection options in the dropdown menu.

For more information, refer to the Transform Tools
Widget Type in the Common Parameter Widgets.

PrimitiveCreate parameters continued

makeInteractive Yes When set to Yes, you can drag objects in the Viewer
and Katana retains the information from the Viewer.

viewerPickable Yes When set to Yes, the object can be selected in the
Viewer.

When set to No, the object can only be selected
through the scene graph.

3D Nodes | Source Nodes

REFERENCE GUIDE
936

TeapotCreate
This node creates a specific type of PrimitiveCreate node rendering a teapot instead of a sphere or cube. See
also PrimitiveCreate.

Control (UI) Default Value Function

name /root/world/geo/primitive Describes the scene graph location where the object is
created. The name parameter options are available in

either the scene graph widget or dropdown menu
to the right of the parameter.

For more information, refer to the Create Scene Graph
Location Widget Type in the Common Parameter
Widgets.

type teapot Sets the type of primitive created (plane or sphere, for
example)

transform

transform N/A Transforms the teapot according to the SRT or matrix
controls.

For more information, refer to the Transform Controls
Widget Type in the Common Parameter Widgets.

transform > Tools N/A Adjusts the teapot to match selected scene graph
selection options in the dropdown menu.

For more information, refer to the Transform Tools
Widget Type in the Common Parameter Widgets.

TeapotCreate parameters continued

makeInteractive Yes When set to Yes, you can drag objects in the Viewer
and Katana retains the information from the Viewer.

viewerPickable Yes When set to Yes, the object can be selected in the
Viewer.

3D Nodes | Source Nodes

REFERENCE GUIDE
937

Control (UI) Default Value Function

When set to No, the object can only be selected
through the scene graph.

SuperTool Nodes
The following section describes Katana's 3D SuperTool nodes.

Importomatic
The Importomatic is a SuperTool node with a custom interface to load and manage different geometry
types. Other geometry or asset types can be added using a custom plug-in.
• Geometry or asset types may be grouped by adding additional outputs, then middle-dragging loaded

geometry or assets under the new output.
• Additional outputs may be renamed by selecting the additional output in the Name column, then editing

the output name in the parameter field. The default output can not be reordered or renamed.
• The order in which the geometry appears in the GUI determines the merge order, and its listing place in the

scene graph.
• Multiple geometry entries may be selected at once, but their parameters are not displayed in the GUI.

Multiple entries may be selected, moved, and regrouped at once.
• If a geometry asset has version information, it is displayed in the Version column. A version can be selected

by left-clicking on the triangle in the version column for a geometry listing, toggling the Show Explicit
Versions button, and selecting the desired version.

Right-click Menu
The right-click menu options available for each geometry asset allow a user to ignore or delete selected
asset entries. Additional outputs can also be deleted from the right-click menu. The default output can not
be deleted.

Levels of detail, if available for that asset type can be activated, by selecting Include Levels of Detail from the
right-click menu. The Status column indicates that LODs are enabled.

3D Nodes | SuperTool Nodes

REFERENCE GUIDE
938

LookFileLightAndConstraintActivator
Katana maintains a list of lights, cameras, and constraints at /root/world within the scene graph. When a
Look File brings in a light or constraint, the lists at /root/world need to be updated. The
LookFileLightAndConstraintActivator node activates LookFile lights and constraints by updating the
respective lists. It is also used to add constraints from LookFiles to the global constraint list. This list is used
to specify the order in which constraints are evaluated, so this only has to be done if the constraints from the
LookFile need to be evaluated in a specific order. Because it reads its input from a LookFile-resolved scene,
you should place it after either a LookFileManager or LookFileResolve node.

Choose Search Entire Incoming Scene... or Search Incoming Scene From Scene Graph Selection... from
the Action menu to find available lights and constraints.
• Entries are organized by asset, location, and then light and constraint paths.
• Gray entries are pending -- found by the searching tools but not yet enabled in the scene.
• Pending entries are not saved from session to session.
• Locations (entries immediately below the asset entries) may be refreshed individually by choosing Search

From Selected Locations from the right-click menu. This option is only available when one or more
location entries are selected.

To enable a pending entry, choose Enable from the right-click menu at any point within the hierarchy.

Enable and disable operations executed in this manner always act upon the selected entries and all of their
children. Individual light and constraint paths may also be enabled by clicking on the checkbox next their
names.

To enable everything at once:
1. First, choose Search Entire Incoming Scene... from the Action menu.
2. When that has completed, choose Select All from the Action menu right-click on any entry and choose

Enable.

Connection Type Connection Name Function

Input in The place in the node graph where you want to activate
LookFile lights and constraints by updating those lists.

3D Nodes | SuperTool Nodes

REFERENCE GUIDE
939

Control (UI) Default Value Function

Action N/A Searches the scene graph for lights and constraints brought
in by Look Files then enables or disables the results as
required.

LookFileManager
LookFileManager decodes incoming Look Files that have been set up in another scene. Each Look File piece
of imported geometry passed into this node must be assigned through a LookFileAssign node. Once the
Look File is assigned, LookFileManager decodes the Look File into the passes set up by the look
development artist using a LookFileBake node.

Connection Type Connection Name Function

Input in The place in the node graph where you want to decode
incoming look files from other scenes.

Control (UI) Default Value Function

Look Files N/A Lists the Look Files that are being edited by the
LookFileManager.

Passes default Lists any passes associated with the Look Files.

Add Override N/A Allows you to add overrides to selected Look Files.

LookFileMultiBake
LookFileMultiBake is a convenient SuperTool that wraps multiple LookFileBake nodes into a single node.
Passes are shared between nodes, and the Look Files can be baked individually or all at once.

3D Nodes | SuperTool Nodes

REFERENCE GUIDE
940

Connection Type Connection Name Function

Input orig The original, or pre-existing scene graph to which the
default or additional inputs are compared.

default A second scene graph or LookFileBake node that has
different passes to compare to the default. The Look File
saves the difference between the original and default pass,
or any additional passes.

Control (UI) Default Value Function

N/A Creates a new LookFileBake and adds it to
the LookFileBake list.

When an entry has been added

rootLocations /root/world Sets one or more scene graph path(s) to
the location(s) to be created. The locations
parameter options are available by clicking

Add Locations or dropdown menu.

For more information, refer to the Scene
Graph Location and Locations Widget
Types in Common Parameter Widgets.

N/A Brings up a searchable list to aid in
selection.

saveTo N/A Sets where to store the baked Look File.

For more information, refer to the Asset
and File Path Widget Types in the Common
Parameter Widgets.

Passes

name pass Passes are typically render passes, but
could also be auxiliary baking passes for
generating point clouds or brickmaps. A

3D Nodes | SuperTool Nodes

REFERENCE GUIDE
941

Control (UI) Default Value Function

LookFile can have one or multiple passes.
To add a pass, select Add > Add Pass
Input.

A new pass input is created on the node,
and a pass name field is added to the pass
list. To change the pass name, simply
change the name text field supplied.

Note: All pass names must be
unique.

LookFileMultiBake parameters continued

includeGlobalAttributes No When set to Yes, attributes on /root are
stored in the baked Look File.

alwaysIncludeSelectedMaterial
Trees

No If enabled, this includes all material
locations at or below the paths specified by
selectedMaterialTreeRootLocations
without regard to whether they are
assigned to geometry within the scope of
the rootLocations paths.

When alwaysIncludeSelectedMaterialTrees: yes

selectedMaterialTreeRootLocations /root/materials/geo Sets one or more scene graph path(s) to
the location(s) to be created. The locations
parameter options are available by clicking

Add Locations or dropdown menu.

For more information, refer to the Scene
Graph Location and Locations Widget
Types in Common Parameter Widgets.

Write

Write All Look Files... N/A Click to bake all the Look Files.

Writes Selected Look Files... N/A Click to bake the selected Look Files.

3D Nodes | SuperTool Nodes

REFERENCE GUIDE
942

Control (UI) Function

LookFileBake list [Right-click menu]

Delete Selected Entries Deletes the selected entries.

Other 3D Nodes
The following section describes Katana's Other 3D nodes.

ArnoldObjectSettings
The ArnoldObjectSettings node is populated by the XML files located at ${KATANA_
ROOT}/plugins/Resources/Arnold<version number>/GenericAssign. These parameter names and
defaults can change between Arnold versions and, as such, they are provided for you to change.

Note: The parameters that are available for this node are dependent on which version of Arnold
you are using. As such, only renderer-agnostic parameters are listed. For more information on
some of the other parameters you may encounter, please refer to the documentation that ships
with Arnold.

Connection Type Connection Name Function

Input input The 3D input to which you want to apply the settings.

Control (UI) Default Value Function

CEL N/A The scene graph locations are specified using the Collection
Expression Language (CEL). The CEL parameter options are

3D Nodes | Other 3D Nodes

REFERENCE GUIDE
943

Control (UI) Default Value Function

available by clicking Add Statements.

For more information, refer to the CEL Reference document
found on the documentation HTML page (accessed
through Help > Documentation) or the CEL Statement
Widget Type in Common Parameter Widgets.

ArnoldGlobalSettings
The ArnoldGlobalSettings node is populated by the XML file located at ${KATANA_
ROOT}/plugins/Resources/Arnold<version number>/GenericAssign.

Note: The parameters that are available for this node are dependent on which version of Arnold
you are using. As such, only renderer-agnostic parameters are listed. For more information on
some of the other parameters you may encounter, please refer to the documentation that ships
with Arnold.

Connection Type Connection Name Function

Input input The 3D input to which you want to apply the settings.

ArnoldLiveRenderSettings
The ArnoldLiveRenderSettings node provides parameters for use by Arnold when live rendering. The
parameters are defined in a GenericAssign .xml file, such as the ArnoldGlobalSettings.xml and
ArnoldObjectSettings.xml.

Note: The parameters that are available for this node are dependent on which version of Arnold
you are using. For more information on some of the other parameters, please refer to the
documentation that ships with Arnold.

3D Nodes | Other 3D Nodes

REFERENCE GUIDE
944

Connection Type Connection Name Function

Input input The place in the node graph where you want to specify the
parameters used y Arnold when live rendering.

ArnoldOutputChannelDefine
Builds the parameters used by Arnold during render.

Note: The driverParameters change depending on the selected driver.

Note: The parameters that are available for this node are dependent on which version of Arnold
you are using. As such, only renderer-agnostic parameters are listed. For more information on
some of the other parameters you may encounter, please refer to the documentation that ships
with Arnold.

Connection Type Connection Name Function

Input in The place in the node graph where you want to specify the
output channel type and settings.

Control (UI) Default Value Function

name N/A The name used by the RenderOutputDefine node for these
output channel settings.

This parameter usually matches the channel name. By
allowing a different name to be sent to the
RenderOutputDefine node, different filter and file types can
be used for the same output variable.

type RGBA Sets the output channel type:

3D Nodes | Other 3D Nodes

REFERENCE GUIDE
945

Control (UI) Default Value Function

BYTE, INT, LONG, BOOL, FLOAT, DOUBLE, RGB, RGBA,
ABSRGB, VECTOR, POINT, POINT2, STRING, POINTER,
ARRAY, MATRIX, and ENUM

ArnoldShadingNode
The ArnoldShadingNode allows you to select an Arnold-specific shader to build complex shading networks.
The last shading node in the shading network needs to be connected to a NetworkMaterial node in order to
be connected to the 3D node graph and assigned to objects in the scene.

Note: The parameters that are available for this node are dependent on which version of Arnold
you are using. As such, only renderer-agnostic parameters are listed. For more information on
some of the other parameters you may encounter, please refer to the documentation that ships
with Arnold.

Control (UI) Default Value Function

name ArnoldShadingNode Determines the attribute identifier for this shader node
beneath the 'material' attribute.

This must be unique among all upstream nodes
connected into a single NetworkMaterial node.

nodeType N/A Selects the available shader from the dropdown list.

The parameters for each shader in the dropdown list are
not included, as they are renderer-specific.

Use the file browser or your studio's asset management
browser to select the shader to use.

parameters N/A Once you've added a shader, the shader's parameters are
populated under the Parameter group.

publicInterface

3D Nodes | Other 3D Nodes

REFERENCE GUIDE
946

Control (UI) Default Value Function

namePrefix N/A Specifies the name's prefix for the exposed parameter.

pagePrefix N/A Allows you to organize the shading node's exposed
parameters in groups in the NetworkMaterial node's
Material Interface.

nameRegExFind N/A Finds and deletes the name specified in namePrefix field.

nameRegExReplace N/A When used with nameRegExFind, finds and replaces the
name with the name specified by nameRegExReplace.

pageRegExFind N/A Finds and deletes the name specified in pagePrefix field.

pageRegExReplace N/A When used with pageRegExFind, finds and replaces the
name with the name specified by pageRegExReplace.

ArnoldShadingNode parameters continued

Force Refresh N/A Reloads the shader file's information.

AttributeCopy
Copies an attribute from location(s) in the copyFrom scene to location(s) in the input scene. Attribute data is
shared between copies, so it's cheap to copy large attributes like geometry.point.P.

This node traverses the copyFrom scene at location fromRoot, and the input scene at location toRoot. From
these locations on, it expects to find identical hierarchy and location names. For each location, if the
copyFrom location has the attribute specified by fromAttr, for example, geometry.point.P, the attribute is
copied to the location specified by toAttr, for example, geometry.point.Pref on the input location.

The optional toCEL parameter allows you to filter the evaluation of this node. Only locations in the
destination scene that match toCEL are evaluated. If toCEL is empty, all locations in the destination scene are
evaluated.

Connection Type Connection Name Function

Input input The scene locations to which the specified attributes are
copied.

3D Nodes | Other 3D Nodes

REFERENCE GUIDE
947

Connection Type Connection Name Function

copyFrom The scene location from which the specified attributes are
copied.

Control (UI) Default Value Function

fromRoot /root/world Defines the copyFrom location. The fromRoot parameter
options are available in either the scene graph widget or

dropdown menu to the right of the parameter.

For more information, refer to the Scene Graph Location
Widget Type in the Common Parameter Widgets.

fromAttr N/A Defines the attribute that is copied.

toRoot /root/world Defines the copyTo location. The toRoot parameter
options are available in either the scene graph widget or

dropdown menu to the right of the parameter.

For more information, refer to the Scene Graph Location
Widget Type in the Common Parameter Widgets.

toAttr N/A Defines the location where the attribute is copied to.

toCEL N/A Allows you to filter the evaluation of this node. Only
locations in the destination scene that match toCEL are
evaluated. If toCEL is empty, all locations in the destination
scene are evaluated.

The scene graph locations are specified using the Collection
Expression Language (CEL). The toCEL parameter options
are available by clicking Add Statements.

For more information, refer to the CEL Reference document
found on the documentation HTML page (accessed
through Help > Documentation) or the CEL Statement
Widget Type in Common Parameter Widgets.

3D Nodes | Other 3D Nodes

REFERENCE GUIDE
948

AttributeEditor
The AttributeEditor node is used to edit specific attributes of objects in the scene graph.

Connection Type Connection Name Function

Input in The object whose attributes you want to edit.

Control (UI) Default Value Function

exclusivity N/A Exclusivity locks the interactive Viewer tab edits of a
location to this node.

The scene graph locations are specified using the Collection
Expression Language (CEL). The exclusivity parameter
options are available by clicking Add Statements.

For more information, refer to the CEL Reference document
found on the documentation HTML page (accessed
through Help > Documentation) or the CEL Statement
Widget Type in Common Parameter Widgets.

Existing Edits Table N/A Attributes dragged into the table are placed here for
editing. You can resize this table by dragging on the right-
corner.

Existing Edits Table

Existing Edits N/A The name of the attribute, grouped under its scene graph
location, is displayed in this column.

Index N/A When the edited attribute is a number or string array, the
Index column controls which value is displayed in the Value
column. Click in the column to popup a slider, which
changes the index.

Value N/A The value of the edit is displayed in the Value column.
Clicking on the value pops up a simple string or number
field allowing you to change the value.

3D Nodes | Other 3D Nodes

REFERENCE GUIDE
949

Control (UI) Function

Existing Edits Table > [right-click menu]

Go To Location Selects the scene graph location these edits affect.

Disable Overrides Disables the edit

Enable Overrides Enables the edit

Move Overrides To
Selected Scenegraph
Location...

Moves the override to the scene graph location currently selected.

Copy Overrides To
Selected Scenegraph
Location...

Copies the override to the scene graph location currently selected.

Delete Overrides Deletes the override.

AttributeSet
This node is used for creating, modifying, or deleting scene graph attribute locations.

Connection Type Connection Name Function

Input A The place in the node graph where you want to amend
attributes for a given scene graph location.

Control (UI) Default Value Function

mode paths Specifies the location to be overridden:
• paths

3D Nodes | Other 3D Nodes

REFERENCE GUIDE
950

Control (UI) Default Value Function

• CEL

mode: paths

paths N/A Sets the paths of the attribute. For example,
/root/world/geo. The paths parameter options are

available by clicking Add Locations or dropdown
menu.

For more information, refer to the Scene Graph Location
and Locations Widget Types in Common Parameter
Widgets.

mode: CEL

celSelection N/A Sets the attribute location to be overridden.

The scene graph locations are specified using the Collection
Expression Language (CEL). The celSelection parameter
options are available by clicking Add Statements.

For more information, refer to the CEL Reference document
found on the documentation HTML page (accessed
through Help > Documentation) or the CEL Statement
Widget Type in Common Parameter Widgets.

AttributeSet parameters continued

action Create/Override Describes the action to apply to the scene graph attribute:
• Create/Override
• Delete
• Force Default

attributeName N/A The name of the attribute to set. To set the attributeName,
either enter the name of the attribute into the text field, or
drag and drop an attribute from the Attributes tab into the
text field.

3D Nodes | Other 3D Nodes

REFERENCE GUIDE
951

Control (UI) Default Value Function

Note: When dropping a dragged attribute onto
the attributeName field, the value is set to the
full name of the dropped attribute, with names of
ancestor groups separated by dots. For example,
xform.translate.

action: Create/Override

attributeType double The type of the attribute to set. To set the attributeType,
select a data type from the drop down menu, or drag and
drop an attribute from the Attributes tab into the drop
down field.

Note: When dropping a dragged attribute onto
the attributeType field, the value is set to the
name of the dropped attribute's type, for
example, float.

The drop-down menu contains the following data types:
• integer
• double
• float
• string
• group

groupInherit Yes Decides whether or not implicitly-created groups are
inherited lower in the scene graph hierarchy. For instance,
creating foo.bar implicitly creates the group foo. This
group is either inherited or not, depending on this
parameter.

multisample Yes Can be used to enable or disable multi-sampling.

action: Create/Override: attributeType: integer, double, or float

numberValue 0.0 Sets the override value.

3D Nodes | Other 3D Nodes

REFERENCE GUIDE
952

Control (UI) Default Value Function

action: Create/Override: attributeType: string

stringValue N/A Sets the override value.

action: Create/Override: attributeType: group

applyAtLeaves No When assigning to a group with this parameter enabled,
Katana adds the non-group attributes individually. This
allows new assignments to mix with existing peers. When
this parameter is disabled, the entire group-level is
replaced and empty groups are not added.

groupValue N/A Collects a number of attributes into one group.

Drop Attributes
Here

N/A Middle-click and drag attributes from the Attributes tab to
this hotspot to use that attribute.

action: Force Default

groupInherit Yes Decides whether or not implicitly-created groups are
inherited lower in the scene graph hierarchy. For instance,
creating foo.bar implicitly creates the group foo. This
group is either inherited or not, depending on this
parameter.

BoundsAdjust
Allows you to adjust the bounding box of a geometry location.

Connection Type Connection Name Function

Input input The geometry location whose bounding box you want to
modify.

3D Nodes | Other 3D Nodes

REFERENCE GUIDE
953

Control (UI) Default Value Function

targetPath N/A Describes the location of the geometry who's bounding
box is being adjusted. The targetPath parameter options

are available in either a scene graph widget or
dropdown menu to the right of the parameter.

For more information, refer to the Scene Graph Location
Widget Type in the Common Parameter Widgets.

action Strip Bounds Sets the type of bounding adjustment to apply:
• Strip Bounds - removes the bounding box from the

geometry entirely.
• Pad Bounds (%) - allows you to pad the bounding box by

a user-defined percentage.
• Pad Bounds (local) - allows you to pad the bounding box

by an amount specified in units.

action: Strip Bounds

stripAncestors No Specify whether or not to strip the bound attributes from
the ancestor locations.

action: Pad Bounds (%) > padAmount

percentage 0 Specify percentage to add to the original bounding box
size. This is a keyable attribute.

adjustAncestors No Specify whether or not to expand the bound attributes of
any ancestor location to account for the newly adjusted
child location bounds.

when immediate Sets when the specified adjustment is applied:
• immediate - pad the bounds immediately.
• deferred - pad the bounds only at render time (more

efficient). Padding is calculated in the PRMan plug-in, so
the result is not visible in Katana even with implicit
resolvers on.

action: Pad Bounds (Local) > padAmount

3D Nodes | Other 3D Nodes

REFERENCE GUIDE
954

Control (UI) Default Value Function

localSpace 0 Specifies the number of local space units to pad the
bounding box.

adjustAncestors No Specify whether or not to expand the bound attributes of
any ancestor location to account for the newly adjusted
child location bounds.

when immediate Sets when the specified adjustment is applied:
• immediate - pad the bounds immediately.
• deferred - pad the bounds only at render time (more

efficient). Padding is calculated in the PRMan plug-in, so
the result is not visible in Katana even with implicit
resolvers on.

CameraClippingPlaneEdit
Edits the camera near and far clipping attributes for a single camera.

Note: The default values change when initially connected to a camera.

Connection Type Connection Name Function

Input input The camera whose clipping attributes you want to modify.

Control (UI) Default Value Function

cameraLocation /root/world/cam/camera Describes the location of the camera.

For more information, refer to the Scene Graph
Location Widget Type in the Common Parameter
Widgets.

3D Nodes | Other 3D Nodes

REFERENCE GUIDE
955

Control (UI) Default Value Function

with location specified

near 1 (see note) Sets the near clipping plane for the specified camera.

far 10000 (see note) Sets the far clipping plane for the specified camera.

claimExclusivity No When set to No, the camera is not controlled by
another node in the scene graph and is effectively
locked.

ConstraintCache
The ConstraintCache node caches the transform attributes of specified locations to disk for later use.

Connection Type Connection Name Function

Input in The place in the node graph where you want to cache
transform attributes specified at specific locations.

Control (UI) Default Value Function

Fill Cache n/a Fills the cache with the transform matrix for a given
location.

startFrame 1 Specifies from which frame to start caching.

endFrame 100 Specifies from which frame to stop caching.

locations N/A The scene graph location to where the cache is written. The
locations parameter options are available by clicking Add

Locations or dropdown menu.

For more information, refer to the Scene Graph Location
and Locations Widget Types in Common Parameter
Widgets.

3D Nodes | Other 3D Nodes

REFERENCE GUIDE
956

ConstraintListEdit
Adds locations to the globals.constraintList attribute at /root/world. This is useful for including constraints
loaded from a deferred source, such as a look file. Only constraints on locations listed in the
globals.constraintList are resolved at render time.

Connection Type Connection Name Function

Input in The place in the node graph where you want constraints
loaded from a deferred source to be resolved.

Control (UI) Default Value Function

locations N/A Sets the scene graph location(s) to add to the constraint list.
The locations parameter options are available by clicking
Add Locations.

For more information, refer to the Scene Graph Location
and Locations Widget Types in Common Parameter
Widgets.

mode add Sets the constraint mode:
• add - adds locations to the globals.constraintList at

/root/world.
• remove - removes locations from the

globals.constraintList at /root/world.

FaceSetCreate
This node creates a set (or group) of faces in an existing mesh. This is useful in order to more easily re-select
them later when making shader, attribute, and visibility assignments to a sub-set of faces on a single mesh.

3D Nodes | Other 3D Nodes

REFERENCE GUIDE
957

Connection Type Connection Name Function

Input in The object or mesh for which you want to create additional
faces.

Control (UI) Default Value Function

meshLocation N/A Describes the location of the mesh for which the set is
created.

For more information, refer to the Scene Graph Location
Widget Type in the Common Parameter Widgets.

faceSetName faceset Defines the name of the new set.

invertSelection Disabled When enabled, the faces that are not mentioned in the
selection are used.

selection N/A Stores the list of faces as an array. Alternatively, stores the
list of faces that are currently selected in the Viewer in this

parameter by selecting > Adopt Faces From Viewer.

GenericOp
The GenericOp node allows you to run a named specific Op. This is particularly useful to run custom Ops
written as plug-ins during development and for use within SuperTools and macros. For more information,
refer to The Op API.

Connection Type Connection Name Function

Input Add numbered input
ports (i0, i1, i2) by

pressing in the
node.

The input ports you want to set for different parts of the
node graph.

3D Nodes | Other 3D Nodes

REFERENCE GUIDE
958

Control (UI) Default Value Function

opType N/A Specifies the type of the Op to run, for example,
AttributeSet.

opArgs N/A Add a new opArgs parameters from the Add dropdown
list. The available options are described in greater detail
in Adding User Parameters.
• Number
• String
• Group
• Number Array
• String Array
• Float Vector
• Color, RGB
• Color, RGBA
• Button
• Toolbar
• TeleParameter
• Node Drop Proxy

multisampleOpArgs Yes Enables multi-sampling of the opArgs group parameter
to Op Args.

addSystemOpArgs No If enabled, adds a 'system' opArg containing information
from the graph state time slice, such as frame and shutter
timings. This is only necessary for some Ops.

executionMode immediate Determines when the Op is run:
• immediate - the script is run at the locations specified

in the applyWhere parameter as it is evaluated at this
node's point in the node graph.

• deferred - the script is set up by this node but won't
actually be run until a later node in the node graph, as
specified by the applyWhen parameter.

executionMode: immediate

3D Nodes | Other 3D Nodes

REFERENCE GUIDE
959

Control (UI) Default Value Function

applyWhere at locations matching
CEL

Determines where the script is run:
• at all locations - at all the locations in the node graph.
• at specific location - at only the location specified by

the location parameter. If this location doesn't exist, it
is created automatically.

• at locations matching CEL - at only those locations in
the node graph that match the CEL statements.

resolveIds N/A When executionMode is set to immediate, specify a
space-delimited list of strings to indicate that this script
should only be resolved by Op resolvers that contain at
least one matching "resolveId". This is an advanced
feature for greater control over order of evaluation.

A useful resolveIds is implicit_prepocess, which runs at
the first implicit resolver, before other implicit resolvers,
such as MaterialResolve and ConstraintResolve are run.

inputBehavior by index Controls how input ports on the node are mapped onto
the inputs of the underlying Op. This parameter is only
meaningful when the node has one or more invalid
input ports - a port that is not connected to an output
port or is connected to an output port that doesn't
provide data.

When set to only valid, any valid input ports of the node
are skipped when determining which inputs to pass to
the underlying Op.

When set to by index, all input ports of the node are
represented in the list of inputs the Op sees; invalid
inputs are represented as an Op of type no-op.

applyWhere: at specific locations

location /root/world/location The location to create, if it doesn't already exist.
Otherwise, the scene graph location at which the script is
run.

3D Nodes | Other 3D Nodes

REFERENCE GUIDE
960

Control (UI) Default Value Function

For more information on the location widget parameters,
see Common Parameter Widgets.

applyWhere: at locations matching CEL

CEL N/A The scene graph locations are specified using the
Collection Expression Language (CEL). The CEL parameter
options are available by clicking Add Statements.

For more information, refer to the CEL Reference
document found on the documentation HTML page
(accessed through Help > Documentation) or the CEL
Statement Widget Type in Common Parameter Widgets.

executionMode: deferred

applyWhen during op resolve Determines when the script is run:
• during op resolve - the script and its arguments are

added as attributes to be executed later by an
OpResolve node. If the Op isn't run by an explicit
OpResolve node placed in the node graph, it is
automatically run at render time by the implicit
resolvers.

• during material resolve - the script and its arguments
are added as attributes under the
material.scenegraphLocationModifers group
attribute. This is primarily intended for material scene
graph locations, allowing the material to specify a
procedural process that is run at every location that the
material is assigned to. The script is run as part of the
material resolve process, and are executed just after the
initial values for the material shader are created at the
location. Examples of its use include randomizing or
building procedural control over shader parameters.

• during katana look file resolve - the script and its
arguments are added as attributes under the Scene
GraphLocationModifers group attribute and are
evaluated by a LookFileResolve node or by the first

3D Nodes | Other 3D Nodes

REFERENCE GUIDE
961

Control (UI) Default Value Function

implicit resolver if no LookFileResolve node is present.

CEL N/A The scene graph locations are specified using the
Collection Expression Language (CEL). The CEL parameter
options are available by clicking Add Statements.

For more information, refer to the CEL Reference
document found on the documentation HTML page
(accessed through Help > Documentation) or the CEL
Statement Widget Type in Common Parameter Widgets.

name GenericOp The name of the attribute group under which to store the
Op type and args.

inputBehavior by index Controls how input ports on the node are mapped onto
the inputs of the underlying Op. This parameter is only
meaningful when the node has one or more invalid
input ports - a port that is not connected to an output
port or is connected to an output port that doesn't
provide data.

When set to only valid, any valid input ports of the node
are skipped when determining which inputs to pass to
the underlying Op.

When set to by index, all input ports of the node are
represented in the list of inputs the Op sees; invalid
inputs are represented as an Op of type no-op.

applyWhen: during op resolve

recursiveEnable No When applying in a non-immediate state, enabling this
results in the Op running at every location beneath the
assigned locations. In general this is more efficient than
using an equivalent recursive CEL statement.

You can also override the ops.*.recursiveEnable
attribute anywhere deeper in the tree to exclude
evaluation at those locations. This is similar to the
behavior of the visible or light linking attributes.

3D Nodes | Other 3D Nodes

REFERENCE GUIDE
962

Control (UI) Default Value Function

recursiveEnable: yes

disableAt N/A Execution is disabled for locations at or below this CEL
statement. For large scene hierarchies, this is often less
expensive than enabling evaluation at a larger number of
leaf locations to avoid applying it to a smaller subset.

The scene graph locations are specified for the disableAt
parameter options by clicking Add Statements.

For more information, refer to the CEL Reference
document found on the documentation HTML page
(accessed through Help > Documentation) or the CEL
Statement Widget Type in Common Parameter Widgets.

resolveIds N/A When applyWhen is set to during op resolve, you may
specify a space-delimited list of strings to indicate that
this Op should only be resolved by Op resolvers that
contain at least one matching "resolveId." This is an
advanced feature for greater control over order of
evaluation.

A useful resolveIds is implicit_prepocess, which runs at
the first implicit resolver, before other implicit resolvers,
such as MaterialResolve and ConstraintResolve are run.

applyWhen: during katana look file resolve

recursiveEnable No When applying in a non-immediate state, enabling this
results in the Op running at every location beneath the
assigned locations. In general this is more efficient than
using an equivalent recursive CEL statement.

You can also override the ops.*.recursiveEnable
attribute anywhere deeper in the tree to exclude
evaluation at those locations. This is similar to the
behavior of the visible or light linking attributes.

recursiveEnable: yes

3D Nodes | Other 3D Nodes

REFERENCE GUIDE
963

Control (UI) Default Value Function

disableAt N/A Execution is disabled for locations at or below this CEL
statement. For large scene hierarchies, this is often less
expensive than enabling evaluation at a larger number of
leaf locations to avoid applying it to a smaller subset.

The scene graph locations are specified for the disableAt
parameter options by clicking Add Statements.

For more information, refer to the CEL Reference
document found on the documentation HTML page
(accessed through Help > Documentation) or the CEL
Statement Widget Type in Common Parameter Widgets.

GroupMerge
The GroupMerge node is a SuperTool that creates a convenient interface for managing multiple nodes of the
same type.

Within the GroupMerge interface, you can create any number of nodes of the same type, and these nodes
are combined into a single output by merging them. The nodes are merged in the order they appear in the
list.

This node is most often used to group nodes that have no input, but provide a scene graph location as an
output. For example, the GroupMerge node could be used to manage multiple PrimitiveCreate nodes, and
the output scene graph is all of the primitives merged together.

Note: When the GroupMerge node is first created, its type is not defined. You can create a node
and then add it to the stacklist by Shift+middle-mouse and dragging from the Node Graph tab to
the node's list in the Parameters tab. At that point, the GroupMerge is permanently typed as a
group of the type of node that was dragged in.

3D Nodes | Other 3D Nodes

REFERENCE GUIDE
964

Control (UI) Function

Creates a new node of the type associated with this node and adds it to the
node list.

Brings up a searchable list to aid in selection.

/ Locks all nodes against editing. Unlocks all nodes for editing.

Control (UI) Function

[Right-click menu]

Ignore Selected Entries Disables the selected nodes.

View At Location Sets the current view node to the selected node

Delete Selected Entries Deletes the selected node.

Duplicate Selected Entries Duplicates the selected node, creating a new copy of both the node and
matching its parameters.

Cut Selected Entries Deletes the selected node and copies it to the clipboard.

Copy Selected Entries Copies the selected node to the clipboard.

Paste Paste the current clipboard node into this list.

Tearoff Parameters Of
Selected Entries...

Create a new floating window with the parameters of this node on a tab
inside.

HierarchyCopy
The HierarchyCopy node takes a scene graph location - or locations - and copies to a given destination
location or locations.

3D Nodes | Other 3D Nodes

REFERENCE GUIDE
965

Note: The HierarchyCopy node copies not just the source locations but all attributes pertaining to
those source hierarchies, resulting in a potentially slow operation.

Connection Type Connection Name Function

Input in The place in the node graph where you want to copy the
scene graph location(s) to a destination in the scene graph.

Control (UI) Default Value Function

pruneSource No When set to Yes, the source location, or locations, are
pruned from the recipe.

copies

sourceLocation N/A The scene graph location of the hierarchy to copy.

For more information, refer to the Scene Graph Location
Widget Type in the Common Parameter Widgets.

destinationLocations N/A The scene graph location under which the copy - or
copies - are created. The destinationLocations
parameter options are available by clicking Add

Locations or dropdown menu.

For more information, refer to the Scene Graph Location
and Locations Widget Types in Common Parameter
Widgets.

makeNumberedCopies No When set to Yes, the scene graph locations created are
sequentially numbered, and the option to make more
than one copy is enabled.

makeNumberedCopies:Yes

numCopies 1 When makeNumberedCopies is set to Yes, sets the
number of copies to create.

3D Nodes | Other 3D Nodes

REFERENCE GUIDE
966

Isolate
This node is used to remove objects from a scene. It allows you to select a set of locations to keep and it
removes everything else. For example, you could isolate a character or two out of all the geometry in your
scene.

The Isolate node cannot take a collection. You can however:
1. Right-click on the collection name in the Scene Graph tab and select Find and Select....
2. From the Parameters tab of the Isolate node, select isolateLocations > Add Locations > Replace with

Scene Graph Selection.

Connection Type Connection Name Function

Input input The place in the node graph where you want to remove
specific object(s) from the scene.

Control (UI) Default Value Function

isolateLocations N/A This is a list of locations to keep while every other location
is removed by the Isolate.

For more information, refer to the Locations Widget Type in
Common Parameter Widgets.

isolateFrom /root/world/geo This is the topmost location to remove from the scene. For
example, if you set this to /root/world/geo, then nothing
in /root/world/lgt or /root/materials is modified. This
parameter allows you to scope the changes. To isolate a
single shape from an entire character, set isolateFrom to
the character path (for example,
/root/world/geo/somecharacter), then set
isolateLocations to the shape you'd like to keep.

For more information, refer to the Scene Graph Location
Widget Type in Common Parameter Widgets.

3D Nodes | Other 3D Nodes

REFERENCE GUIDE
967

Control (UI) Default Value Function

Enable secondary
(inverse) output

disabled When enabled, the secondary output provides a scene
containing the scene graph locations that have been
removed from the primary output. For example, in a scene
containing the following locations:

/root/world/geo

/root/world/geo/box

/root/world/geo/circle

/root/world/lgts

If /root/world/geo/box is isolated using isolateFrom
/root/world/geo, the secondary output contains
/root/world/geo/circle.

Note: Any scene graph location that is a peer or
ancestor of the isolationRoot is present on both
outputs.

LightLink
The LightLink node manipulates the lightList attribute on the scene to perform selective lighting of objects.
LightLink allows you to control which lights illuminate which objects, using a number of different modes.

Note: The GafferThree node uses a LightLink internally to provide light linking. The user interface
there is substantially similar to the LightLink node.

3D Nodes | Other 3D Nodes

REFERENCE GUIDE
968

Note: Light linking information is stored on the objects themselves in the lightList attribute. This
stores the enable state of a light for each location in the scene. Visibility does not have any effect
on lights, so a VisibilityAssign does not disable a light. LightLink is the best way to turn a light on or
off by hand.

Connection Type Connection Name Function

Input in The light whose attributes you want to manipulate.

Control (UI) Default Value Function

effect illumination Determines whether the link is acting upon the light's
illumination or shadow visibility of the specified objects:
• illumination
• shadowvisibility
• Custom

Note: Shadow visibility is only currently respected
by Arnold renders.

action off Controls the LightLink node's behavior:
• on - turn the selected lights on for the selected objects.

Does nothing else.
• exclusive on - turn the selected lights on for the selected

objects. Also turn the selected lights off for all other
objects. Use this to force the selected lights to only
illuminate the selected objects, and nothing else.

• off - turn the selected lights off for the selected objects.
Does nothing else.

• exclusive off - turn the selected lights off for the selected
objects. Also turn the selected lights on for all other
objects. Use this to force the selected lights to not
illuminate the selected objects, but to illuminate everything
else.

3D Nodes | Other 3D Nodes

REFERENCE GUIDE
969

Control (UI) Default Value Function

• clear - remove any local setting for light enable/disable for
the selected objects; the inherited settings are used on
these objects.

• delete - the selected lights are removed from the light list
for all objects in the scene. This is more than simply turning
the lights off; they're removed from the list, and a
LightListEdit is required to turn them on again.

• delete inverse - the selected lights are the only lights left
in the light list for all objects in the scene.

effect: custom

customAttrName custom Specifies a custom attribute name to set on the lightList for
your object scene graph locations. The value of the custom
parameter becomes the attribute name, which is set on the
object scene graph location for each light.

When a LightLink node is used with a LightLinkEdit node, for
instance, if the:
• light parameter is set to /root/world/lgt/spotlight,
• custom parameter is set to myAttr,
• off CEL parameter is set to /root/world/geo/pony,

Then
• /root/world/geo/pony has an attribute named

lightList.root_world_lgt_spotlight.myAttr, whose value is
set to 0.

objects N/A Sets the object(s) on which to operate. The scene graph
locations are specified for the objects parameter options by
clicking Add Statements.

For more information, refer to the CEL Reference document
found on the documentation HTML page (accessed through
Help > Documentation) or the CEL Statement Widget Type
in Common Parameter Widgets.

lightMode CEL Controls how you specify which lights to operate on:

3D Nodes | Other 3D Nodes

REFERENCE GUIDE
970

Control (UI) Default Value Function

• CEL
• Paths

Paths are included for backward compatibility.

lightMode: CEL

lights N/A When lightMode is set to CEL, this CEL statement is used to
select the lights to operate on.

The scene graph locations are specified using the Collection
Expression Language (CEL). The lights parameter options are
available by clicking Add Statements.

For more information, refer to the CEL Reference document
found on the documentation HTML page (accessed through
Help > Documentation) or the CEL Statement Widget Type
in Common Parameter Widgets.

lightMode: Paths

lightPaths N/A When lightMode is set to Paths, this list of light path names
is used as the set of lights to operate on. The lightPaths
parameter options are available by clicking Add Locations

or dropdown menu.

For more information, refer to the Scene Graph Location and
Locations Widget Types in Common Parameter Widgets.

LightLinkEdit
The LightLinkEdit node adjusts which objects are illuminated by a light. This node edits lightList attributes
that were previously set by LightLink or LightLinkResolve nodes.

Note: Light linking information is stored on the object scene graph locations themselves in the
lightList attribute. This stores the enable state of a light for each location in the scene.

3D Nodes | Other 3D Nodes

REFERENCE GUIDE
971

Connection Type Connection Name Function

Input in The object whose lightList attributes you want to modify.

Control (UI) Default Value Function

clearUnmatched disabled The clearUnmatched parameter determines whether or
not existing light linking attributes for this light are
removed from locations that do not match the on or off
expressions.

effect illumination Determines whether the link is acting upon the light's
illumination or shadow visibility of the specified objects:
• illumination
• shadow visibility
• custom

Note: Shadow visibility is only currently
respected by Arnold renders.

light N/A Specifies the scene graph location for the light you want to
apply the lighting quality of the effect parameter from.

For more information, refer to the Scene Graph Location
Widget Type in the Common Parameter Widgets.

effect: custom

customAttrName custom Specifies a custom attribute name to set on the lightList for
your object scene graph locations. The value of the custom
parameter becomes the attribute name, which is set on the
object scene graph location for each light.

When a LightLink node is used with a LightLinkEdit node,
for instance, if the:
• light parameter is set to /root/world/lgt/spotlight,
• custom parameter is set to myAttr,

3D Nodes | Other 3D Nodes

REFERENCE GUIDE
972

Control (UI) Default Value Function

• off CEL parameter is set to /root/world/geo/pony,

Then
• /root/world/geo/pony has an attribute named

lightList.root_world_lgt_spotlight.myAttr, the value of
which is set to 0.

LightLinkEdit parameters continued

on N/A Links matching locations to the effect specified in the
effect parameter.

The scene graph locations are specified using the Collection
Expression Language (CEL). The on parameter options are
available by clicking Add Statements.

For more information, refer to the CEL Reference document
found on the documentation HTML page (accessed
through Help > Documentation) or the CEL Statement
Widget Type in Common Parameter Widgets.

off N/A Disables the effect specified in the effect parameter for the
matching locations.

The scene graph locations are specified using the Collection
Expression Language (CEL). The off parameter options are
available by clicking Add Statements.

For more information, refer to the CEL Reference document
found on the documentation HTML page (accessed
through Help > Documentation) or the CEL Statement
Widget Type in Common Parameter Widgets.

LightLinkResolve
The LightLinkResolve node resolves the attributes, which the LightLinkSetup node sets on
/root/world.lightList. The LightLinkSetup node defines an entry on the lightList containing CEL expressions
defining On and Off locations for a particular light. The LightLinkResolve node resolves these CEL
expressions into local attributes on any locations that match the criteria defined by these CEL expressions.

3D Nodes | Other 3D Nodes

REFERENCE GUIDE
973

Connection Type Connection Name Function

Input in The place in the node graph where you want to resolve the
attributes set up by LightLinkSetup.

LightLinkSetup
The LightLinkSetup node is an alternative to the LightLink node and sets the attributes on the lightList at the
/root/world location instead of the object's scene graph location. It allows the node to set light linking
options for locations that don't exist at that point in the node graph. These options are resolved by implicit
resolvers or can be resolved manually by a LightLinkResolve node.

Connection Type Connection Name Function

Input in The light whose attributes you want to set on the lightList.

Control (UI) Default Value Function

clearUnmatched disabled When linking is resolved, the clearUnmatched parameter
determines whether or not existing light linking attributes
for this light are removed from locations that do not match
the on or off expressions.

The effect of this parameter is only visible in the Attributes
tab when linking has been resolved, which means after a
LightLinkResolve node or when Implicit Resolvers are
active.

Examines the lightList attribute on your linked objects to
ensure that the attributes have been set correctly. If the
attribute has been disabled, the value of the enable child
attribute in the lightList attribute for your light is 0;
otherwise, the default enabled setting is 1.

action append linking Determines how light linking settings from this node are

3D Nodes | Other 3D Nodes

REFERENCE GUIDE
974

Control (UI) Default Value Function

information merged with settings in the incoming scene. If this light
doesn't exist in the incoming scene, this option has no
effect.
• append linking information - the new attributes are

appended to the incoming options. Where conflicts occur,
the attributes that are set from this node are used.

• override linking information - the linking options set in
this node override information from the incoming scene
options.

effect illumination Determines whether the link is acting upon the light's
illumination or shadow visibility of the specified objects:
• illumination
• shadow visibility
• custom

Note: Shadow visibility is only currently
respected by Arnold renders.

effect: custom

customAttrName custom Specifies a custom attribute name to set on the lightList for
your object scene graph locations. The value of the custom
parameter becomes the attribute name that is set on the
object scene graph location for each light.

When a LightLinkSetup node is used with a
LightLinkResolve node, for instance, if the:
• light parameter is set to /root/world/lgt/spotlight,
• custom parameter is set to myAttr,
• off CEL parameter is set to /root/world/geo/pony,

Then
• /root/world/geo/pony has an attribute named

lightList.root_world_lgt_spotlight.myAttr, whose value
is set to 0.

3D Nodes | Other 3D Nodes

REFERENCE GUIDE
975

Control (UI) Default Value Function

Note: If you've added a LightLinkSetup node
only and have not linked it to a LightLinkResolve
node, the attribute on /root/world/geo/pony is
not set.

light N/A Specifies the scene graph location of the light you want to
apply the lighting quality of the effect parameter from.

For more information, refer to the Scene Graph Location
Widget Type in the Common Parameter Widgets.

initialState use existing value Determines the initial value for the specified effect in the
light list entry for this light:
• use existing value - the attribute uses the value of the

attribute in the incoming scene if applicable.
• on - sets the initial value to 1.
• off - sets the initial value to 0.

LightLinkSetup parameters continued

on N/A Links matching locations to the effect specified in the
effect parameter.

The scene graph locations are specified using the Collection
Expression Language (CEL). The on parameter options are
available by clicking Add Statements.

For more information, refer to the CEL Reference document
found on the documentation HTML page (accessed
through Help > Documentation) or the CEL Statement
Widget Type in Common Parameter Widgets.

off N/A Disables the effect specified in the effect parameter for the
matching locations.

The scene graph locations are specified using the Collection
Expression Language (CEL). The off parameter options are
available by clicking Add Statements.

3D Nodes | Other 3D Nodes

REFERENCE GUIDE
976

Control (UI) Default Value Function

For more information, refer to the CEL Reference document
found on the documentation HTML page (accessed
through Help > Documentation) or the CEL Statement
Widget Type in Common Parameter Widgets.

LightListEdit
This node adds locations to the lightList attribute at /root/world. This is useful for including lights whose
loading is deferred. Only explicit paths are supported because this information is required at the start of
rendering. LightListEdit can also be used to extracts lights from components and makes them renderable
from a Look File.

Connection Type Connection Name Function

Input in The light whose lightList attributes you want to add
locations to.

Control (UI) Default Value Function

locations N/A Sets the locations of lights from a path, either in the scene
graph or the node graph. The locations parameter options

are available by clicking Add Locations or dropdown
menu.

For more information, refer to the Scene Graph Location
and Locations Widget Types in Common Parameter
Widgets.

mode add Sets edit mode, though currently only add is available.

initialState on Determines whether the newly-added light locations are
initially on or off.

3D Nodes | Other 3D Nodes

REFERENCE GUIDE
977

LocationGenerate
The LocationGenerate node allows you to add a child location of a specific type to any locations matching a
CEL statement.

Connection Type Connection Name Function

Input in The place in the node graph where you want to add a child
location.

Control (UI) Default Value Function

CEL N/A The scene graph locations are specified using the
Collection Expression Language (CEL). The CEL
parameter options are available by clicking Add
Statements.

For more information, refer to the CEL Reference
document found on the documentation HTML page
(accessed through Help > Documentation) or the CEL
Statement Widget Type in Common Parameter Widgets.

name loc Specifies the child location name.

locationType renderer procedural Specifies the child location type.

addParentNameAsAttr N/A Optionally adds the basename of the matching CEL
location at the specified attribute name. Typically, this
parameter is used for locations to run renderer
procedurals, if the name of the parent location needs to
be passed to the renderer as a parameter.

3D Nodes | Other 3D Nodes

REFERENCE GUIDE
978

LodGroupCreate
When pointed at a location, the children are assigned a level of detail (LOD) range for each node input. Each
node input that requires an LOD range must be added as an additional input using the inputs > Add > Add
Input menu option.

Connection Type Connection Name Function

Input input0 The place in the node graph where you want to assign child
locations to a level-of-detail range.

Add numbered input ports (input1, input2) by adding
inputs in the node's parameters.

Control (UI) Default Value Function

groupName lod_group The name of the level-of-detail group location
that is created at the hierarchyTargetLocation.

hierarchyTargetLocation /root/world/geo The scene graph location where the level-of-
detail group is placed. Each node input creates a
level-of-detail location below this location,
which stores the lodRange attributes for that
input.

inputs N/A The parameter grouping for the node inputs.

inputs > Add

Add Input N/A Menu option to add a new node input and create
an additional level-of-detail location to store its
scene.

inputs > input

minVisible 0 When the bounding box is transformed to screen
space, if its pixel count is less than the minVisible

3D Nodes | Other 3D Nodes

REFERENCE GUIDE
979

Control (UI) Default Value Function

parameter, the object is not displayed.

lowerTransition 0 When the bounding box is transformed to screen
space, if its pixel count lies between the
minVisible and lowerTransition parameters, the
object is only part displayed.

upperTransition 999999999999999977
48809823456034029568

When the bounding box is transformed to screen
space, if its pixel count is between the
upperTransition and maxVisible parameters,
the object is only part displayed.

maxVisible 999999999999999977
48809823456034029568

When the bounding box is transformed to screen
space, if its pixel count is less than the
maxVisible parameter, the object is not
displayed.

LodSelect
This node removes all but one LOD (level-of-detail) location beneath the selected level-of-detail groups. The
location to keep is selected based on one of three attributes, either:
• by index - select the level-of-detail location to keep based on its index in the child list of the level-of-detail

group.
• by tag - select the level-of-detail location to keep based on its info > componentLodTag attribute.
• by weight - select the level-of-detail location to keep based on its info > componentLodWeight

attribute. The level-of-detail location below the level-of-detail group location that is closest to the
weight specified in the selectionWeight parameter is kept.

Connection Type Connection Name Function

Input in The place in the node graph where you want to remove all
but one of the level-of-detail locations.

3D Nodes | Other 3D Nodes

REFERENCE GUIDE
980

Control (UI) Default Value Function

CEL N/A The scene graph locations are specified using the Collection
Expression Language (CEL). The CEL parameter options are
available by clicking Add Statements.

For more information, refer to the CEL Reference document
found on the documentation HTML page (accessed
through Help > Documentation) or the CEL Statement
Widget Type in Common Parameter Widgets.

Note: CEL statement should match locations of
type level-of-detail group.

mode by index Sets the method used to specify levels of detail:
• by index
• by tag
• by weight

Note: In cases of ambiguity, or where no groups
match the criteria, the lowest index LOD group is
selected (after all possible filtering has taken
place) for the by index and by tag modes.

The by index mode operates with strict matching, and
produces an error if the chosen index does not exist.

mode is: by index

selectionIndex 0 Sets the index of which LOD child to keep.

mode is: by tag

selectionTag hi Sets the tag of which LOD child to keep.

mode is: by weight

selectionWeight 1 Sets the weight to use while determining which children to
keep.

3D Nodes | Other 3D Nodes

REFERENCE GUIDE
981

LodValuesAssign
This node assigns level of detail (LOD) ranges to the child locations for all CEL statement matches. Each child
location requires an LOD range and must be added using the ranges > Add > Add Entry menu option.

Connection Type Connection Name Function

Input in The place in the node graph where you want to assign
level-of-detail ranges to child locations.

Control (UI) Default Value Function

CEL N/A The scene graph locations are specified using the
Collection Expression Language (CEL). The CEL
parameter options are available by clicking Add
Statements.

For more information, refer to the CEL Reference
document found on the documentation HTML page
(accessed through Help > Documentation) or the CEL
Statement Widget Type in Common Parameter
Widgets.

Note: CEL statement should match locations
of type level-of-detail group.

ranges N/A The parameter grouping that holds the LOD ranges for
each child location.

ranges > Add

Add Entry N/A Menu option to add a new ranges parameter with
minVisible, lowerTransition, upperTransition, and
maxVisible. For every child location of the level-of-
detail group location there should be a corresponding

3D Nodes | Other 3D Nodes

REFERENCE GUIDE
982

level-of-detail location and ranges parameter.

ranges > lod

minVisible 0 When the bounding box is transformed to screen
space, if its pixel count is less than the minVisible
parameter, the object is not displayed.

lowerTransition 0 When the bounding box is transformed to screen
space, if its pixel count lies between the minVisible and
lowerTransition parameters, the object is only part
displayed.

upperTransition 9999999999999999
7748809823456034029568

When the bounding box is transformed to screen
space, if its pixel count is between the upperTransition
and maxVisible parameters, the object is only part
displayed.

maxVisible 9999999999999999
7748809823456034029568

When the bounding box is transformed to screen
space, if its pixel count is less than the maxVisible
parameter, the object is not displayed.

MaterialStack
MaterialStack node is a specialized GroupStack for organizing your scene Materials. To move a Material
node that is outside the MaterialStack node to inside the stack, hold down the shift key and middle-mouse
drag it in.

The Material in the stack are linked together, providing a single output by connecting them one after the
other in serial, in the order in which they appear in the stack. Selecting Materials in the stack displays their
controls on the right of the stack.

Merge
The Merge node allows you to combine multiple scenes into a single output scene. All objects in any of the
input scenes are present in the output scene. If a location is present in more than one of the input scenes,
then attribute values are taken from the left-most input, which has the location (however, the Advanced

3D Nodes | Other 3D Nodes

REFERENCE GUIDE
983

Options allow more control over this). Merge is a very versatile node for collecting multiple elements into a
scene for rendering.

Tips:
• A Merge node with a single input is effectively a no-Op node.
• Right-click on the Merge node in the Node Graph tab input ports to delete any unused ports.
• Right-click on a node while connecting a link in the Node Graph tab to display a pop-up menu of ports to

connect to; this can be easier than hunting for a specific port on a Merge.
• Press the tilde key (~) while connecting a link in the Node Graph tab to connect to the left-most open port

on the node, or add a new port if none are free.

Connection Type Connection Name Function

Input Add numbered input
ports (i0, i1, i2) by

pressing in the
node.

The input ports you want to set for different parts of the
node graph.

Control (UI) Default Value Function

showAdvancedOptions No When set to Yes, the advanced parameters are
available. These are normally only needed when
doing something unusual or complex; merging two
components together to form a single model is a
common case, for example merging cloth and
deforming geometry together. Typically, this use of
the Merge node is hidden from the user inside a
show macro so it's unlikely you'll need the advanced
options.

showAdvancedOptions: Yes

advanced

sumBounds No When enabled, bound attributes are queried for each
relevant input location and the total results are used.
The output bounding box at each location is
expanded to be large enough to contain all the

3D Nodes | Other 3D Nodes

REFERENCE GUIDE
984

Control (UI) Default Value Function

inputs at that location. This is important when
merging renderable geometry together inside of
components.

preserveWorldSpaceXform No When enabled, all inherited xform attributes
(preceded by an origin statement) are applied at
each location whose source input differs from that of
its parent. This is only necessary in exceptional
situations where there are conflicting
transformations on overlapping locations of the
merge inputs. Basically, this forces some locations to
ignore their parent transforms so that they appear in
the correct location in the scene. This is most
commonly used when merging deforming geometry
into a component, because the deforming geometry
may have different transforms on locations shared
with the non deforming geometry. If the result of the
merging has objects that seem to be in the wrong
position, try this option as a possible solution.

preserveInheritedAttributes N/A Displays a list of attribute names for which
inheritance should be preserved when choosing
between inputs of the Merge. Whenever a child
location's source input differs from that of its parent,
these attributes are queried globally and applied
locally to the child location.

preferredInputAttributes N/A Displays a list of attribute names and indices of
inputs for which the preferred value of an attribute
should be read. These are exceptions to the general
rule of leftmost input wins. For the listed attribute, a
given input is given 'first crack' at providing the
attribute in the result before the general rule is used.
This is often used when merging two versions of a
component to form a single output model; the first
input provides most of the attributes, but a second
input might provide correctly deformed geometry or
other attributes that should be used in preference to

3D Nodes | Other 3D Nodes

REFERENCE GUIDE
985

Control (UI) Default Value Function

the first input. Again, this is typically rolled into a
show macro, so it's unlikely you'll need to work with
this setting directly.

mergeGroupAttributes N/A Used to specify and merge group attributes of the
same name from different input scenes. For example,
this parameter can be used to merge different types
of materials, or materials for different renderers.

inputs

inputs N/A Allows you to name the inputs on the Merge node.

NetworkMaterial
The NetworkMaterial node creates a material location for shading nodes that are connected as inputs, in
order for the material to be assigned to objects in the scene. You can assign the material locations that are
created by a NetworkMaterial node to a location with MaterialAssign node.

Control (UI) Default Value Function

name NetworkMaterial Specifies the name of the location.

namespace N/A Creates a sub-location for the network material in the
Scene Graph tab.

Add Terminal N/A Specifies which input to expect from the shading nodes. For
instance, a dlSurface or dlDisplacement port will accept
input from dlShadingNodes.

Material Interface or right-click on interface table

Rebuild with Current
State

N/A Updates the information of the Material Interface.

Remove Selected
Local Definition...

N/A Removes the selected shading node's exposed parameters.

3D Nodes | Other 3D Nodes

REFERENCE GUIDE
986

Control (UI) Default Value Function

Remove All Local
Definitions...

N/A Removes all selected shading node's exposed parameters.

NetworkMaterialCreate
The NetworkMaterialCreate node has been designed to contain your material network. The node features a
left-to-right workflow and a new shading node design, which enables you to work more efficiently, making
building and editing materials as quick and simple as possible. It holds the function of one or more
NetworkMaterial nodes as well as the NetworkMaterialInterfaceControls node.

Control (UI) Default Value Function

rootLocation /root/materials Defines the scene graph location where the material locations are
created. The parameter options are available in either the scene
graph widget or drop-down menu to the right of the parameter.

For more information, refer to the Scene Graph Location Widget
Type.

Add
NetworkMaterial/

Add Namespace

N/A Click to add a new NetworkMaterial location or Namespace.

l Add NetworkMaterial - Add a new NetworkMaterial
location, accessible from within this NetworkMaterialCreate
node.

Added a new NetworkMaterial called NetworkMaterial1
l Add Namespace - Add a new namespace to the Scene Graph

under which NetworkMaterial locations can be grouped.

3D Nodes | Other 3D Nodes

REFERENCE GUIDE
987

Control (UI) Default Value Function

Added a new Namespace called namespace

Note: To learn more about multi-NetworkMaterial
workflows in a NetworkMaterialCreate node, see Multiple
NetworkMaterials with NetworkMaterialCreate.

Material
Scenegraph

N/A Add, remove and organize NetworkMaterials and Namespaces.

l Name - To change the name of a NetworkMaterial or
Namespace, you can double-click, or select the
NetworkMaterial or Namespace and press Enter on the
keyboard. You can then type a new name.

l Renderers - View the number of renderers connected to each
NetworkMaterial.

l Terminals - View the number of terminals connected to each
NetworkMaterial.

l Interactive - When checked, you can drag objects in the
Viewer and Katana retains the information from the Viewer.

l Color - Set the color of a NetworkMaterial which is then
applied to the terminal sidebar within the
NetworkMaterialCreate node.

Use the middle-mouse button to click and drag NetworkMaterials
and Namespaces to organize them.

3D Nodes | Other 3D Nodes

REFERENCE GUIDE
988

Control (UI) Default Value Function

Middle-mouse drag NetworkMaterial1
to place it under the namespace

Note: You can place NetworkMaterials and Namespaces
underneath other Namespaces but not underneath other
NetworkMaterials.

Node Parameters

Control (UI) Default Value Function

parameters N/A Promoted parameters within the NetworkMaterialCreate node appear
here. This section remains empty if no parameters have been
promoted.

Note: For more information on how to promote
parameters, see Node Parameters and Interface Controls
documentation.

Interface Controls

Control (UI) Default
Value

Function

Add Node
button

N/A Click to add a new Interface Control and open its parameters.

Filter N/A Filter the list of Interface Controls by name or type. Type in the text
field to start filtering. A list of matching controls are displayed.

Click the Select All Matching button to display the parameters for

3D Nodes | Other 3D Nodes

REFERENCE GUIDE
989

Control (UI) Default
Value

Function

all matching Interface Controls.

Disable
Parameter Display

Disabled Toggles the display of the parameters.

Fit to Width Disabled Adjusts the width of the Interface Control list so the full length of
the control names are visible.

Fit to Height Disabled Adjusts the height of the Interface Control list so all controls are
visible.

Note: The following parameters are only visible once an Interface Control has been created and
is selected.

state visibility The state of the parameter or page for the control to affect.

l visibility - Depending on the condition, displays or hides
the parameter or page specified in the targetName
parameter.

l lock - Depending on the condition, locks or unlocks the
parameter or page specified in the targetName parameter,
making any edits impossible if locked.

targetType parameter Select whether to apply the condition on either:

l parameter - The operation affects a single parameter.
l page - The operation affects a page containing one or more

parameters.

targetName N/A Specifies the name of the chosen parameter or page.

Note: The name must be identical to the one displayed
in the NetworkMaterial node's Material Interface.

definitionStyle operator tree Selects how to set up the condition:

3D Nodes | Other 3D Nodes

REFERENCE GUIDE
990

Control (UI) Default
Value

Function

l operator tree - Allows you to set up conditions using an
operator tree.

l conditional state expression - Allows you to set up
conditions using one or several expressions.

When definitionStyle: operator tree

operators

op and Select which expression operator to use in the operator tree:

l and - The resulting expression is satisfied only if all of the
child expressions are satisfied.

l or - The resulting expression is satisfied if at least one of the
child expressions is satisfied.

ops

Add N/A Select an op:

l contains - Evaluates if the condition is true by testing if the
parameter or page values contain the values set in the
expression.

l doesNotContain - Evaluates if the condition is true by
testing if the parameter or page values do not contain the
values set in the expression.

l endsWith - Evaluates if the condition is true by testing if the
parameter or page values end with the values set in the
expression.

l equalTo - Evaluates if the condition is true by testing if the
parameter or page values are equal to the values set in the
expression.

l greaterThan - Evaluates if the condition is true by testing if
the parameter or page values are greater than the values set
in the expression.

l greaterThanOrEqualTo - Evaluates if the condition is true
by testing if the parameter or page values are greater than
or equal to the values set in the expression.

l in - Evaluates if the condition is true by testing if the

3D Nodes | Other 3D Nodes

REFERENCE GUIDE
991

Control (UI) Default
Value

Function

parameter or page values are in the values (separated by a
pipe with no spaces) set in the expression.

l lessThan - Evaluates if the condition is true by testing if the
parameter or page values are less than the values set in the
expression.

l lessThanOrEqualTo - Evaluates if the condition is true by
testing if the parameter or page values are less than or equal
to the values set in the expression.

l notEqualTo - Evaluates if the condition is true by testing if
the parameter or page values are not equal to the values set
in the expression.

l notIn - Evaluates if the condition is true by testing if the
parameter or page values are not in the values (separated by
a pipe with no spaces) set in the expression.

l numChildrenEqualTo - Evaluates if the condition is true by
testing if the number of children in the target group
parameter is equal to the number of children specified in the
parameter or page.

l numChildrenGreaterThanOrEqualTo - Evaluates if the
condition is true by testing if the number of children in the
target group parameter is greater than or equal to the
number of children specified in the parameter or page.

l regex - Evaluates if the condition is true by testing if the
parameter or page values match the values set in the regular
expression.

l and - Specifies if you want to compare the parameter or
page values to another set of values. It uses all the
expressions to evaluate the condition.

l or - Specifies if you want to compare the parameter or page
values to another set of values. It uses only one of the
expressions to evaluate the condition.

Note: The following parameters are only visible once an operator has been selected from the
Add menu.

op N/A The chosen op from the Add menu.

3D Nodes | Other 3D Nodes

REFERENCE GUIDE
992

Control (UI) Default
Value

Function

path N/A Specifies the path of the parameter or page to evaluate.

value N/A Specifies the values to compare the parameter or page values with,
in order to evaluate if the condition is true.

Material Interface

Control
(UI)

Default
Value

Function

Name N/A A list displaying all promoted parameters, organized in the same way as they were
grouped when promoted.

Source N/A The path to each different parameter.

Note: For more information on the uses of the Material Interface, see Node Parameters and
Interface Controls documentation.

NetworkMaterialEdit
The NetworkMaterialEdit nodes allow artists to edit network materials that have been created using
NetworkMaterialCreate nodes or brought in through lookfiles, by adding or removing shading nodes from
an existing network, or by modifying any of the parameters of shading nodes in an existing Network.
NetworkMaterialEdit nodes hold the functionality of the existing NetworkMaterialParameterEdit and
NetworkMaterialSplice node types, but in a UI that is visually representative of how the material was
originally authored.

3D Nodes | Other 3D Nodes

REFERENCE GUIDE
993

Node Parameters

Control (UI) Default Value Function

sceneGraphLocation N/A Type or drag the NetworkMaterial location from the Scene
Graph to this field to specify which Network Material to make
edits to.

Note: The NetworkMaterialEdit node is designed to
complement the NetworkMaterialCreate node. Only
NetworkMaterial locations in your Scene Graph which
have been created using a NetworkMaterialCreate, or
lookfiles baked from a NetworkMaterialCreate node,
can be edited using the NetworkMaterialEdit node.

makeInteractive No When set to Yes, you can drag objects in the Viewer and Katana
retains the information from the Viewer.

parameters N/A This is where promoted parameters from with the
NetworkMaterialCreate node appear. This section remains
empty if no parameters have been promoted.

Note: For more information on how to promote
parameters, see Node Parameters and Interface
Controls documentation.

Interface Controls

Control (UI) Default
Value

Function

Add Node button N/A Click to add a new Interface Control and open its parameters.

3D Nodes | Other 3D Nodes

REFERENCE GUIDE
994

Control (UI) Default
Value

Function

Filter N/A Filter the list of Interface Controls by name or type. Type in the text
field to start filtering. A list of matching controls are displayed.

Click the Select All Matching button to display the parameters for
all matching Interface Controls.

Disable
Parameter Display

Disabled Toggles the display of the parameters.

Fit to Width Disabled Adjusts the width of the Interface Control list so the full length of
the control names are visible.

Fit to Height Disabled Adjusts the height of the Interface Control list so all controls are
visible.

Note: The following parameters are only visible once an Interface Control has been created and
is selected.

state visibility The state of the parameter or page for the control to affect.

l visibility - Depending on the condition, displays or hides
the parameter or page specified in the targetName
parameter.

l lock - Depending on the condition, locks or unlocks the
parameter or page specified in the targetName parameter,
making any edits impossible if locked.

targetType parameter Select whether to apply the condition on either:

l parameter - The operation affects a single parameter.
l page - The operation affects a page containing one or more

parameters.

targetName N/A Specifies the name of the chosen parameter or page.

3D Nodes | Other 3D Nodes

REFERENCE GUIDE
995

Control (UI) Default
Value

Function

Note: The name must be identical to the one that
displays in the NetworkMaterial node's Material
Interface.

definitionStyle operator tree Selects how to set up the condition:

l operator tree - Allows you to set up conditions using an
operator tree.

l conditional state expression - Allows you to set up
conditions using one or several expressions.

When definitionStyle: operator tree

operators

op and Select which expression operator to use in the operator tree:

l and - The resulting expression is satisfied only if all of the
child expressions are satisfied.

l or - The resulting expression is satisfied if at least one of the
child expressions is satisfied.

ops

Add N/A Select an op:

l contains - Evaluates if the condition is true by testing if the
parameter or page values contain the values set in the
expression.

l doesNotContain - Evaluates if the condition is true by
testing if the parameter or page values do not contain the
values set in the expression.

l endsWith - Evaluates if the condition is true by testing if the
parameter or page values end with the values set in the
expression.

l equalTo - Evaluates if the condition is true by testing if the
parameter or page values are equal to the values set in the
expression.

l greaterThan - Evaluates if the condition is true by testing if

3D Nodes | Other 3D Nodes

REFERENCE GUIDE
996

Control (UI) Default
Value

Function

the parameter or page values are greater than the values set
in the expression.

l greaterThanOrEqualTo - Evaluates if the condition is true
by testing if the parameter or page values are greater than
or equal to the values set in the expression.

l in - Evaluates if the condition is true by testing if the
parameter or page values are in the values (separated by a
pipe with no spaces) set in the expression.

l lessThan - Evaluates if the condition is true by testing if the
parameter or page values are less than the values set in the
expression.

l lessThanOrEqualTo - Evaluates if the condition is true by
testing if the parameter or page values are less than or equal
to the values set in the expression.

l notEqualTo - Evaluates if the condition is true by testing if
the parameter or page values are not equal to the values set
in the expression.

l notIn - Evaluates if the condition is true by testing if the
parameter or page values are not in the values (separated by
a pipe with no spaces) set in the expression.

l numChildrenEqualTo - Evaluates if the condition is true by
testing if the number of children in the target group
parameter is equal to the number of children specified in the
parameter or page.

l numChildrenGreaterThanOrEqualTo - Evaluates if the
condition is true by testing if the number of children in the
target group parameter is greater than or equal to the
number of children specified in the parameter or page.

l regex - Evaluates if the condition is true by testing if the
parameter or page values match the values set in the regular
expression.

l and - Specifies if you want to compare the parameter or
page values to another set of values. It uses all the
expressions to evaluate the condition.

l or - Specifies if you want to compare the parameter or page
values to another set of values. It uses only one of the

3D Nodes | Other 3D Nodes

REFERENCE GUIDE
997

Control (UI) Default
Value

Function

expressions to evaluate the condition.

Note: The following parameters are only visible once an operator has been selected from the
Add menu.

op N/A The chosen op from the Add menu.

path N/A Specifies the path of the parameter or page to evaluate.

value N/A Specifies the values to compare the parameter or page values with,
in order to evaluate if the condition is true.

Material Interface

Control
(UI)

Default
Value

Function

Name N/A A list displaying all promoted parameters, organized in the same way as they were
grouped when promoted.

Source N/A The path to each different parameter.

Note: For more information on the uses of the Material Interface, see Node Parameters and
Interface Controls documentation.

NetworkMaterialInterfaceControls
The NetworkMaterialInterfaceControls node allows you to apply a visibility or a lock condition on one or
several parameters exposed by a NetworkMaterial node. This node works on a network material location,
which can come from a NetworkMaterial node or a Look File.

3D Nodes | Other 3D Nodes

REFERENCE GUIDE
998

Connection Type Connection Name Function

Input input The place in the node graph where you want to apply a
visibility or lock condition on the parameters exposed by a
NetworkMaterial node.

Control (UI) Default Value Function

materialLocation N/A Specifies the scene graph location path of the network
material to be modified. The materialLocation

parameter options are available by clicking the
dropdown menu.

For more information, refer to the Scene Graph
Location Widget Type in Common Parameter Widgets.

state visibility Selects a condition state to apply:
• visibility - depending on the condition, displays or

hides the parameter or page specified in the
targetName parameter.

• lock - depending on the condition, locks or unlocks
the parameter or page specified in the targetName
parameter, making any edits impossible if locked.

targetType parameter Selects whether to apply the condition on either:
• parameter - applies on a single parameter.
• page - applies on a set of parameters grouped into a

page.

targetName N/A Specifies the name of the chosen parameter or page.

Note: The name must be identical to the
one that displays in the NetworkMaterial
node's Material Interface.

definitionStyle operator tree Selects how to set up the condition:
• operator tree - allows you to set up conditions

3D Nodes | Other 3D Nodes

REFERENCE GUIDE
999

Control (UI) Default Value Function

using an operator tree.
• conditional state expression - allows you to set up

conditions using one or several expressions.

When definitionStyle: operator tree

operators

op and Selects which expression operator to use in the
operator tree:
• and - the resulting expression is satisfied only if all of

the child expressions are satisfied.
• or - the resulting expression is satisfied if at least one

of the child expressions is satisfied.

ops > Add

or

once an op has been added, [Op]

contains N/A Evaluates if the condition is true by testing if the
parameter or page values contain the values set in the
expression.

doesNotContain N/A Evaluates if the condition is true by testing if the
parameter or page values do not contain the values
set in the expression.

endsWith N/A Evaluates if the condition is true by testing if the
parameter or page values end with the values set in
the expression.

equalTo N/A Evaluates if the condition is true by testing if the
parameter or page values are equal to the values set in
the expression.

greaterThan N/A Evaluates if the condition is true by testing if the
parameter or page values are greater than the values
set in the expression.

3D Nodes | Other 3D Nodes

REFERENCE GUIDE
1000

Control (UI) Default Value Function

greaterThanOrEqualTo N/A Evaluates if the condition is true by testing if the
parameter or page values are greater than or equal to
the values set in the expression.

in N/A Evaluates if the condition is true by testing if the
parameter or page values are in the values (separated
by a pipe with no spaces) set in the expression.

lessThan N/A Evaluates if the condition is true by testing if the
parameter or page values are less than the values set
in the expression.

lessThanOrEqualTo N/A Evaluates if the condition is true by testing if the
parameter or page values are less than or equal to the
values set in the expression.

notEqualTo N/A Evaluates if the condition is true by testing if the
parameter or page values are not equal to the values
set in the expression.

notIn N/A Evaluates if the condition is true by testing if the
parameter or page values are not in the values
(separated by a pipe with no spaces) set in the
expression.

numChildrenEqualTo N/A Evaluates if the condition is true by testing if the
number of children in the target group parameter is
equal to the number of children specified in the
parameter or page.

numChildrenGreaterThan
OrEqualTo

N/A Evaluates if the condition is true by testing if the
number of children in the target group parameter is
greater than or equals to the number of children
specified in the parameter or page.

regex N/A Evaluates if the condition is true by testing if the
parameter or page values match the values set in the
regular expression.

and N/A Specifies if you want to compare the parameter or

3D Nodes | Other 3D Nodes

REFERENCE GUIDE
1001

Control (UI) Default Value Function

page values to another set of values.

It uses all the expressions to evaluate the condition.

or N/A Specifies if you want to compare the parameter or
page values to another set of values.

It uses only one of the expressions to evaluate the
condition.

Once an Op has been added:

path N/A Specifies the path of the parameter or page to
evaluate.

value N/A Specifies the values to compare the parameter or page
values with, in order to evaluate if the condition is true.

When definitionStyle: conditional state expression

expression N/A Specifies the expression to use to apply a visibility or a
lock condition on the exposed parameter(s).

NetworkMaterialParameterEdit
The NetworkMaterialParameterEdit node allows you to edit a shading node's parameters in a non-
destructive way.

Connection Type Connection Name Function

Input in The place in the node graph where you want to edit a
shading node's parameters.

3D Nodes | Other 3D Nodes

REFERENCE GUIDE
1002

Control (UI) Default Value Function

name NetworkMaterialParameterEdit Specifies the name of the location.

action edit existing location Determines the node's behavior:
• edit existing location - specifies the

NetworkMaterial scene graph location.
• inherit from existing material location -

creates a sub-location that inherits the material
from the parent NetworkMaterial location.

When action is: edit existing location

Material to Edit >
location

N/A Specifies the location. The location parameter

options are available by clicking the dropdown
menu.

For more information, refer to the Scene Graph
Location Widget Type in Common Parameter
Widgets.

When action is: inherit from existing material location

inheritsFrom >
location

N/A Specifies the location. The location parameter

options are available by clicking the dropdown
menu.

For more information, refer to the Scene Graph
Location Widget Type in Common Parameter
Widgets.

nodes

nodes > Add N/A Allows you to add the shading nodes connected to
the NetworkMaterial node.

NetworkMaterialSplice
The NetworkMaterialSplice node allows you to make changes to an existing NetworkMaterial node in a non-
destructive way by connecting or inserting new shading nodes within the shading network. You can also

3D Nodes | Other 3D Nodes

REFERENCE GUIDE
1003

disconnect existing shading nodes within the shading network and rewire the NetworkMaterial node in
different ways.

Connection Type Connection Name Function

Input in The place in the node graph where you want to read in an
existing network material node and its corresponding
shading network.

append The shading network you want to append to the existing
shading network in the in port.

Control (UI) Default Value Function

name NetworkMaterialSplice Specifies the name of the node.

action edit existing location Determines the node's behavior:
• edit existing location - makes modifications to an

existing network material.
• inherit from existing material location - creates a

sub-location that inherits the material from the parent
NetworkMaterialSplice location.

When action is: edit existing location

edit > location N/A Specifies the location. The location parameter options

are available by clicking the dropdown menu.

For more information, refer to the Scene Graph Location
Widget Type in Common Parameter Widgets.

When action is: inherit from existing material location

inheritsFrom >
location

N/A Specifies the location. The location parameter options

are available by clicking the dropdown menu.

For more information, refer to the Scene Graph Location
Widget Type in Common Parameter Widgets.

3D Nodes | Other 3D Nodes

REFERENCE GUIDE
1004

Control (UI) Default Value Function

inputs > append

action connect Allows you to select how the new shading nodes
connected to the append input port are to be spliced
into the network material:
• connect - allows you to connect the new nodes to one

of the input connections of a shading node in the
original network material.

• insert - allows you to insert the new nodes between
two shading nodes within the shading network.

When action is: connect

connectToNode N/A Specifies which shading node in the original network to
connect the nodes to.

connectToPort N/A Specifies which port on the shading node we want to
connect the new nodes to.

when action is: insert

connectToNode N/A Specifies the point in between two consecutive shading
nodes in the original material where you want to insert
the new shading nodes.

connectToPort N/A Specifies which port to connect to.

reconnectToNode N/A Specifies the new shading node that you want the
original connection to be re-connected to.

reconnectToPort N/A Specifies which port to reconnect to.

extraConnections > Add

c >
connectFromNode

N/A Specifies the shading node in the original network that
you want to create a new connection from.

c >
connectFromPort

out Specifies which output port on the connectFromNode
to connect from.

c > connectToNode N/A Specifies the node in the original shading network that

3D Nodes | Other 3D Nodes

REFERENCE GUIDE
1005

Control (UI) Default Value Function

you want to add a new connection to.

c > connectToPort N/A Specifies which port to connect to.

disconnections >Add

d > node N/A Specifies which node you want to disconnect within the
shading node.

d > port N/A Specifies which port you want to disconnect within the
shading node.

OpResolve
This node resolves deferred Ops, such as OpScripts.

Connection Type Connection Name Function

Input in The place in the node graph where deferred Ops are
resolved.

Control (UI) Default Value Function

resolveWithIds all When an Op has been deferred to run during op resolve
you must specify the resolveID. If the resolveWithIds
option is set to all, it processes all the ops set to run
during op resolve. If the option is set to selected, it only
processes those that have at least one resolveId that
matches the values set in the specifiedResolveIds field.

resolveWithIds: specified

specifiedResolveIds N/A A space-separated list of resolveIds to resolve.

3D Nodes | Other 3D Nodes

REFERENCE GUIDE
1006

OpScript
A Lua-based interface to the Op API. For more information on the OpScript interface, see Help >
Documentation.

Connection Type Connection Name Function

Input i0 The place in the node graph where you want to specify Ops
with the Op API.

Control (UI) Default Value Function

CEL N/A The scene graph locations are specified using the
Collection Expression Language (CEL). The CEL
parameter options are available by clicking Add
Statements.

For more information, refer to the CEL Reference
document found on the documentation HTML page
(accessed through Help > Documentation) or the
CEL Statement Widget Type in Common Parameter
Widgets.

script N/A • Edit in <editor>... - opens an external editor, as
set up in the Preferences under externalTools >
Editor, for editing the OpScript node's Lua script
without blocking Katana's user interface. Katana
monitors the text files you are editing, and when it
detects that they have changed, it updates the
OpScript node accordingly.

• lua - contains the lua script to run.

executionMode immediate Determines when the script is run:
• immediate - the script is run at the locations

specified in the applyWhere parameter as it is

3D Nodes | Other 3D Nodes

REFERENCE GUIDE
1007

Control (UI) Default Value Function

evaluated at this node's point in the node graph.
• deferred - the script is set up by this node but

won't actually be run until a later node in the node
graph, as specified by the applyWhen parameter.

multisampleUserOpArgs Yes Enables multi-sampling of the opArgs user
parameter to Op Args.

Display as multi-input Disabled If enabled, allows multiple inputs to be connected to
this OpScript node.

When executionMode is: immediate

applyWhere at locations matching
CEL

Determines where the script is run:
• at all locations - at all the locations in the node

graph.
• at specific location - at only the location specified

by the location parameter. If this location doesn't
exist, it is created automatically.

• at locations matching CEL - at only those
locations in the node graph that match the CEL
statements.

inputBehavior by index Controls how input ports on the node are mapped
onto the inputs of the underlying Op. This parameter
is only meaningful when the node has one or more
invalid input ports - a port that is not connected to
an output port or is connected to an output port that
doesn't provide data.

When set to only valid, any invalid input ports of the
node are skipped when determining which inputs to
pass to the underlying Op.

When set to by index, all input ports of the node are
represented in the list of inputs the Op sees; invalid
inputs are represented as an Op of type no-op.

When applyWhere is: at specific locations

3D Nodes | Other 3D Nodes

REFERENCE GUIDE
1008

Control (UI) Default Value Function

location /root/world/location The location to create, if it doesn't already exist.
Otherwise, the scene graph location at which the
script is run.

The location parameter options are available by

clicking the dropdown menu.

For more information, refer to the Scene Graph
Location Widget Type in Common Parameter
Widgets.

When executionMode is: deferred

applyWhen during op resolve Determines when the script is run:
• during op resolve - the script and its arguments

are added as attributes to be executed later by an
OpResolve node. If the Op isn't run by an explicit
OpResolve node placed in the node graph, it is
automatically run at render time by the implicit
resolvers.

• during material resolve - the script and its
arguments are added as attributes under the
material.ops group attribute. This is primarily
intended for material scene graph locations,
allowing the material to specify a procedural
process that is run at every location that the
material is assigned to. The script is run as part of
the material resolve process, and is executed just
after the initial values for the material shader are
created at the location. Examples of its use include
randomizing or procedural control over shader
parameters.

• during katana look file resolve - the script and its
arguments are added as attributes under the ops
group attribute and are evaluated by a
LookFileResolve node or by the first implicit
resolver if no LookFileResolve node is present.

3D Nodes | Other 3D Nodes

REFERENCE GUIDE
1009

Control (UI) Default Value Function

modifierNameMode node name Deferred OpScripts are added as group attributes
within the ops group. By default, the name of the
node is used for the sub-group. Since node names
must be unique in project, the resulting attribute
name can change. In nearly all cases, that doesn't
matter. For cases in which it does, you can specify a
fixed name to use.

When modifierNameMode is: specified

modifierName modifier Sets the name of the attribute group beneath ops to
use for describing this deferred script.

When executionMode is: deferred, during op resolve

resolveIds N/A Specify a space-delimited list of strings to indicate
that this script should only be resolved by Op
resolvers that contain at least one matching
"resolveId." This is an advanced feature for greater
control over order of evaluation.

A useful resolveIds is implicit_prepocess, which runs
at the first implicit resolver, before other implicit
resolvers, such as MaterialResolve and
ConstraintResolve are run.

recursiveEnable No When applying in a non-immediate state, enabling
this results in the script running at every location
beneath the assigned locations. In general this is
more efficient than using an equivalent recursive CEL
statement.

You can also override the ops.*.recursiveEnable
attribute anywhere deeper in the tree to exclude
evaluation at those locations. This is similar to the
behavior of the visible or light linking attributes.

When recursiveEnable is: yes

disableAt N/A Execution is disabled for locations at or below this

3D Nodes | Other 3D Nodes

REFERENCE GUIDE
1010

Control (UI) Default Value Function

CEL statement. For large scene hierarchies, this is
often less expensive than enabling evaluation at a
larger number of leaf locations to avoid applying it to
a smaller subset.

The scene graph locations are specified for the
disableAt parameter options by clicking Add
Statements.

For more information, refer to the CEL Reference
document found on the documentation HTML page
(accessed through Help > Documentation) or the
CEL Statement Widget Type in Common Parameter
Widgets.

When executionMode is: deferred, during Katana look file resolve

recursiveEnable No When applying in a non-immediate state, enabling
this results in the script running at every location
beneath the assigned locations. In general this is
more efficient than using an equivalent recursive CEL
statement.

You can also override the ops.*.recursiveEnable
attribute anywhere deeper in the tree to exclude
evaluation at those locations. This is similar to the
behavior of the visible or light linking attributes.

When recursiveEnable is: Yes

disableAt N/A Execution is disabled for locations at or below this
CEL statement. For large scene hierarchies, this is
often less expensive than enabling evaluation at a
larger number of leaf locations to avoid applying it to
a smaller subset.

The scene graph locations are specified for the
disableAt parameter options by clicking Add
Statements.

3D Nodes | Other 3D Nodes

REFERENCE GUIDE
1011

Control (UI) Default Value Function

For more information, refer to the CEL Reference
document found on the documentation HTML page
(accessed through Help > Documentation) or the
CEL Statement Widget Type in Common Parameter
Widgets.

PrmanGlobalSettings
This is for changing anything that broadly comes under the heading of RenderMan options.

Note: The parameters available for this node are dependent on which version of RenderMan for
Katana you are using. As such, only the renderer-agnostic parameters are listed below. For more
information on some of the other parameters you may encounter, please refer to the
documentation that ships with RenderMan.

Connection Type Connection Name Function

Input input The place in the node graph where you want to edit the
parameters used by PRMan.

PrmanObjectSettings
The purpose of this node is to set PRMan attributes at levels of the scene graph hierarchy described by the
given CEL statement.

Note: The parameters available for this node are dependent on which version of RenderMan for
Katana you are using. As such, only the renderer-agnostic parameters are listed below. For more
information on some of the other parameters you may encounter, please refer to the
documentation that ships with RenderMan.

3D Nodes | Other 3D Nodes

REFERENCE GUIDE
1012

Connection Type Connection Name Function

Input input The place in the node graph where you want to set PRMan
attributes.

Control (UI) Default Value Function

CEL N/A The scene graph locations are specified using the Collection
Expression Language (CEL). The CEL parameter options are
available by clicking Add Statements.

For more information, refer to the CEL Reference document
found on the documentation HTML page (accessed
through Help > Documentation) or the CEL Statement
Widget Type in Common Parameter Widgets.

PrmanOutputChannelDefine
The PrmanOutputChannelDefine allows you to define custom output channels, so that the final render can
be split into separate elements. These customs channels (AOVs) can then be manipulated in a compositing
tool.

Note: The parameters available for this node are dependent on which version of RenderMan for
Katana you are using. As such, only the renderer-agnostic parameters are listed below. For more
information on some of the other parameters you may encounter, please refer to the
documentation that ships with RenderMan.

Connection Type Connection Name Function

Input in The place in the node graph where you want to define
custom output channels to be used by PRMan at the final
render.

3D Nodes | Other 3D Nodes

REFERENCE GUIDE
1013

Control (UI) Default Value Function

name N/A The name used by the RenderOutputDefine node for these
output channel settings. This parameter usually matches
the channel name.

type varying float Sets the output channel type:

BYTE, INT, LONG, BOOL, FLOAT, DOUBLE, RGB, RGBA,
ABSRGB, VECTOR, POINT, POINT2, STRING, POINTER,
ARRAY, MATRIX, and ENUM

PrmanShadingNode
The PrmanShadingNode allows you to select a RenderMan-specific shader to build complex shading
networks. The last shading node in the shading network needs to be connected to a NetworkMaterial node
in order to be connected to the 3D node graph and assigned to objects in the scene.

Note: The parameters available for this node are dependent on which version of RenderMan for
Katana you are using. As such, only the renderer-agnostic parameters are listed below. For more
information on some of the other parameters you may encounter, please refer to the
documentation that ships with RenderMan.

Control (UI) Default Value Function

name PrmanShadingNode Determines the attribute identifier for this shader node
beneath the 'material' attribute.

This must be unique among all upstream nodes
connected into a single NetworkMaterial node.

nodeType N/A Selects the available shader from the dropdown list.

The parameters for each shader in the dropdown list are
not included, as they are renderer-specific.

Use the file browser or your studio's asset management

3D Nodes | Other 3D Nodes

REFERENCE GUIDE
1014

Control (UI) Default Value Function

browser to select the shader to use.

parameters N/A Once you've added a shader, the shader's parameters are
populated under the Parameter group.

publicInterface

namePrefix N/A Specifies the name's prefix for the exposed parameter.

pagePrefix N/A Allows you to organize the shading node's exposed
parameters in groups in the NetworkMaterial node's
Material Interface.

nameRegExFind N/A Finds and deletes the name specified in namePrefix field.

nameRegExReplace N/A When used with nameRegExFind, finds and replaces the
name with the name specified by nameRegExReplace.

pageRegExFind N/A Finds and deletes the name specified in namePrefix field.

pageRegExReplace N/A When used with pageRegExFind, finds and replaces the
name with the name specified by pageRegExReplace.

PrmanShadingNode parameters continued

Force Refresh N/A Reloads the shader file's information.

Prune
The Prune node removes objects from a scene. Any location that matches the given CEL statement is
removed from the output. Any parent location that matches the CEL statement also has all children removed
from the output, so there's no need to match all the children if you're pruning out an entire tree of locations.
See also Isolate and VisibilityAssign.

Notes:
• To prune out all polymesh objects, use a 'Custom' type statement that looks like this:

//*{@type=="polymesh"} Change polymesh to whatever type you're interested in to remove that type.
• You don't need to prune out an object to prevent it from being used in a render. The VisiblityAssign node is

another way of removing objects from the render without actually removing the object from the scene.

3D Nodes | Other 3D Nodes

REFERENCE GUIDE
1015

• To see what the Prune is removing, view the node above the prune then click the little arrow on the Prune
node's cel parameter and select Find and Select in Scenegraph....

After processing for a while, all objects that are to be pruned become selected in the Scene Graph tab.

If nothing is selected, then nothing matches the CEL statement and nothing is pruned.

Connection Type Connection Name Function

Input A The place in the node graph where you want to remove
objects from the scene.

Control (UI) Default Value Function

cel N/A The CEL statement to use to select locations to remove.

The scene graph locations are specified using the Collection
Expression Language (CEL). The cel parameter options are
available by clicking Add Statements.

For more information, refer to the CEL Reference document
found on the documentation HTML page (accessed
through Help > Documentation) or the CEL Statement
Widget Type in Common Parameter Widgets.

Rename
This node is useful for renaming scene graph locations according to regular expression matching and
substitution. Be aware that many operations are dependent on the names of scene graph locations. Use this
with care as it's possible to invalidate subsequent operations by changing scene graph location names.

Connection Type Connection Name Function

Input in The place in the node graph where you want to renamed
scene graph locations.

3D Nodes | Other 3D Nodes

REFERENCE GUIDE
1016

Control (UI) Default Value Function

rootLocation /root/world/geo Describes the top-most location on which to perform
renaming. The rename parameter options are available by

clicking the dropdown menu.

For more information, refer to the Scene Graph Location
Widget Type in Common Parameter Widgets.

locationTypes N/A Accepts a comma-delimited list of scene graph location
types on which to act. An empty list acts upon all types.

pattern N/A Defines a POSIX-style regular expression on which to
match.

replace N/A Sets the string replacement. \1 though \9 expand to
matched groups in the above pattern. \0 expands to the full
match string.

RenderOutputDefine
Specifies output of an image (color, AOV, shadow map, or similar) to a file. In RIB, this means a Display
statement.

Connection Type Connection Name Function

Input input The place in the node graph where you want to define the
output settings for rendering.

Control (UI) Default Value Function

outputName primary Associates a name with the display. Typically primary by
default; often shadow for shadow maps, and similar
conventions. This name appears in the Render node,
along with (or as) the default primary.

3D Nodes | Other 3D Nodes

REFERENCE GUIDE
1017

Control (UI) Default Value Function

type color Specifies the type of output.
• color - mostly used to render out rgb beauty files, but

also can be used for rendering out z, P(point), N
(normals), Ci(final shader color) passes.

• raw - allows you to directly specify the values for a
Display line. Since the output could be anything, Katana
doesn't do any colorspace conversion on this output,
and can't support tiling.

• script - run a script on another RenderOutputDefine,
like txmake.

• prescript - run a script before the render is started.
• none - clears the output. If the output was previously

setup by a different RenderOutputDefine node, this
removes the entry.

includedByDefault Yes When enabled, this Render Definition is sent to the
Render node.

rendererSettings

colorSpace linear Sets the output colorspace used.

fileExtension exr Sets the output file format.

channel rgba Sets the channels to output. You can also set a user-
defined channel from a PrmanOutputChannelDefine
node.

When fileExtension: exr; convertSettings

exrCompression Scanline ZIP Defines the exr compression method to use. All methods
are lossless (with the exception of Pixar24, which is
lossless but quantizes the pixels to 24-bit float). Wavelet
is generally preferable as it offers ~2:1 compression even
on grainy data.
• None -
• RLE -
• Scanline ZIP -

3D Nodes | Other 3D Nodes

REFERENCE GUIDE
1018

Control (UI) Default Value Function

• Block ZIP -
• Wavelet -
• Pixar 24 -

exrBitDepth 16 Sets the floating point precision of the rendered exr file:
• 16 - half float. This is recommended for all color passes.
• 32 - full float. This is recommended for all ncf data

arbitrary output variables (AOVs).

exrOptimize Yes When enabled, the exr file is written out in an a manner
optimized for efficient random tile-access. These
optimizations greatly improve memory usage and
performance for programs, which process images in tiles.

exrType Tiled Sets whether the exr file is written to support:
• Tiled - random tile access.
• Scanline - random scanline access.

When fileExtension: exr

clampOutput No When set to Yes, post-render clamp negative rgb values
to 0, and clamp alpha values to 0-1.

Note: clampOutput has no effect on NaN and
inf values.

colorConvert Yes When set to Yes, post-render convert rendered image
data from linear to the output colorspace specified in the
filename.

The default value of Yes is suitable for nearly every
situation, since the linear output of the render is
converted to the colorspace in the filename. A case where
you would want to set this to No is if you know the data
being rendered is in a colorspace other than linear, such
as the re-projection of a log plate, and you want to name
the output file log without a linear to log conversion.

3D Nodes | Other 3D Nodes

REFERENCE GUIDE
1019

Control (UI) Default Value Function

When fileExtension: png; convertSettings

pngBitDepth 16 Sets the bit depth of the rendered file:
• 8-bit
• 16-bit

When fileExtention: rla; convertSettings

rlaBitDepth 16 Sets the bit depth of the rendered file:
• 8-bit
• 10-bit
• 16-bit
• 32-bit

When fileExtention: tif; convertSettings

tifBitDepth 16 The bit depth of the rendered file:
• 8-bit
• 16-bit
• 32-bit

tifCompression LZW The tif compression method to use:
• None - No compression method is used.
• LZW - The LZW compression method is used. This is

lossless, so it is usually preferable to use it unless there
is an issue with compatibility in the target reader.

When fileExtension: tif

clampOutput No When set to Yes, post-render clamp negative rgb values
to 0, and clamp alpha values to 0-1.

Note: clampOutout has no effect on NaN and
inf values.

colorConvert Yes When set to Yes, post-render convert rendered image
data from linear to the output colorspace specified in the

3D Nodes | Other 3D Nodes

REFERENCE GUIDE
1020

Control (UI) Default Value Function

filename.

The default value of Yes is suitable for nearly every
situation, since the linear output of the render is
converted to the colorspace in the filename. A case where
you would want to set this to No is if you know the data
being rendered is in a colorspace other than linear, such
as the re-projection of a log plate, and you want to name
the output file log without a linear to log conversion.

When fileExtension: jpg

jpgQuality 100 The quality to use when generating the jpg file. Higher
values generate larger file sizes, with 100 representing the
best quality image and 0 representing the lowest.

rendererSettings parameters continued

computeStats None Allows you to compute image statistics as a post process,
appending as exr metadata. Select:
• None
• Raw
• Depth

Note: In depth mode, zero values and very
large values are ignored. In both modes, only
the region within the dataWindow is
considered.

tempRenderLocation N/A

cameraName N/A Describes the scene graph location of camera to render
from. If empty, render from the camera specified in
renderSettings.cameraName at /root. The
cameraName parameter options are available by clicking

the dropdown menu.

For more information, refer to the Scene Graph Location

3D Nodes | Other 3D Nodes

REFERENCE GUIDE
1021

Control (UI) Default Value Function

Widget Type in Common Parameter Widgets.

locationType local

When locationType: file; locationSettings

renderLocation Specify the render location, or bring up the file browser
or your studio's asset management browser to select the
location to use.

For more information, refer to the Asset and File Path
Widget Types in the Common Parameter Widgets.

Note: RenderOutputLocation plug-ins that are shipped as source and can be found in
plugins/Src/RenderOutputLocations.

ReverseNormals
ReverseNormals reverses any point and vertex normals on locations matching its CEL parameter. Point
normals are represented by a geometry.point.N attribute, and vertex normals are represented by a
geometry.vertex.N attribute. If neither of these attributes are present, the node has no effect. If they are
both present, they are both reversed. Any other normal attributes, such as surface normals, are not
recognized or modified by the node.

Connection Type Connection Name Function

Input A The place in the node graph where the point and vertex
normals on specified locations are reversed.

Control (UI) Default Value Function

celSelection N/A Sets the normals location to be reversed.

3D Nodes | Other 3D Nodes

REFERENCE GUIDE
1022

Control (UI) Default Value Function

The scene graph locations are specified using the Collection
Expression Language (CEL). The celSelection parameter
options are available by clicking Add Statements.

For more information, refer to the CEL Reference document
found on the documentation HTML page (accessed
through Help > Documentation) or the CEL Statement
Widget Type in Common Parameter Widgets.

ShadingGroup
The ShadingGroup node is designed to keep your workspace inside a NetworkMaterialCreate node
organized by allowing you to group sections of your shading node network together. Inside a ShadingGroup
node, there are fixed input and output bars, which are used to connect the nodes within the group to the
rest of the network.

Node Parameters
The Node Parameters tab is empty until a shading node network exists inside the ShadingGroup node.
Once the ShadingGroup node contains a shading node network, the parameters of the nodes which are in
use are automatically promoted and displayed within the Node Parameters tab.

Note: The parameters are only promoted if the parameter is editable from within the node
Parameters itself.

The promoted parameters are organized by node, page and parameter. This makes it easy to make
adjustments to the parameters in use without having to enter the ShadingGroup.

Note: For more information on the ShadingGroup node, see Organizing Shading Networks with
ShadingGroup Nodes documentation.

3D Nodes | Other 3D Nodes

REFERENCE GUIDE
1023

Material Interface

Control
(UI)

Default
Value

Function

Name N/A A list displaying all promoted parameters, organized in the same way as they were
grouped when promoted.

Source N/A The path to each different parameter.

Note: For more information on the uses of the Material Interface, see Node Parameters and
Interface Controls documentation.

ShadingNodeArrayConnector
The ShadingNodeArrayConnector allows you to collect the connected shading nodes' outputs and build an
input connection for shading node array parameters. The ShadingNodeArrayConnector node only works
with shading nodes, which define the parameter as an array.

Connection Type Connection Name Function

Input Add numbered input
ports (i0, i1, i2) by

pressing in the
node.

Connect shading node array parameters to the various
inputs.

ShadingNodeSubnet
The ShadingNodeSubnet node allows you to group shading nodes together for a better organization of your
shading network. You can then connect the ShadingNodeSubnet node to the NetworkMaterial node. To do
the inverse (explode the group of shading nodes), select the ShadingNodeSubnet node and press U.

3D Nodes | Other 3D Nodes

REFERENCE GUIDE
1024

Control (UI) Default Value Function

Subnet Material Interface or right-click interface table

Remove N/A Removes the selected shading node parameter from the
Subnet Material Interface.

Refresh N/A Refreshes the Subnet Material Interface.

Add Exposed
Parameters

N/A Adds the exposed parameters of all of the shading nodes
contained within this ShadingNodeSubnet to the Subnet
Material Interface.

Transform3D
Adds transform attributes to scene graph locations allowing you to control 3D objects in the Viewer.

Note: Manipulates the xform attribute and is used by the AttributeEditor node.

Connection Type Connection Name Function

Input in The place in the node graph where you want to add
transform attributes to scene graph locations.

Control (UI) Default Value Function

path /root/world/geo Sets the path to a scene graph location. The path

parameter options are available by clicking the
dropdown menu.

For more information, refer to the Scene Graph Location
Widget Type in Common Parameter Widgets.

order Scale Rot Trans Sets the order to apply the transform.

3D Nodes | Other 3D Nodes

REFERENCE GUIDE
1025

Control (UI) Default Value Function

rotateOrder Rx Ry Rz Sets the order of each rotation.

stackOrder First Sets whether to apply before or after the transforms.

translate 0.0, 0.0, 0.0 Moves the object up, down, left, right, in or out (of 3D
space).

rotate 0.0, 0.0, 0.0 Specifies the pivoting around the pivot (axis).

scale 1.0, 1.0, 1.0 Sets the scale (on individual axis of x, y or z).

pivot 0.0, 0.0, 0.0 Sets the point around which the translate and rotate
happens.

uniformScale 1 Scales the translate, rotate and scale uniformly.

makeInteractive No When set to Yes, you can drag objects in the Viewer and
Katana retains the information from the Viewer.

adjustParentBounds Yes Specifies whether or not to adjusts the bound attribute of
the parent locations affected by the transformations of
the child.

TransformEdit
The TransformEdit node allows you to make changes to the transform attributes of a scene graph location.

Connection Type Connection Name Function

Input in The place in the node graph where you want to transform
the attributes of the specific scene graph location.

Control (UI) Default Value Function

path /root/world/geo Sets the path to a scene graph location. The path

3D Nodes | Other 3D Nodes

REFERENCE GUIDE
1026

Control (UI) Default Value Function

dropdown menu.

For more information, refer to the Scene Graph Location
Widget Type in Common Parameter Widgets.

action replace global
transform

Determines the node's behavior:
• override interactive transform - overrides the values set

in the scene graph location.
• append new transform - adds values to the existing

values set in the scene graph location.
• replace global transform - replaces the global transform

attributes relative to the origin of the world.

rotationOrder XYZ Sets the order in which the rotation is applied: XYZ, XZY,
YXZ, YZX, ZXY, ZYX.

When action: append new transform

stackOrder First In Katana the local transform at any location is created
using a stack of transforms. The stackOrder parameter
specifies whether the new transform is appended at the first
or last position in this stack.

VelocityApply
Creates extra time samples on the P or Pw attribute of a shape using the V or v attribute describing velocity
in units per second.

Connection Type Connection Name Function

Input input The place in the node graph where you want to create time
samples.

3D Nodes | Other 3D Nodes

REFERENCE GUIDE
1027

Control (UI) Default Value Function

CEL N/A The scene graph locations are specified using the Collection
Expression Language (CEL). The CEL parameter options are
available by clicking Add Statements.

For more information, refer to the CEL Reference document
found on the documentation HTML page (accessed
through Help > Documentation) or the CEL Statement
Widget Type in Common Parameter Widgets.

velocityAttribute N/A The name of the attribute representing the velocity
information to be used by the node. If the parameter is not
set, the following attributes are checked:

• geometry.point.V
• geometry.point.v
• geometry.arbitrary.v

velocityUnits units / second Units to be used to interpret the values stored in the
velocity attribute, with the following options:

• units / second
• units / frame

velocityScale 1 Defines a multiplier on the velocity attribute, where 1 = no
change.

fps 24 Defines frames per second. Used to determine the amount
of the velocity, which is defined in units per second, to
apply to the geometry attributes.

ZoomToRect
The ZoomToRect node zooms and/or crops the render by setting crop window and screen window
attributes. When this node is edited, a guide rectangle is drawn in the Monitor tab. The guide can be resized
to adjust what portion of the render is zoomed and/or cropped.

3D Nodes | Other 3D Nodes

REFERENCE GUIDE
1028

Connection Type Connection Name Function

Input in The place in the node graph where the render is cropped to
specific window and screen window attributes.

Control (UI) Default Value Function

rect

<resolution> Dependent on Project
Settings

List of preset sizes to zoom to.

rect > N/A For more information, refer to the Rectangle Widget Type
in the Common Parameter Widgets.

left 0 Sets the left position of the rectangle.

bottom 0 Sets the bottom position of the rectangle.

width 2048 Sets the width of the rectangle.

height 1556 Sets the height of the rectangle.

ZoomToRect parameters continued

zoom Yes When Yes, sets what portion of the render to zoom in to.

crop Yes When Yes, sets what portion of the render to crop out.

3D Nodes | Other 3D Nodes

REFERENCE GUIDE

Miscellaneous Nodes
The nodes in this section are considered Miscellaneous and fall under the Misc category in Katana. These are
listed alphabetically, and each node includes a short description followed by a list of the node's parameters

and their functions.

SuperTool Nodes
The following section describes Katana's 3D SuperTool nodes.

GafferThree
The GafferThree node type allows you to create lights under an arbitrary hierarchy of rigs. Materials,
transformations, and constraints can be applied to lights from within the GafferThree's Parameters interface.
This node also supports:
• Creating and applying Template Materials to lights.
• Muting and soloing lights, or all lights under a rig.
• Linking lights to specific objects.
• Editing lights from the incoming scene, and editing multiple lights at once.
• Adding aim constraints to lights.

Connection Type Connection Name Function

Input in The place in the node graph where you want to create a
GafferThree for creating several lights together.

1029

REFERENCE GUIDE
1030

Control (UI) Function

> Select In
Scenegraph

Sets the scene graph path to the location to be created.

For more information, see Common Parameter Widgets.

> Show Incoming
Scene

Displays all incoming lights, rigs, and Template Materials from upstream
Gaffer-type nodes.

sync selection When enabled, selecting a Gaffer light within the Parameters tab selects its
location within the Scene Graph tab:
• off - no syncing is performed (the default).
• out - selection of a light in the GafferThree node is mirrored in the Scene

Graph tab, but not the other way around.
• in/out - selecting in either the Scene Graph tab or GafferThree node results

in the corresponding entry in the other also being selected.

[Gaffer object table] Displays a list of all objects controlled by this GafferThree node. The object
table contains the following information:
• Name - the name of the object. Double-click in this column to change the

name of the item.
• M - click to mute the object so that it is omitted from renders.
• S - click to solo the object so that everything not solo-ed is omitted from

interactive renders.
• Shader - displays the shader associated with the object. You can also right-

click in this column to select a shader. Once you've added a shader, double-
click in this column to assign or change it at any time.

• Color - specifies the color of a light. Double-click the swatch to activate the
color picker. If there isn't a swatch, you need to add a color in the Material
tab before you can change it in this column.

• Int - sets the light intensity.
• Exp - sets the light exposure.
• Linking - indicates whether or not the item is linked. A star in the entry

indicates there are exceptions.

Right-click the [Gaffer object table item]

Add > Template
Material

Adds a Template Material to the gaffer table. The Template Material is
assigned to lights, providing the same material for multiple lights. Each light is

Miscellaneous Nodes |

REFERENCE GUIDE
1031

Control (UI) Function

also capable of overriding the defaults set by this Template Material.

Add > Light Adds a light to the object table.

Add > Rig Adds a rig for multiple lights to the object table.

Add > Light Filter
Reference

Adds a light filter that references another light filter package.

Add > Light Filter Adds a light filter that modifies the behavior of a light, depending on the
renderer you're using.

Add > Sky Dome Adds a sky dome light, used to provide environment lighting to your scene.

Add > Import Rig... Adds a previously exported rig to the object table.

Delete Deletes the selected entity in the object table.

Duplicate Creates a copy of the currently selected entity.

Adopt for Editing Allow you to make edits on a light, rig, or Template Material that has been
shown from an incoming scene, which can be any upstream Gaffer-type node.

Delete Edit Package If you adopted a light, rig, or Template Material for editing, you can revert
back to a read-only state and reverse the changes that you applied.

Toggle Lock State of
Selected Items

Toggles the lock state of the selected entity in the object table.

Group Selected Siblings
Under Rig

Groups the selected siblings under a newly created rig.

Export Rig Exports the currently selected item as a .rig file.

Create Shared Light Filter Creates a light filter on a light that references a light filter that already exists in
another location in the scenegraph.

Expand All Expands the selected branch in the object table to reveal all children. If the
selected branch does not have any children, nothing happens when
attempting to expand.

Miscellaneous Nodes |

REFERENCE GUIDE
1032

Control (UI) Function

Note: In the menu, Expand All becomes Expand Branch whenever
there is more than one item in the Gaffer object table.

Expand All To Expand the branch to a specific type, either assembly, component, or level-of-
detail group. This method of expansion applies specifically to the scene graph,
and has limited use for the GafferThree.

Note: In the menu, Expand All To becomes Expand Branch To
whenever there is more than one item in the Gaffer object table.

Collapse All To Collapse the branch to a specific type, either assembly, component, or level-
of-detail group. This method of collapse applies specifically to the scene
graph, and has limited use for the GafferThree.

Note: In the menu, Collapse All To becomes Collapse Branch To
whenever there is more than one item in the Gaffer object table.

Collapse All Collapses the selected branch in the object table to hide all children. If the
selected branch does not have any children, nothing happens when
attempting to collapse.

Note: In the menu, Collapse All becomes Collapse Branch
whenever there is more than one item in the Gaffer object table.

Expand Location Expands the selected location to only the children and leaves directly below it
in the hierarchy.

Collapse Location Collapses the selected location and any children and leaves directly below it,
but not any entities higher than the location in the hierarchy.

The display parameters for the Object, Material, and Linking tabs are dependent on what's selected in the
Gaffer object table. Where a particular tab isn't listed for an object type, there are no parameters in that tab.

Miscellaneous Nodes |

REFERENCE GUIDE
1033

Control (UI) Default Value Function

Object list: Template Material

Material tab

useLookFileMaterial Disabled When enabled, the material from an associated Look File is
used.

Add Shader N/A Click to add a renderer-specific shader from the dropdown list.
The Material tab is populated with controls appropriate to the
shader selected, and are dependent on the renderers installed.

Control (UI) Default Value Function

Object list: light

Object tab > geometry

projection perspective Sets the light projection mode:
• perspective - a warped projection where distant

objects/features appear smaller than those nearer the
camera.

• orthographic - a two-dimensional representation of a
three-dimensional object.

radius 1 Sets the light's radius.

fov 70 Controls the field of view angle in degrees.

orthographicWidth 30 Sets the orthographic projection width.

centerOfInterest 20 Sets the center of interest.

near 0.1 Sets the near clipping plane distance.

far 100000 Sets the far clipping plane distance.

screenWindow -1.0, 1.0, -1.0, 1.0 Controls the screen window placement on the imaging
plane. They are the left, right, bottom, and top bounds of
the screen window.

Miscellaneous Nodes |

REFERENCE GUIDE
1034

Control (UI) Default Value Function

Object tab > transform

transform N/A Transforms the light according to the SRT or matrix
controls.

For more information, refer to the Transform Controls
Widget Type in the Common Parameter Widgets.

transform > Tools N/A Adjusts the light to match selected scene graph selection
options in the dropdown menu.

For more information, refer to the Transform Tools Widget
Type in the Common Parameter Widgets.

enable aim constraint: enabled; aim constraint options

targetPath N/A Specifies the object(s) to constrain to. If you want to aim a
light to point at a target, this is the target. If you set
multiple targets, then the constraint aims at the average
center of the objects. The targetPath parameter options

are available in either a scene graph widget or
dropdown menu to the right of the parameter.

For more information, refer to the Scene Graph Location
Widget Type in the Common Parameter Widgets.

addToConstraintList Yes Specifies whether or not to add the base path for the light
to the globals.constraintList at /root/world in the
Attributes tab.

targetOrigin Object Sets how the center of the target object is calculated:
• Object - uses the local origin of the object as the target.
• Bounding Box - uses the center of the object’s bounding

box as the target.
• Face Center Average - uses the face center average of

the object as the target.
• Face Bounding Box - uses the face center average of the

object’s bounding box as the target.

Miscellaneous Nodes |

REFERENCE GUIDE
1035

Control (UI) Default Value Function

baseAimAxis 0.0, 0.0, -1.0 The axis of the base object that is pointed at the target.
Adjusting these values changes the side of the object that
is aimed at the target.

baseUpAxis 0.0, 1.0, 0.0 The axis of the base object that is pointed upwards relative
to the target. Adjusting these values changes the rotation
of the base object, while keeping the aim constant.

targetUpAxis 0.0, 1.0, 0.0 The axis of the target object that is pointed upwards
relative to the base object. Adjusting these values changes
the rotation of the target object, while maintaining the aim
constant.

setRelativeTargets No Stores target paths in the scene graph constraint definition
as paths relative to the base path.

Targets should still be specified as absolute paths in this
node's parameters.

Object tab > annotation

text N/A Places a label in the Viewer containing the string entered in
the text field.

previewColor 1.0, 1.0, 1.0 Specifies the color of the light annotation in the Viewer.
This value does not affect the color value of the light.

For more information, refer to the Color Widget Type in the
Common Parameter Widgets.

Material tab > material

useLookFileMaterial Disabled When enabled, the material from an associated Look File is
used.

Add Shader N/A Click to add a renderer-specific shader from the dropdown
list. The Material tab is populated with controls
appropriate to the shader selected, and are dependent on
the renderers installed.

useLookFileMaterial: enabled

Miscellaneous Nodes |

REFERENCE GUIDE
1036

Control (UI) Default Value Function

reference > asset N/A Set the path to the asset you want in your scene.

For more information, refer to the Asset and File Path
Widget Types in the Common Parameter Widgets.

reference >

materialPath

N/A Choose the material path from the dropdown list, based on
the asset you have listed in the asset field above.

If you do not have an asset listed in the asset field, nothing
appears in the dropdown list for materialPath.

Linking tab > light linking

Support for light linking is dependent on your renderer.

action append linking
information

Determines whether the linking options set in this node
override the incoming scene options or if the new settings
are appended to the incoming options. If this light doesn't
exist in the incoming scene, this option has no effect.

initialState on

(or use existing
value for adopted
lights)

Determines whether the newly-added light location is
initially on, off, or use existing value.

Note: The use existing value option is only
available for adopted lights.

clearUnmatched disabled When linking is resolved, the clearUnmatched parameter
determines whether or not existing light linking attributes
for this light are removed from locations that do not match
the on or off expressions.

The effect of this parameter is only visible in the Attributes
tab when linking has been resolved, which means after a
LightLinkResolve node or when Implicit Resolvers are
active.

Examines the lightList attribute on your linked objects to
ensure that the attributes have been set correctly. If the
parameter has been disabled, the value of the enable child

Miscellaneous Nodes |

REFERENCE GUIDE
1037

Control (UI) Default Value Function

attribute in the lightList attribute for your light is 0;
otherwise, the default enabled setting is 1.

on N/A A CEL Statement through which scene graph locations can
be linked to the selected light, thereby turning the light on
for those locations.

The scene graph locations are specified using the
Collection Expression Language (CEL). For more
information, refer to the CEL Reference document found
on the documentation HTML page (accessed through Help
> Documentation).

CEL Statements are edited using CEL Statement Widgets.
For more information on the CEL Statement Widget type,
refer to CEL Statement Widget Type in Common Parameter
Widgets.

off N/A A CEL Statement through which scene graph locations can
be linked to the selected light, thereby turning the light off
for those locations.

The scene graph locations are specified using the
Collection Expression Language (CEL). For more
information, refer to the CEL Reference document found
on the documentation HTML page (accessed through Help
> Documentation).

CEL Statements are edited using the CEL Statement
Widgets. For more information on the CEL Statement
Widget type, refer to CEL Statement Widget Type in
Common Parameter Widgets.

Linking tab > shadow linking

Support for shadow linking is dependent on your renderer.

action append linking
information

Determines whether the linking options set in this node
override the incoming scene options or if the new settings
are appended to the incoming options. If this light doesn't

Miscellaneous Nodes |

REFERENCE GUIDE
1038

Control (UI) Default Value Function

exist in the incoming scene, this option has no effect.

initialState don't set value

(or use existing
value for adopted
lights)

Determines the initial value for shadow visibility in the
lightList entry for the newly-added light: on, off, don't set
value, or use existing value.

Note: The use existing value option is only
available for adopted lights.

clearUnmatched disabled When linking is resolved, the clearUnmatched parameter
determines whether or not existing light linking attributes
for this light are removed from locations that do not match
the on or off expressions.

The effect of this parameter is only visible in the Attributes
tab when linking has been resolved, which means after a
LightLinkResolve node or when Implicit Resolvers are
active.

Examines the lightList attribute on your linked objects to
ensure that the attributes have been set correctly. If the
parameter has been disabled, the value of the enable child
attribute in the lightList attribute for your light is 0;
otherwise, the default enabled setting is 1.

on N/A A CEL Statement through which scene graph locations can
be linked to the selected light, thereby turning shadow
casting from this light on for those locations.

The scene graph locations are specified using the
Collection Expression Language (CEL). For more
information, refer to the CEL Reference document found
on the documentation HTML page (accessed through Help
> Documentation).

CEL Statements are edited using CEL Statement Widgets.
For more information on the CEL Statement Widget type,
refer to the CEL Statement Widget Type in Common

Miscellaneous Nodes |

REFERENCE GUIDE
1039

Control (UI) Default Value Function

Parameter Widgets.

off N/A A CEL Statement through which scene graph locations can
be linked to the selected light, thereby turning shadow
casting from this light off for those locations.

The scene graph locations are specified using the
Collection Expression Language (CEL). For more
information, refer to the CEL Reference document found
on the documentation HTML page (accessed through Help
> Documentation).

CEL Statements are edited using CEL Statement Widgets.
For more information on the CEL Statement Widget type,
refer to the CEL Statement Widget Type in Common
Parameter Widgets.

Control (UI) Default Value Function

Object list: rig

Object tab > transform

transform N/A Transforms the rig according to the SRT or matrix controls.

For more information, refer to the Transform Controls Widget
Type in the Common Parameter Widgets.

transform > Tools N/A Adjusts the rig to match selected scene graph selection
options in the dropdown menu.

For more information, refer to the Transform Tools Widget
Type in the Common Parameter Widgets.

Object tab parameters continued

enable point constraint disabled When enabled, specifies the point constraint options.

enable orient disabled When enabled, specifies the orient constraint options.

Miscellaneous Nodes |

REFERENCE GUIDE
1040

Control (UI) Default Value Function

constraint

when enable point constraint: enabled; point constraint options

targetPath N/A Specifies the object(s) to constrain to. If you want to aim a rig
to point at a target, this is the target. If you set multiple targets,
then the constraint aims at the average center of the objects.
The targetPath parameter options are available in either a

scene graph widget or dropdown menu to the right of the
parameter.

For more information, refer to the Scene Graph Location
Widget Type in the Common Parameter Widgets.

addToConstraintList Yes Specifies whether or not to add the base path for the rig to the
globals.constraintList at /root/world in the Attributes tab.

allowMissingTargets No When set to Yes, silently ignore the constraint if its target is
not in the scene graph. When set to No, produce an error on
constraint resolution if the target is missing.

baseOrigin Object Sets how the center of the base object is calculated:
• Object - uses the local origin of the object as the origin.
• BoundingBox - uses the center of the object’s bounding box

as the base origin.

targetOrigin Object Sets how the center of the target object is calculated:
• Object - uses the local origin of the object as the target

origin.
• BoundingBox - uses the center of the object’s bounding box

as the target origin.
• FaceCenterAverage - uses the face center average of the

object as the target origin.
• FaceBoundingBox - uses the face center average of the

object’s bounding box as the target origin.

setRelativeTargets No Stores target paths in the scene graph constraint definition as
paths relative to the base path.

Miscellaneous Nodes |

REFERENCE GUIDE
1041

Control (UI) Default Value Function

Targets should still be specified as absolute paths in this
node's parameters.

when enable orient constraint: enabled; orient constraint options

targetPath N/A Specifies the object(s) to constrain to. If you want to aim a rig
to point at a target, this is the target. If you set multiple targets,
then the constraint aims at the average center of the objects.
The targetPath parameter options are available in either a

scene graph widget or dropdown menu to the right of the
parameter.

For more information, refer to the Scene Graph Location
Widget Type in the Common Parameter Widgets.

addToConstraintList yes Specifies whether or not to add the base path for the rig to the
globals.constraintList at /root/world in the Attributes tab.

targetOrientation Object Sets how the orientation of the target object is calculated:
• Object - uses the local origin of the object as the target.
• Face - uses the local origin on the face as the target.

allowMissingTargets No When set to Yes, silently ignore the constraint if its target is
not in the scene graph. When set to No, produce an error on
constraint resolution if the target is missing.

xAxis Enabled When enabled, orientation is constrained on the x axis.

yAxis Enabled When enabled, orientation is constrained on the y axis.

zAxis Enabled When enabled, orientation is constrained on the z axis.

setRelativeTargets No Stores target paths in the scene graph constraint definition as
paths relative to the base path.

Targets should still be specified as absolute paths in this
node's parameters.

Miscellaneous Nodes |

REFERENCE GUIDE
1042

Control (UI) Default Value Function

Object list: light filter reference

Object tab

referencePath N/A The path to the light filter package that you want to reference as
part of this light filter.

Control (UI) Default Value Function

Object list: light filter

Object tab

inherits N/A The path to another light filter package that you want to inherit
from.

Object tab > viewer

fill solid The manner in which the light filter is displayed in the viewer:
as points, a wireframe, or a solid fill.

Object tab > transform

translate 0.0, 0.0, 0.0 Transforms the light filter by moving it on the x, y, or z axes.
Modifying the light filter in the viewer using the Translate
manipulators also updates these parameter values.

rotate 0.0, 0.0, 0.0 Transforms the light filter by rotating it around the x, y, or z
axes. Modifying the light filter in the viewer using the Rotate
manipulators also updates these parameter values.

scale 1.0, 1.0, 1.0 Transforms the light filter by scaling it along the x, y, or z axes.
Modifying the light filter in the viewer using the Scale
manipulators also updates these parameter values.

Material tab

useLookFileMaterial disabled When enabled, the material from an associated Look File is
used.

Miscellaneous Nodes |

REFERENCE GUIDE
1043

Control (UI) Default Value Function

Add Shader N/A Click to add a renderer-specific shader from the dropdown list.
The Material tab is populated with controls appropriate to the
shader selected, and are dependent on the renderers installed.

useLookFileMaterial: enabled

reference > asset N/A Set the path to the asset you want in your scene.

For more information, refer to the Asset and File Path Widget
Types in the Common Parameter Widgets.

reference >

materialPath

N/A Choose the material path from the dropdown list, based on the
asset you have listed in the asset field above.

If you do not have an asset listed in the asset field, nothing
appears in the dropdown list for materialPath.

Linking tab > light linking

action append linking
information

Determines whether the linking options set in this node
override the incoming scene options or if the new settings are
appended to the incoming options. If this light doesn't exist in
the incoming scene, this option has no effect.

initialState don't set value Determines whether the newly-added light location is initially
on, off, or doesn't have a value set.

clearUnmatched disabled When linking is resolved, the clearUnmatched parameter
determines whether or not existing light linking attributes for
this light are removed from locations that do not match the on
or off expressions.

The effect of this parameter is only visible in the Attributes tab
when linking has been resolved, which means after a
LightLinkResolve node or when Implicit Resolvers are active.

Examines the lightList attribute on your linked objects to
ensure that the attributes have been set correctly. If the
parameter has been disabled, the value of the enable child
attribute in the lightList attribute for your light is 0; otherwise,
the default enabled setting is 1.

Miscellaneous Nodes |

REFERENCE GUIDE
1044

Control (UI) Default Value Function

on N/A A CEL Statement through which scene graph locations can be
linked to the selected light, thereby turning the light on for
those locations.

The scene graph locations are specified using the Collection
Expression Language (CEL). For more information, refer to the
CEL Reference document found on the documentation HTML
page (accessed through Help > Documentation).

CEL Statements are edited using CEL Statement Widgets. For
more information on the CEL Statement Widget type, refer to
CEL Statement Widget Type in Common Parameter Widgets.

off N/A A CEL Statement through which scene graph locations can be
linked to the selected light, thereby turning the light off for
those locations.

The scene graph locations are specified using the Collection
Expression Language (CEL). For more information, refer to the
CEL Reference document found on the documentation HTML
page (accessed through Help > Documentation).

CEL Statements are edited using the CEL Statement Widgets.
For more information on the CEL Statement Widget type, refer
to CEL Statement Widget Type in Common Parameter
Widgets.

Control (UI) Default Value Function

Object list: sky dome

Object tab > transform

translate 0.0, 0.0, 0.0 Transforms the sky dome light by moving
it on the x, y, or z axes. Modifying the sky
dome in the viewer using the Translate
manipulators also updates these
parameter values.

Miscellaneous Nodes |

REFERENCE GUIDE
1045

Control (UI) Default Value Function

rotate 0.0, 0.0, 0.0 Transforms the sky dome light by rotating
it around the x, y, or z axes. Modifying the
sky dome in the viewer using the Rotate
manipulators also updates these
parameter values.

scale 1000.0, 1000.0, 1000.0 Transforms the sky dome light by scaling it
along the x, y, or z axes. Modifying the sky
dome in the viewer using the Scale
manipulators also updates these
parameter values.

Material tab > material

useLookFileMaterial enabled When enabled, the material from an
associated Look File is used and the
additional parameters are contained in the
reference dropdown.

Add Shader N/A Click to add a renderer-specific shader
from the dropdown list. The Material tab
is populated with controls appropriate to
the shader selected, and are dependent on
the renderers installed.

useLookFileMaterial: enabled

reference > asset /tmp/hdriSkyDomeLight.klf Set the path to the look file you've written
to disk.

For more information, refer to the Asset
and File Path Widget Types in the
Common Parameter Widgets.

reference >

materialPath

/root/materials/hdriSkyDomeLight Choose the material path from the
dropdown list, based on the asset you
have listed in the asset field above.

If you do not have an asset listed in the
asset field, nothing appears in the

Miscellaneous Nodes |

REFERENCE GUIDE
1046

Control (UI) Default Value Function

dropdown list for materialPath.

Linking tab > light linking

action append linking information Determines whether the linking options
set in this node override the incoming
scene options or if the new settings are
appended to the incoming options. If this
light doesn't exist in the incoming scene,
this option has no effect.

initialState don't set value Determines whether the newly-added
light location is initially on, off, or doesn't
have a value set.

clearUnmatched disabled When linking is resolved, the
clearUnmatched parameter determines
whether or not existing light linking
attributes for this light are removed from
locations that do not match the on or off
expressions.

The effect of this parameter is only visible
in the Attributes tab when linking has
been resolved, which means after a
LightLinkResolve node or when Implicit
Resolvers are active.

Examines the lightList attribute on your
linked objects to ensure that the attributes
have been set correctly. If the parameter
has been disabled, the value of the enable
child attribute in the lightList attribute for
your light is 0; otherwise, the default
enabled setting is 1.

on N/A A CEL Statement through which scene
graph locations can be linked to the
selected light, thereby turning the light on

Miscellaneous Nodes |

REFERENCE GUIDE
1047

Control (UI) Default Value Function

for those locations.

The scene graph locations are specified
using the Collection Expression Language
(CEL). For more information, refer to the
CEL Reference document found on the
documentation HTML page (accessed
through Help > Documentation).

CEL Statements are edited using CEL
Statement Widgets. For more information
on the CEL Statement Widget type, refer
to CEL Statement Widget Type in
Common Parameter Widgets.

off N/A A CEL Statement through which scene
graph locations can be linked to the
selected light, thereby turning the light off
for those locations.

The scene graph locations are specified
using the Collection Expression Language
(CEL). For more information, refer to the
CEL Reference document found on the
documentation HTML page (accessed
through Help > Documentation).

CEL Statements are edited using the CEL
Statement Widgets. For more information
on the CEL Statement Widget type, refer
to CEL Statement Widget Type in
Common Parameter Widgets.

Linking tab > shadow linking

Support for shadow linking is dependent on your renderer.

action append linking information Determines whether the linking options
set in this node override the incoming
scene options or if the new settings are

Miscellaneous Nodes |

REFERENCE GUIDE
1048

Control (UI) Default Value Function

appended to the incoming options. If this
light doesn't exist in the incoming scene,
this option has no effect.

initialState don't set value

(or use existing value for adopted
lights)

Determines the initial value for shadow
visibility in the lightList entry for the
newly-added light: on, off, don't set
value, or use existing value.

Note: The use existing value
option is only available for
adopted lights.

clearUnmatched disabled When linking is resolved, the
clearUnmatched parameter determines
whether or not existing light linking
attributes for this light are removed from
locations that do not match the on or off
expressions.

The effect of this parameter is only visible
in the Attributes tab when linking has
been resolved, which means after a
LightLinkResolve node or when Implicit
Resolvers are active.

Examines the lightList attribute on your
linked objects to ensure that the attributes
have been set correctly. If the parameter
has been disabled, the value of the enable
child attribute in the lightList attribute for
your light is 0; otherwise, the default
enabled setting is 1.

on N/A A CEL Statement through which scene
graph locations can be linked to the
selected light, thereby turning shadow

Miscellaneous Nodes |

REFERENCE GUIDE
1049

Control (UI) Default Value Function

casting from this light on for those
locations.

The scene graph locations are specified
using the Collection Expression Language
(CEL). For more information, refer to the
CEL Reference document found on the
documentation HTML page (accessed
through Help > Documentation).

CEL Statements are edited using CEL
Statement Widgets. For more information
on the CEL Statement Widget type, refer
to the CEL Statement Widget Type in
Common Parameter Widgets.

off N/A A CEL Statement through which scene
graph locations can be linked to the
selected light, thereby turning shadow
casting from this light off for those
locations.

The scene graph locations are specified
using the Collection Expression Language
(CEL). For more information, refer to the
CEL Reference document found on the
documentation HTML page (accessed
through Help > Documentation).

CEL Statements are edited using CEL
Statement Widgets. For more information
on the CEL Statement Widget type, refer
to the CEL Statement Widget Type in
Common Parameter Widgets.

Miscellaneous Nodes |

REFERENCE GUIDE
1050

ImageCoordinate
ImageCoordinate allows you to load an image into the interface and specify a 2D-point (x, y coordinates)
that is then stored as attribute data on a scene graph location.

Control (UI) Default Value Function

location /root/world/2d_
image/points

The scene graph location to where (x, y) coordinates are
written. The location parameter options are available in

either the scene graph widget or dropdown menu to
the right of the parameter.

For more information, refer to the Create Scene Graph
Location Widget Type in the Common Parameter Widgets.

filePath N/A Specifies the file path to the image to load here.

For more information, refer to the Asset and File Path
Widget Types in the Common Parameter Widgets.

numberValue 1x2 Sets the override value.

PonyStack
The PonyStack node is an example node that allows you to create multiple pony geometry locations with
differing transform attributes.

Control (UI) Default Value Function

location /root/world/geo Specifies the ponies scene graph location.

For more information, refer to the Create Scene
Graph Location Widget Type in the Common
Parameter Widgets.

Miscellaneous Nodes |

REFERENCE GUIDE
1051

Control (UI) Default Value Function

N/A Creates a new pony in the object list.

transform

transform N/A Transforms each of the ponies according to the
Scale, Rotation, and Translation (SRT), or matrix
controls.

For more information, refer to the Transform
Controls Widget Type in the Common Parameter
Widgets.

Other Nodes (Misc)
The following section describes Katana's Other miscellaneous nodes.

Backdrop
The Backdrop node allows you to improve readability and navigation of your recipes. For example, you can
set a colored background around a group of nodes, or use the Backdrop node to add comments in a scene.
For more details on the Backdrop node, see Backdrop Nodes

DependencyMerge
The DependencyMerge node takes any number of Render dependencies as inputs and consolidates them
into a single link that you can wire into your dependent Render node.

Note: Add as many ports as necessary by clicking the arrow at the top of the node in the Node
Graph tab.

Miscellaneous Nodes | Other Nodes (Misc)

REFERENCE GUIDE
1052

Dependencies between Render nodes are represented by links between the nodes. This can rapidly become
very complex, since a single Render node may depend on several other Render nodes throughout the node
graph.

Connection Type Connection Name Function

Input Add numbered input
ports (i0, i1, i2) by

pressing in the
node.

The render discrepancies that you want to consolidate.

Control (UI) Default Value Function

farmSettings

farmFileName N/A Sets the location where the farm file is written.

Dot
The Dot node performs no operation on the data passing through it. Its purpose is to improve the
appearance and layout of your node graph, but also to disable connections between nodes. In this way, you
can use the Dot node as an on/off switch for incoming connections.

Tip: You can insert Dot nodes on-the-fly during link creation by pressing the . (period) key.

Connection Type Connection Name Function

Input input The place in the node graph after which you want to create
a bend in the arrow.

Miscellaneous Nodes | Other Nodes (Misc)

REFERENCE GUIDE
1053

Control (UI) Default Value Function

Display As Dot enabled When enabled, Dot nodes are displayed as a dot in the
node graph instead of the regular rectangle node shape.

Group
The Group node is a node that contains other nodes. You can create Group nodes by selecting some nodes
and pressing G to collapse them into a Group. To do the inverse (explode a Group), select a Group node and
press U.

You can convert a Group node to a LiveGroup by right-clicking on the Group node and selecting Convert to
LiveGroup.

GroupStack
The GroupStack node is a SuperTool that creates a convenient interface for managing a list of nodes of the
same type.

Within the GroupStack interface, you can create any number of nodes of the same type, and these nodes
are linked together, providing a single output by connecting them one after the other in serial, in the order in
which they appear in the stack. GroupStack is similar to GroupMerge, except with GroupMerge the nodes are
merged together instead of creating a list of nodes where a 3D input is passed through.

This node is most often used to group nodes that have one input and modify the scene graph in some way.
For example, the GroupStack node could be used to manage multiple CollectionCreate nodes, or multiple
material edits.

Note: When the GroupStack node is first created, its type is not defined. You can create a node
and then add it to the stacklist by Shift+middle-mouse and dragging from the Node Graph tab to
the node's list in the Parameters tab. At that point, the GroupStack is permanently typed as a
group of the type of node that was dragged in.

Miscellaneous Nodes | Other Nodes (Misc)

REFERENCE GUIDE
1054

Connection Type Connection Name Function

Input input The place in the node graph where you want to create a
SuperTool for managing several nodes of the same type.

Control (UI) Default Value Function

N/A Creates a new node of the type associated with this node
and adds it to the node list.

N/A Brings up a searchable list to aid in selection.

/ N/A Locks all nodes against editing. Unlocks all nodes for
editing.

[Right-click menu]

Ignore Selected
Entries

N/A Disables the selected nodes.

View At Location N/A Sets the current view node to the selected node

Delete Selected
Entries

N/A Deletes the selected node.

Duplicate Selected
Entries

N/A Duplicates the selected node, creating a new copy of both
the node and matching its parameters.

Cut Selected Entries N/A Deletes the selected node and copies it to the clipboard.

Copy Selected
Entries

N/A Copies the selected node to the clipboard.

Paste N/A Paste the current clipboard node into this list.

Tearoff Parameters
Of Selected Entries...

N/A Create a new floating window with the parameters of this
node on a tab inside.

Miscellaneous Nodes | Other Nodes (Misc)

REFERENCE GUIDE
1055

InteractiveRenderFilters
Interactive render filters enable you to setup common interactive render recipe changes without having to
include them within the recipe. These filters are designed to only be included when performing an interactive
render and are ignored for Disk Renders.

InteractiveRenderFilters nodes don't need to be connected into a recipe to take affect.

An example of a render filter is a render resolution change. You can set up an interactive render filter to
reduce the size of a render, thus making debugging and light tests much quicker. Other examples might be
changing anti-aliasing settings or the number of light bounces.

LiveGroup
The LiveGroup node is similar to the Group node except the contents are loaded from an external file. The
contents of the LiveGroup can be locked (non-editable) or unlocked, and is used mainly during look
development. To change the contents of a LiveGroup, you can modify the file it references or change the
contents of a LiveGroup in a Katana session, then publish it back to the source file. The LiveGroup context
menu is dynamic, and the options that appear in the menu change depending whether the node is in a non-
editable or editable state.

Note: The source file is automatically reloaded each time a scene is opened in Katana. If the file
has been changed, the changes are picked up automatically. If the source file cannot be read or no
longer exists, a copy stored in the scene file is used instead, and a warning is printed to the shell.

Control (UI) Default Value Function

source N/A Sets the path to load in the source (file) as the contents of
the
LiveGroup.

For more information, refer to the Asset and File Path
Widget Types in the Common Parameter Widgets.

Miscellaneous Nodes | Other Nodes (Misc)

REFERENCE GUIDE
1056

Control (UI) Default Value Function

N/A Opens the Parameters tab.

[Right-click menu] (when non-editable)

Load... N/A Opens the Load LiveGroup dialog to allow you to select a
LiveGroup source for the node.

Revert N/A Reloads the LiveGroup from its current source, thus
discarding any changes made while it was unlocked. Revert
is only available when a source has been set.

Edit Contents N/A Changes the state of the node to be editable, so that
contents of the node can be modified.

Convert to Group N/A Converts the LiveGroup node to a Group node.

Other | Show
Parameters

N/A Opens the Parameters tab.

[Right-click menu] (when non-editable)

Load... N/A Opens the Load LiveGroup dialog to allow you to select a
LiveGroup source for the node.

Revert N/A Reloads the LiveGroup from its current source, thus
discarding any changes made while it was unlocked. Revert
is only available when a source has been set.

Publish... N/A Opens the Publish LiveGroup dialog for publishing the
parameters and contents of the LiveGroup node as a
LiveGroup source file or asset. This leaves the node in an
editable state for further changes.

Publish and Load... N/A Opens the Publish and Load LiveGroup dialog for
publishing the parameters and contents of the LiveGroup
node as a LiveGroup source file or asset, and for loading the
published source file or asset. This sets the node to be non-
editable and locks the node against further changes.

Convert to Group N/A Converts the LiveGroup node to a Group node.

Other | Show
Parameters

N/A Opens the Parameters tab.

Miscellaneous Nodes | Other Nodes (Misc)

REFERENCE GUIDE
1057

LookFileAssign
Assigns a Look File to a scene graph location defined by a CEL statement.

Connection Type Connection Name Function

Input input The place in the node graph where you want to assign a
look file to the scene graph location.

Control (UI) Default Value Function

CEL None Specifies the scene graph location(s) where the Look File is
assigned.

The scene graph locations are specified using the Collection
Expression Language (CEL). The CEL parameter options are
available by clicking Add Statements.

For more information, refer to the CEL Reference document
found on the documentation HTML page (accessed
through Help > Documentation) or the CEL Statement
Widget Type in Common Parameter Widgets.

asset None The Look File that is assigned to the specified scene graph
location(s).

For more information, refer to the Asset and File Path
Widget Types in the Common Parameter Widgets.

LookFileGlobalsAssign
LookFileGlobalsAssign nodes associate a look file with the /root location and is designed to repeat the
changes made to that location (LookFiles for assets are assigned to the location of the asset).

Also see LookFileManager.

Miscellaneous Nodes | Other Nodes (Misc)

REFERENCE GUIDE
1058

Connection Type Connection Name Function

Input input The place in the node graph where you want to assign a
look file to the /root location.

Control (UI) Default Value Function

asset N/A The asset to assign to the Look File.

For more information, refer to the Asset and File Path
Widget Types in the Common Parameter Widgets.

resolveImmediately No When set to Yes, LookFileResolve runs on the root of the
scene as part of this node. This is useful for overriding or
layering scene root attributes from published Look File
assets

This option has special behavior during Look File baking.
Instead of resolving, it appends the Look to the
lookfile.referencedAssets attribute. This gets included in
the resulting Look File and maintains a live reference to it
during subsequent Katana standard resolution.

Flush Look File Cache N/A Click to flush the Look File cache and force a reload.

MaterialAssign
Assigns materials to geometry in the scene graph.

Connection Type Connection Name Function

Input input The material in the node graph that you want to apply tot
he geometry in the scene graph.

Miscellaneous Nodes | Other Nodes (Misc)

REFERENCE GUIDE
1059

Control (UI) Default Value Function

CEL N/A Sets the CEL specification of scene graph locations on
which the assignment acts.

For more information, see the CEL Reference document
found on the documentation HTML page (accessed
through Help > Documentation) or the CEL widget
parameters in Common Parameter Widgets.

materialAssign N/A Specifies the material to assign. Typically, you middle-
mouse drag this from under /root/materials/geo in the
scene graph. The materialAssign parameter options are

available by clicking the dropdown menu.

For more information, refer to the Path Selection Widget
Types in Common Parameter Widgets.

NonpersistentSwitch
This node is identical to the Switch node, except that the in control is reset to 0 whenever the file is loaded
(the value you set it to in your current session is never saved to the .katana file).

This is useful for switches you may want to use interactively (low-quality settings, for example), that you
don't want to mistakenly have set for a batch render. Using a NonpersistentSwitch ensures that batch
renders always get the left-most input to the node.

Connection Type Connection Name Function

Input Add numbered input
ports (i0, i1, i2) by

pressing in the
node.

The input ports you want to set for different parts of the
node graph.

Miscellaneous Nodes | Other Nodes (Misc)

REFERENCE GUIDE
1060

RenderScript
This node generates a user-specified command in the outline script, following the same dependency rules as
the Render node. This node is not renderable interactively or using the --batch command.

Connection Type Connection Name Function

Input Add numbered input
ports (i0, i1, i2) by

pressing in the
node.

The input ports you want to set for different parts of the
node graph.

Control (UI) Default
Value

Function

command shell Sets the outline function to generate. Default value
of 'shell' expects a single commandArgument,
which is the shell command to run on the farm.

Example:

command("nodeName",

 "commandArg1",

 "commandArg2",

 "keywordName1" => "keywordValue1",

 "keywordName2" => "keywordValue2",

)

commandArguments

commandArguments N/A Array of positional arguments added to the outline
function.

Miscellaneous Nodes | Other Nodes (Misc)

REFERENCE GUIDE
1061

Control (UI) Default
Value

Function

Example:

command("nodeName",

 "commandArg1",

 "commandArg2",

 "keywordName1" => "keywordValue1",

 "keywordName2" => "keywordValue2",

)

keywordArguments

keywordArguments N/A Array of keyword arguments (name => value pairs)
added to the outline function.

Example:

command("nodeName",

 "commandArg1",

 "commandArg2",

 "keywordName1" => "keywordValue1",

 "keywordName2" => "keywordValue2",

)

pythonImports

pythonImports N/A Array of import statements to be added to the
Python farm file.

Example:

from outline.modules.shell import Shell

or

Miscellaneous Nodes | Other Nodes (Misc)

REFERENCE GUIDE
1062

Control (UI) Default
Value

Function

import outline.module.shell

farmSettings

setActiveFrameRange disabled When enabled, activeFrameRange parameters are
exposed to define the active frame range for
rendering.

When disabled, the active frame range is assumed
to be the same as
globals.inTime and globals.outTime.

setActiveFrameRange: enabled

start 1 When setActiveFrameRange is enabled, sets the
start of the active frame range.

end 1 When setActiveFrameRange is enabled, sets the
end of the active frame range.

farmSettings continued

dependAll disabled When enabled, farm dependencies wait until all
frames of this node are rendered before rendering
themselves.

threadable enabled

farmFileName

excludeFromFarmOutputGeneration disabled When enabled, this node does not appear in any
generated farm file (however, the node is still
renderable if called directly).

forceFarmOutputGeneration disabled When enabled, this node always appears in a
generated farm file (regardless of whether it has
any valid outputs).

Miscellaneous Nodes | Other Nodes (Misc)

REFERENCE GUIDE
1063

Control (UI) Default
Value

Function

Note: If
excludeFromFarmOutputGeneration is
also set, the node does not appear in the
generated farm file
(excludeFromFarmOutputGeneration
overrides forceFarmOutputGeneration).

inputs

inputs

RenderSettings

The RenderSettings node defines the 3D render output settings (camera to use, renderer, size of output) for
an image.

Connection
Type

Connection
Name

Function

Input input The place in the node graph where you want to define the 3D render
output settings.

Control (UI) Default Value Function

cameraName /root/world/cam/camera Specifies the camera that the scene should
be rendered through. The field contains a
path to the camera's location in the scene
graph. The cameraName parameter

options are available by clicking the
dropdown menu.

For more information, refer to the Scene
Graph Location Widget Type in Common

Miscellaneous Nodes | Other Nodes (Misc)

REFERENCE GUIDE
1064

Control (UI) Default Value Function

Parameter Widgets.

renderer dl Specifies the renderer to use.

resolution 512x512 Sets the size of the output image.

overscan 0 Pads the data window of the resulting
render by the specified pixel amount on
each side. The frame window is unchanged.

adjustScreenWindow No adjustment Adjusts the pixel aspect ratio to match one
of the device aspect ratio's dimensions.
Either the height or the width of the screen
window is adjusted to match the output
resolution.

maxTimeSamples 1 Sets how many times a point is sampled
when the shutter is open. For animated
parameters within Katana (such as
transforms), this is how many samples are
evaluated from shutter open to close. The
higher the number, the more accurate the
motion blur.

shutterOpen 0 Specifies the timing of the opening and
closing of the camera shutter.

shutterClose 0

cropWindow 0.0, 1.0, 0.0, 1.0 Specifies the render crop window in
normalized coordinates: xmin xmax ymin
ymax, starting in the upper left-hand
corner. The part of the image that renders
has a dotted red line around it.

Note: The dotted red line isn't
displayed unless you are viewing
the RenderSettings node.

interactiveOutputs all Specifies whether all the AOVs are

Miscellaneous Nodes | Other Nodes (Misc)

REFERENCE GUIDE
1065

Control (UI) Default Value Function

rendered during Preview Render, or
whether only the primary pass is rendered.
If you set the output to primary, the Local
Assignment box turns yellow to indicate
that you are using local values.

interactivePrecision float The data type to use for encoding pixels
that are transmitted between a render
process and Katana. You can use this to
reduce the bandwidth required for
transmitting images, but at the cost of a
loss of fidelity.

Choose between three options:

l float : Single-precision floating-point
format (32 bits).

l half : Half-precision floating-point
format (16 bits).

l byte : Reduced precision resulting in
the lowest bandwidth, but possibly
visible banding artifacts and a loss of
fidelity when stopping images up or
down (8 bits). This clamps pixel
values to a range between 0 and 1.

The default value can be set using the
KATANA_DISPLAYDRIVER_PRECISION
environment variable.

geolibRuntime Geolib3-MT Set which Geolib3 Runtime to use. In the
majority of cases, you should select
Geolib3-MT. However, a small number of
scenes that are not set up for concurrent
scene traversal may perform better with the
Classic Runtime from Katana 3.2.

See Geolib3-MT sceneTraversal Parameters

Miscellaneous Nodes | Other Nodes (Misc)

REFERENCE GUIDE
1066

Control (UI) Default Value Function

for parameter details.

cacheEvictionMode DependencyProtecting Choose a cache eviction strategy from one
of the three options:

l Dependency protecting

l Continual

l Relaxed

For details see Performance Optimization
using a Cache Eviction Strategy.

deferredUsdToKatanaEnabled on Toggles the conversion of USD data to
Katana data when performing a render or
with Implicit Resolvers enabled.

adjustScreenWindowWhen deferred Determines how the adjustScreenWindow
parameter (see above) is handled:

l deferred - adjustScreenWindow is
evaluated by the
AdjustScreenWindowResolve Op as
an implicit resolver.

l immediate - adjustScreenWindow
parameter takes effect immediately.

Geolib3-MT sceneTraversal Parameters

opTreeOptimizations

checkbox

Default: Off

When turned on, Geolib3-MT performs a pre-processing step in which it
examines the topology of the Op tree to identify constructs that can be
potentially optimized. One optimization is the collapsing of sequences of Ops of
the same type into a single instance of that Op. There are a number of benefits
to this:

Miscellaneous Nodes | Other Nodes (Misc)

../../../../../Content/ug/optimization/geolib3-eviction.htm#cache-eviction
../../../../../Content/ug/optimization/geolib3-eviction.htm#cache-eviction

REFERENCE GUIDE
1067

l Reduced function call overhead - There is a small cost involved in
scheduling an Op to cook a scene graph location. By combining chains of
similar Ops, it's possible to reduce this function call overhead.

l Reduced memory footprint - A chain of 10 Ops occupies 10 separate
cook results in the caching subsystem, while a successfully collapsed Op
Chain occupies only 1 cook result per location.

The result of evaluating a collapsed chain of Ops, when observed from the most
downstream Op, should be the same as if the chain of Ops were evaluated.

Note: Op API calls to query upstream scene graph results, such as
getAttr(), does not return the expected result when called within a
collapsed chain if one of those Ops within the chain was responsible
for setting that attribute. In this case the Op should use getOutputAttr
() instead.

The Op tree optimizer attempts to collapse any chain of Ops of the same type if
it calls GeolibSetupInterface::setOpsCollapsible() during the setup() call.
Callers of this function must specify the name of an attribute which Geolib3
passes to the Op's cook() call as an Op argument. This attribute contains an
ordered array of attributes (ordered upstream Op to downstream Op)
containing the collapsed Ops' arguments. The Op is then able to deal with this
batch Op argument as appropriate.

verboseLogging

checkbox

Default: Off

When turned on, verbose logging inside the Geolib3-MT runtime is enabled.
This includes verbose logging during scene traversal, and Op tree optimization,
if enabled.

sceneTraversal.cache Parameters

Each Geolib3-MT cache eviction strategy, listed under the cacheEvictionMode parameter, includes a
number of configurable settings based on which eviction strategy you choose. These settings can be
modified from the sceneTraversal.cache menu and can be optimized on a project-by-project basis.

Caching, and the trade-off between memory usage and time to first pixel can have a significant impact on
the performance of scene traversal time and rendering. Using the settings provided it's possible to tune the
memory footprint during the scene traversal phase of rendering.

Miscellaneous Nodes | Other Nodes (Misc)

REFERENCE GUIDE
1068

cacheEviction

checkbox

Default: On

When enabled, data in the cache will be periodically removed (evicted) based on the
selected cacheEvictionMode.

Note: The Geolib3-MT Runtime maintains a cache to improve the locality of
previously cooked data. Cache entries are keyed on pairs of scene graph
location and Op ID.

Disabling cache eviction can decrease scene graph traversal times but may lead to
higher memory usage. When cacheEviction is disabled with large scene graphs, the
available memory can quickly become full.

Tip: While initially it might seem counter-intuitive to disable cache eviction,
there may be scenes where it is appropriate. This may be the case when the
scene and data structures required by the renderer fit comfortably into
memory. Even larger scenes could benefit to some degree, as once the scene
generation phase of rendering is complete, the memory pages occupied by
Geolib3-MT's cook results can no longer be accessed and therefore are not
eligible for paging to disk; as these pages won't be re-paged to main memory
during rendering the performance penalty is minimal.

Dependency Protecting sceneTraversal.cache Parameters

evictionTriggerTimeInterval

Default: 1000ms

The time interval for the time-based scene data cache eviction trigger is
specified in milliseconds.

0ms disables time-based eviction.

evictionTriggerCookCount

Default: 0

The cook count for which the cook-based scene data cache eviction is
triggered.

0 disables cook-based eviction.

mruCookProtectionCount

Default: 0

Specify the maximum number of recently used cooks to safeguard scene
data from being evicted.

Miscellaneous Nodes | Other Nodes (Misc)

REFERENCE GUIDE
1069

Continual sceneTraversal.cache Parameters

cacheLimitingMode

Default: Fixed cache size

Specifies the method for cache eviction.

l Fixed cache size : If the cache size reaches a set limit of the number of
entries, every new entry triggers the removal of one of the least-recently
used.

l Memory-based : If the used memory in the system reaches a set level,
each new cache entry causes removal of a set number of the least-
recently used entries.

For Memory-based, you can set three levels of memory usage: light, medium,
and heavy, to increase the amount of memory used for the cache. Each level
has an eviction count to set how many entries are evicted when the cache hits
that level.

cacheLimitingMode: Fixed cache size

cacheSize

Default: 1000000

Determines the set size of the cache. Each entry in the cache is identified by a
combination of a scene graph location and an Op ID.

When the cache limit is reached, every new cache entry triggers the removal of
one of the least-recently used.

A smaller cache size uses less memory, but it may lead to recooking of evicted
data if it gets removed prematurely, leading to reduced performance.

cacheLimitingMode: Memory-based

lightMemoryLevel

Default: 70%

lightEvictionCount

Default: 1

Set the lowest percentage level of memory usage at which new entries will
trigger the removal of least-recently used entries. The number removed is set
by lightEvictionCount

mediumMemoryLevel

Default: 80%

mediumEvictionCount

Set the middle percentage level of memory usage at which new entries will
trigger the removal of least-recently used entries. The number removed is set
by mediumEvictionCount

Miscellaneous Nodes | Other Nodes (Misc)

REFERENCE GUIDE
1070

Default: 2

heavyMemoryLevel

Default: 90%

heavyEvictionCount

Default: 3

Set the middle percentage level of memory usage at which new entries will
trigger the removal of least-recently used entries. The number removed is set
by heavyEvictionCount

Relaxed sceneTraversal.cache Parameters

cacheSoftLimit

text field

Default: 1,048,576

If cacheEviction is on, the cacheSoftLimit governs how many cook results are
stored in local caches before entries are evicted using a least recently used
eviction policy.

Note: Whilst these entries may be evicted from a local cache they may
be shared amongst a number of other local caches or the central
(shared cache). In which case, the entries' memory won't immediately
be reclaimed.

Consider the maximum depth of the scene graph and Op tree. The
cacheSoftLimit controls the size of the recently used cook result cache on a per
thread basis. This means any locations cooked on a particular thread, or any
locations accessed during the cooking process (such as via getAttr()), are stored
in the local cache and subject to eviction based on the value of the
cacheSoftLimit.

collectionFrequency

text field

Default: 10,000

If cacheEviction is turned on, the collectionFrequency governs the time, in
milliseconds, between collection cycles. During a collection cycle, Geolib3-MT
gathers all cache entries evicted since the previous collection cycle and if the
cook result is no longer used, evict and reclaim the memory for the cook result.

Miscellaneous Nodes | Other Nodes (Misc)

REFERENCE GUIDE
1071

Note: Reducing the collectionFrequency interval causes more
aggressive eviction of cook results leading to a reduced memory
footprint but potentially at the cost of scene traversal time.

useCachePrepopulati
on

checkbox

Default: On

If turned on, Geolib3-MT performs a traversal of the scene graph populating an
internal cache.

The extent of this traversal can be controlled by the settings under
sceneTraversal.cachePrepopulation.

maxCores

text field

Default: 0

Determines how many logical cores Geolib3-MT uses during scene traversal
phase.

Unlike previous versions, Geolib3-MT uses an internal thread pool to improve
scene traversal time. The following diagram demonstrates the difference between
Geolib3-MT and previous versions of Katana.

The default value of 0, causes Geolib3-MT to use all available logical cores on the
host computer.

Miscellaneous Nodes | Other Nodes (Misc)

REFERENCE GUIDE
1072

Note: Whilst the core Geolib3-MT processing engine scales as the
number of cores increases, individual Ops within an Op tree may not
exhibit the same scaling characteristics. It is possible that an increase in
threads can result in an increase of scene traversal time. In this case, the
new profiling tools available in Katana 3.5 can be used to identify these
Ops and optimize their behavior. The same is true of Ops marked
thread unsafe, as these require the acquisition of a Global Execution
Lock (GEL), which further limits scene traversal scalability.

Relaxed sceneTraversal.cachePrepopulation Parameters

preCookSourceOps

checkbox

Default: Off

If turned on, Geolib3-MT first fully traverses the scene generated by any source
Op (any Op with no inputs) found in the Op tree. This setting can provide
benefits when loading in geometry caches or other asset types.

Note: Empirical tests have found that source Ops are typically
followed by some form of prune operation; as a result, in these cases,
turning on preCookSourceOps can generate more scene graph
locations than is required which can lead to increased memory
consumption and traversal times.

preCookKeyOps

checkbox

Default: On

If turned on, Geolib3-MT identifies Ops within the Op tree that can be evaluated
in parallel.

An example of this is the Merge Op:

Geolib3-MT evaluates each branch in parallel, which can reduce scene traversal
times.

preCookAllLocations

checkbox

Default: On

If turned on, Geolib3-MT cooks all remaining scene graph locations, fully
expanding the scene.

Based on the values of the settings above, on completion of the cachePrepopulation phase, the Geolib3-
MT cache is pre-populated with either the whole scene graph or a subsection of it. Geolib3-MT has been
optimized to provide efficient access to renderer plugins via the existing FnScenegraphIterator API to this

Miscellaneous Nodes | Other Nodes (Misc)

REFERENCE GUIDE
1073

cache. This cache is a scalable, thread safe cache, as such >we encourage renderer plugins to access this
cache concurrently to improve the performance of the scene build phase.

Warning: If the Geolib3-MT cache is not fully populated, cache access (via FnScenegraphIterator)
results in a cache miss. In this case the requested location is cooked using the calling thread.

deferredUsdToKatana Settings

These settings determine how the USD data is converted to Geolib data before being sent to a renderer.

They are the same settings found in UsdtoKatana but in this case, the conversion is deferred to render time.

RendererProceduralAssign
The RendererProceduralAssign node allows you to assign renderer procedurals to specific locations in the
scene.

Connection Type Connection Name Function

Input in The place in the node graph where you want to assign
renderer procedurals.

Miscellaneous Nodes | Other Nodes (Misc)

../../../../../Content/rg/usd_nodes/usdtokatana.htm

REFERENCE GUIDE
1074

Control (UI) Default Value Function

CEL N/A Sets the CEL specification of scene graph locations on
which the assignment acts.

The scene graph locations are specified using the
Collection Expression Language (CEL). The CEL
parameter options are available by clicking Add
Statements.

For more information, refer to the CEL Reference
document found on the documentation HTML page
(accessed through Help > Documentation) or the CEL
Statement Widget Type in Common Parameter
Widgets.

rendererProceduralAssign N/A Specifies which procedural to assign. Typically, you'll
middle-mouse drag this from under
/root/materials/proc in the scene graph. The
rendererProceduralAssign parameter options are

available by clicking the dropdown menu.

For more information, refer to the Scene Graph Location
Widget Type in Common Parameter Widgets.

ScenegraphObjectSettings
The ScenegraphObjectSettings allows you to add attributes, used by the Scene Graph tab, to locations
according to the CEL match.

Connection Type Connection Name Function

Input input The place in the node graph where you want to add
attributes to specified locations.

Miscellaneous Nodes | Other Nodes (Misc)

REFERENCE GUIDE
1075

Control (UI) Default Value Function

CEL N/A Specifies the scene graph location(s).

The scene graph locations are specified using the Collection
Expression Language (CEL). The CEL parameter options are
available by clicking Add Statements.

For more information, refer to the CEL Reference document
found on the documentation HTML page (accessed
through Help > Documentation) or the CEL Statement
Widget Type in Common Parameter Widgets.

stopExpand No The Scene Graph tab "Expand..." actions do not traverse
beneath locations at which this enabled.

Switch
This node allows you to switch between multiple input nodes. Only the portion of the node graph connected
to the selected input port on the Switch node is evaluated. You can select which input to choose using the in
parameter on the node.

Connection Type Connection Name Function

Input Add numbered input
ports (i0, i1, i2) by

pressing in the
node.

The input ports you want to set for different parts of the
node graph.

Control (UI) Default Value Function

in 0 Selects the index of the input port (starting at zero) to pass
through to the output.

Miscellaneous Nodes | Other Nodes (Misc)

REFERENCE GUIDE
1076

Teleport
This node can be used to visually clean up a scene by hiding the lines between nodes. In order to attach
more than one node to the Teleport node, click Add > Add Pass Input. Then, in the Node Graph, you can
drag a line from any node to connect it. When inputs are not shown, each connected node appears on the
Teleport node as an output arrow.

Connection Type Connection Name Function

Input in The place in the node graph where you want to clean up
the scene by hiding connecting lines between nodes.

Control (UI) Default Value Function

name output Sets the name for each input.

Show inputs disabled When enabled, the connector between this node and the
inputs are not shown

TimeOffset
In Katana the current time used in parameter evaluation is a property that flows up the graph and is
referenced as a frame in parameter expression. This node modifies that time in upstream nodes. Common
uses are to offset or lock data loaded from an upstream input.

Connection Type Connection Name Function

Input in The place in the node graph where you want to modify the
time of upstream nodes.

Miscellaneous Nodes | Other Nodes (Misc)

REFERENCE GUIDE
1077

Control (UI) Default Value Function

inputFrame The value of frame: a
Python-based
parameter expression
that evaluates to the
current frame.

Sets the value of frame in input nodes. This can be an
expression, for example frame + 10.

UsdActiveSet
UsdActiveSet allows you to activate or deactivate any number of prims in the stage. Deactivation is useful
when you want to remove prims from the scene graph, and exclude them from stage composition. Due to its
focus on non-destructive editing, USD does not support direct prim deletion. Instead, deactivation allows
you to hide the prim and its descendents from scene graph computation.

Note: Activation and deactivation of prims is available within the Scene Explorer using Working
Sets. Working Sets provide a quick shortcut for testing late changes with previews in the Viewer or
Live Render. They act as a temporary override and have no effect on the final render. However,
using a node to deactivate a prim expresses an opinion that the prim should be deactivated for the
final render.

Connection Type Connection Name Function

Input in The incoming scene graph data that the node will operate
on or modify.

Control (UI) Default Value Function

primPaths N/A The path at which to set the active or inactive prim data. If you
set this to the root path (“/”) then the status will apply to to all
root prims.

active off Uncheck to deactivate and check to activate.

Miscellaneous Nodes | Other Nodes (Misc)

scene-explorer.htm

REFERENCE GUIDE
1078

UsdAttributeSet
In USD, the attributes are essentially the defining properties of the prim. As a simple example, one of the
properties of cube prim is “size”, which could appear as follows:

#usda 1.0
def Cube "myCube"
{
float size = 2.0
}

An attribute has a data type (the type is “double” in the example above), name, and value. The value may be
numeric, a string, or an array. Unlike metadata, the value of an attribute may be time-sampled, in that the
attribute may have several values, each of which is active at a given timecode or frame.

Attributes are one of the two defining properties of a prim, together with relationships.

Note: For more details see Attribute in Pixar’s USD Glossary.

Setting and Blocking Attributes
When assigning an attribute to a prim, you can choose between one of three actions:

l Create/Override - Add a new attribute or override the value of an existing one.

l Block - Disable the attribute, effectively blocking its effect on the prim.

l Force Default - Force the attribute back to its default value.

As Block and Force Default don’t require a value, you need only supply the attributeName.

Create/Override requires all the attribute settings including attributeName, attributeType, and value. You
also need to set isCustom to indicate if the attribute is pre-defined or a new, custom attribute.

For time-sampled values, set multisample to Yes. For example, say you’re animating a cube to grow in size,
the attribute in USD code, could look like this:

def Cube “GrowingCube"
{
float size.timeSamples = {
0: 1.0,
2: 2.0,

Miscellaneous Nodes | Other Nodes (Misc)

https://openusd.org/release/glossary.html#attribute

REFERENCE GUIDE
1079

3: 4.0,
}
}

Inputs

Connection Type Connection Name Function

input in The incoming scene graph data that the node will operate
on or modify.

Controls

Control (UI) Default Value Function

primPaths N/A The paths to the Prims that you want to assign this attribute
to.

action Choose how you want to apply the attribute update.

l Create/Override - Create the attribute, or if it exists
already, assign the new value.

l Block - Disable the attribute assignment in the prims,
removing their effect from stage composition.

l Force Default - Force the attribute to adopt its default
value.

attributeName N/A Assign a name to the attribute.

attributeType Double Choose from one of the available data types for the attribute.

multisample Yes Select Yes if the data is time-sampled.

Select No if the value should not vary over time.

isCustom No Select Yes if this is a custom attribute.

value N/A Assign a value to the attribute.

Miscellaneous Nodes | Other Nodes (Misc)

REFERENCE GUIDE
1080

UsdIn
The UsdIn node allows you to import USD assets into Katana.

Universal Scene Descriptor (USD), is an open-source scene information interchange framework developed by
Pixar. USD allows you to assemble and organize large amounts of assets into scenes or shots and transfer
them between Digital Content Creation packages in a non-destructive way. USD files can contain geometry,
materials and shading assignments, lighting, and physics.

For more information on USD, see https://graphics.pixar.com/usd/release/intro.html

Note: For versions of Katana before 4.5v1, you must to enable the USD plug-in using environment
variables. For more information on how to do this, see Loading USD Plug-ins into Katana.

Control (UI) Default Value Function

fileName N/A Specifies where to retrieve the asset, a
USD (.usd, .usda, .usdc, or .usdz) file.

For more information, refer to Asset and
File Path Widget Types.

location /root/world/geo/asset Specifies the scenegraph location where
the USD asset is to be placed. The
location parameter options are available
in either the scenegraph widget or
dropdown menu to the right of the
parameter.

For more information, refer to the Scene
Graph Location Widget Type.

isolatePaths N/A Used to load only the USD contents
below a specified USD prim path.

variants (deprecated) N/A Used to specify USD Variants.

Miscellaneous Nodes | Other Nodes (Misc)

https://graphics.pixar.com/usd/release/intro.html

REFERENCE GUIDE
1081

Control (UI) Default Value Function

This parameter is deprecated, we
recommend to using USDVarientSelect
instead.

ignoreLayerRegex N/A Ignores matching USD layers when a
scene is being loaded into Katana.

motionSampleTimes N/A Specifies the frame-relative sample
times to use when motion blur is
requested using two input frames
separated by a space. For example:

Entering 0 1 loads all samples that
contribute to the current frame's shutter
window.

Entering -1 1 loads all samples that
contribute to the previous, current, and
next frame's shutter window.

The default behavior is no motion
samples, load only the current frame.
Generally, using more samples produces
smoother motion blur, but at the cost of
longer render times.

The number of motionSampleTimes
can be overridden with either
UsdInDefaultMotionSamples or
UsdInMotionOverrides nodes
downstream.

Note: The RenderSettings
node maxTimeSamples
control must be set to match
the second sample time input
to enable motion blur in
renders.

Miscellaneous Nodes | Other Nodes (Misc)

REFERENCE GUIDE
1082

Control (UI) Default Value Function

instanceMode expanded When set to expanded, instances are
loaded as though the children of parent
primitives were there naturally.

When set to sources and instances,
parents of instanced primitives are
created under a sibling of /world
named /instances.

usdPurposeBasedMaterialBinding No When enabled, allows you to specify
material bindings to be loaded in for
objects with a purpose tag within the
USD file.

When disabled, Katana will load in the
full USD scene with all material bindings
resolved.

Note: For more information,
see USD Glossary: Purposes.

prePopulate enabled Assumes all assemblies and pre-
populates present in your USD file are
needed within the scene and loads them
all in.

Having prePopulate is good for
efficiency, as it allows USD to use its own
multithreading.

verbose disabled When enabled, the information
generated during USD scenegraph
generation is output to the command
line.

asArchive disabled When enabled, the type specified in the
location parameter is usd archive
instead of loaded directly into the scene.

Miscellaneous Nodes | Other Nodes (Misc)

https://graphics.pixar.com/usd/release/glossary.html#usdglossary-purpose

REFERENCE GUIDE
1083

Control (UI) Default Value Function

If enabled, variants, ignoreLayerRegex,
motionSampleTimes, and
instanceMode are made unavailable.

evaluateUsdSkelBindings enabled

UsdInActivationSet
Activates or deactivates scopes within the USD stage using the session layer. Deactivated scopes (and their
children) aren't include in stage composition, so it's often more efficient to deactivate something unused
there instead of Katana's Prune or Isolate nodes. Katana doesn't read USD data from locations that are
removed by Prune or Isolate nodes, but they are still considered during USD stage composition.

For more information on USD, see https://openusd.org/release/intro.html

Control (UI) Default Value Function

locations None One or more Katana scenegraph locations loaded from a
UsdIn node.

active No Sets whether the scope is activated, Yes, or de-activated, No.

UsdInheritSet
This node allows you to inherit the hierarchy and properties from one source prim to other prims. If you
make updates to the source prim, all the prims inheriting from it will automatically reflect those updates. This
is particularly useful when dealing with multiple instances of a prim, as it ensures that you only need to make
updates once, and those changes will be applied to all instances.

For example, imagine you have two cubes, cube1, and cube2, which you've created using two
UsdPrimCreates. Cube1 is larger than cube2.

Miscellaneous Nodes | Other Nodes (Misc)

https://openusd.org/release/intro.html

REFERENCE GUIDE
1084

To make cube2 inherit the properties of cube1:

1. Create a UsdInheritSet and open the Parameters tab

2. Set primPaths to /cube2

3. Set the inheritPath to /cube1

4. In this case, listPosition can be set to either its default prepend or append since the order doesn't
affect the cube inheriting another cube's size. This setting becomes more important when there are
multiple items on the list.

Miscellaneous Nodes | Other Nodes (Misc)

REFERENCE GUIDE
1085

Cube 2 now inherits the properties of cube 1.

Input

Connection Type Connection
Name

Function

Input in The incoming scene graph data that the node will operate on or
modify.

Controls

Control (UI) Default Value Function

primPaths n/a Specify the locations of the prims where you want to add an

Miscellaneous Nodes | Other Nodes (Misc)

REFERENCE GUIDE
1086

Control (UI) Default Value Function

inheritance, such as /geo. The inheritance is set on each
specified prim.

inheritPath n/a Specify the location of the prim you wish to inherit from.

listPosition prepend Specifies how Inherits are added to the scene. Options are:

l append - adds new inherits by placing them at the end
of the list. This ensures that they are evaluated after
existing values, giving them the potential to override
preceding definitions.

l prepend - adds new inherits to the front of the list,
causing them to be evaluated before, and potentially
overridden by values added later or in subsequent
layers.

l delete - removes the inherits from the list, preventing
their properties from influencing the composed prim in
the scene.

l reset to explicit - clears any existing inherits on the
prim and sets the inherit list to be only the ones you're
adding. It essentially instructs the USD scene to ignore
any inherits on the prim(s) and only use the new ones.

For more information, refer to the USD Glossary under List
Editing.

UsdLayerWrite
UsdLayerWrite creates a USD layer, allowing you to write USD data directly to a stage from an editable scene
description. This node is a useful tool for quickly adding content to specific locations within your scene.

You can edit the USD file within the Parameters tab or use an external text editor.

Miscellaneous Nodes | Other Nodes (Misc)

https://openusd.org/release/glossary.html#list-editing
https://openusd.org/release/glossary.html#list-editing

REFERENCE GUIDE
1087

Note: UsdLayerWrite primarily serves as a tool for debugging your pipeline, providing a quick and
straightforward means of testing and validating your USD setup.

Control (UI) Default Value Function

layerContent #usda 1.0

(defaultPrim =
"root")

def Xform "root"

{ def Xform "world"

{

}

}

The scene description using standard USDA.

Edit in External Editor N/A Click this to edit the scene description using a text editor
outside Katana.

The choice of editor is set up in Edit > Preferences >
externalTools > Editor. Under editor enter the location of
the editor application.

Katana monitors the text files you edit and updates the
node when changes are detected.

UsdMetadataSet
Metadata provides a useful addition to the data stored for layers, prims, and attributes. The metadata is
supplementary to core data items and may have a role defined by the schema or may be entirely custom
according to the needs of the studio.

Metadata could simply provide descriptive information or documentation for attributes in the prim.
Alternatively, It may contain information for custom workflows or tools. For example, renderer-specific
metadata could provide hints about lighting for the studio’s choice of renderer.

Miscellaneous Nodes | Other Nodes (Misc)

REFERENCE GUIDE
1088

Metadata is different from most other data in that it cannot be time-varying according to timecode or frame
count. Once set, metadata remains fixed for the duration of the scene.

New USD metadata is declared using the ‘custom’ keyword preceding the data type, metadata name, and
value, for example:
custom string lightingArtist = “JaneJones”

Setting USD Metadata
UsdMetadataSet lets you set metadata at one of three levels, selected using the hierarchy dropdown:

l Attribute - set metadata on prim attributes contained within selected prims

l Layer - set metadata on the top-level pseudo root

l Prim - set metadata on the selected prims

For Atrribute and Prim you need to populate primPaths to identify the target prims. As Layer operates on
the pseudo root, no prim paths are required.

Once a hierarchy level is selected, the settings are dynamically updated to offer the necessary parameters.

Metadata is defined using the metadataName, metadataType, and value fields. The metadataType
dropdown is populated with all supported types in your USD version. For example, String, Float,or Double.

When setting metadata for attributes, use the attributeNames field to define a customizable list of
attributes. Use the value in the first box to choose how many attributes you want to list.

A list of three attribute slots.

All types require the isCustom field to be set correctly to indicate if the metadata is pre-defined or a new,
custom field.

Miscellaneous Nodes | Other Nodes (Misc)

REFERENCE GUIDE
1089

Inputs

Connection Type Connection Name Function

input in The incoming scene graph data that the node will operate
on or modify.

Controls

Control (UI) Default Value Function

hierarchy Prim The USD entity type on which to set the metadata. Choose
from Attribute, Layer, or Prim.

primPaths N/A Add the path(s) to the prims onto which to set the
metadata.

This property is not required when hierarchy is Layer

metadataName N/A The name of the metadata parameter.

metadataType Token The data type for the metadata parameter.

isCustom No Select Yes if this is a custom parameter and not one
already offered by the schema.

value N/A The value to assign to the metadata.

UsdPayloadSet
The UsdPayloadSet node adds payloads to a scene. A payload is a special type of reference that can be
optionally loaded or kept unloaded, providing a mechanism to defer the loading of certain, often resource
intensive, parts of a scene until they are required. This allows for more efficient scene management and
faster initial load times.

Miscellaneous Nodes | Other Nodes (Misc)

REFERENCE GUIDE
1090

Unlike standard references that are loaded automatically when a scene is opened, payloads provide flexibility
by letting users choose when to load them through the Payload working set. This is useful for large scenes
where only a subset of the content might be needed immediately. Payloads which aren’t loaded are still
visible in renders (same principle as deferred loading).

To improve efficiency, Katana uses a deferred loading mechanism, for all data including USD. In the Katana
Scene Graph tab, locations are only loaded and evaluated as you expand the graph. The same behavior has
been introduced to the Scene Explorer tab and is used for both the USD Scene Graph and the Katana Scene
Graph. However, if you need more control over this loading behavior with USD, you can use the Payload
Working Set and Visibility Working Set. These give you full control over loading behaviour, or when locations
are loaded.

Payloads are typically used for elements like background sets, props, or secondary characters that might not
be needed immediately during scene setup or initial playbacks.

By using payloads, artists and TDs can more effectively manage and navigate complex scenes, ensuring
resources are used efficiently and only loading heavy or less-critical data when it's genuinely needed.

Inputs

Connection Type Connection Name Function

Input in The incoming scene graph data that the node will operate
on or modify.

Controls

Control (UI) Default Value Function

primPaths N/A Specify locations where payloads are applied. They are
generated at each specified path, in the order in which the paths
are listed.

asset N/A Loads in the attached file as a payload. This gets converted to
the "asset/path.usda" section of a full payload path:
@asset/path.usda@</prim/path>

assetPrimPath N/A The path to the prim that is to be used as a payload, located

Miscellaneous Nodes | Other Nodes (Misc)

REFERENCE GUIDE
1091

Control (UI) Default Value Function

inside the asset file. Or if no file is added, a prim path to a prim
in the current stage can be used. This gets converted to the
"prim/path" section of a full payload path:
@asset/path.usda@</prim/path>

listPosition prepend Specifies how the payloads are added to the scene. Options are:

l append - adds new payloads by placing them at the end
of the list. This ensures that they are evaluated after
existing values, giving them the potential to override
preceding definitions.

l prepend - adds new payloads to the front of the list,
causing them to be evaluated before, and potentially
overridden by values added later or in subsequent layers.

l delete - removes the payloads from the list, preventing
their properties from influencing the composed prim in
the scene.

l reset to explicit - clears any existing payloads on the
prim and sets the payload list to be only the ones you're
adding. It essentially instructs the USD scene to ignore any
payloads on the prim(s) and only use the new ones.

For more information, refer to the USD Glossary under List
Editing.

UsdPrimCreate
In USD, a prim (short for primitive) is the fundamental building block of a scene. A prim represents a single
element in the scene graph hierarchy and describes various types of entities and structures. Examples
include points, cubes, materials, meshes, and xforms. The hierarchical locations of prims can be used to
structure your scene before importing components into the prims.

Note: This node is the USD equivalent of Katana’s PrimitiveCreate node.

Miscellaneous Nodes | Other Nodes (Misc)

https://openusd.org/release/glossary.html#list-editing
https://openusd.org/release/glossary.html#list-editing
https://learn.foundry.com/katana/Content/rg/3d_nodes/primitivecreate.html

REFERENCE GUIDE
1092

UsdPrimCreate creates a prim defined by the type, which is selected from a list of available USD prim types.
The primSpec specifier determines how the prim is treated during composition and has the following
options:

l define -create the primitive in the scene.

l over - a prim that is used only to override opinions that exist in the scene.

l class - for defining default attributes using a class template.

By default, only the final, composed prim receives the new primitive using the primSpec specifier, with all
others in the prim hierarchy affected using “over”. This is to avoid overwriting the PrimSpecs in lower layers
that go to compose the final prim. However, if you want to use the same specifier throughout the prim
hierarchy, check primSpecHierarchy.

Katana interrogates the USD version in use to obtain a complete list of prim types to populate the type
dropdown.

Once a type is selected, Katana then obtains all the properties for that prim type and populates the
properties for further customization.

Note: For more information on prims see The USD Glossary.

Inputs

Connection Type Connection Name Function

Input in The incoming scene graph data that the node will operate
on or modify.

Controls

Control (UI) Default Value Function

primPaths none Specify locations where prims are to be created, such as
/geo. Prims are generated at each specified path, in the

Miscellaneous Nodes | Other Nodes (Misc)

https://openusd.org/release/glossary.html#usdglossary-apischema

REFERENCE GUIDE
1093

Control (UI) Default Value Function

order listed.

primSpec define Choose the specifier for the prim. This is the role or
function of the prim in the scene description.
• define - defines a new, complete specification for a prim

and its properties within a layer.
• class - defines a prim meant to act as a template for

other prims. It ensures uniformity and reusability
throughout the scene by allowing other prims to adopt
or specialize it, inheriting its characteristics.

• over - indicates that the prim is an override. It's used to
non-destructively modify prims defined in lower-priority
layers. A prim with an "over" specifier is meant to modify
or extend the properties or hierarchy of existing prims,
without redefining them entirely.

For more information, refer to the USD Glossary under
specifier.

type none Choose the type of prim to create at the position
hierarchy defined by primPath.

primSpecHierarchy off If checked, create all prims in the primPaths hierarchy
using the primSpec. If unchecked, all prims except the last
one, will apply the primSpec in an "over" manner to avoid
primSpecs in lower-order layers being overwritten.

properties n/a A dynamically generated list of properties and settings for
the selected prim type.

UsdPrimvarSet
Primvars (short for primitive variables) are particular kinds of attributes that have two main functions:

l Store data that varies through interpolation - Primvars are used to hold data that varies over the
surface of a primitive like UV coordinates or vertex colors.

Miscellaneous Nodes | Other Nodes (Misc)

https://openusd.org/release/glossary.html#usdglossary-specifier

REFERENCE GUIDE
1094

l Override attributes on a per-primitive basis - Primvars can override attributes on a particular
primitive, meaning you can customize the appearance or behavior of individual primitives within the
scene hierarchy independently of others. This lets you change the details on a primitive that may be
subject to shared attributes. For example, changing the color of one tree in a forest from green trees
to red.

For example, consider a simple line defined by two points (vertices). You could define a color primvar to
indicate that the color must change along the line from red to blue and that it is uniformly interpolated:

def BasisCurves "SimpleLine" {
 int[] curveVertexCounts = [2] #Number of vertices
 point3f[] points = [(0, 0, 0), (1, 1, 1)] #Co-ordinates of the endpoints

 # The primvar for color:
 color3f[] primvars:color = [(1, 0, 0), (0, 0, 1)] # Red to Blue
 uniform token primvars:color:interpolation = "vertex" #Interpolate the color
 #betwee
n the vertices
}

For more information see Primvar in Pixar’s USD Glossary.

You can set a new primvar, or override the value of an existing one. Alternatively, you may need to remove a
primvar’s effect on the stage. These are achieved by selecting Create/Override or Block in the action
dropdown.

Like Attributes, the value Primvars can be time-sampled, in that they can vary according to time. For this kind
of primvar, set multisample to Yes.

Primvars offer a number of interpolation types to transition data between each data point and one is
selected using interpolation. For more details on each, see the table below.

Inputs

Connection Type Connection Name Function

input in The incoming scene graph data that the node will operate
on or modify.

Miscellaneous Nodes | Other Nodes (Misc)

https://openusd.org/release/glossary.html#usdglossary-primvar

REFERENCE GUIDE
1095

Controls

Control (UI) Default Value Function

action Create/Override Choose how you want to apply the primvar update.

Create/Override - Create the primvar, or if it exists already, assign
the new value.

Block - Disable the primvar assignment in the prim(s), removing their
effect from stage composition.

name n/a Assign a name to the primvar.

type Double Choose a data type for the primvar.

multisample Yes Select Yes if the data is time-sampled.

isCustom No Select Yes if this is a custom primvar.

interpolation constant Choose the interpolation type:

l Constant - Uses only one constant value for the prim. For
example, a single color applied to an entire mesh.

l Uniform - Uses one value per geometric element, such as a
face in a mesh. For example, if you have a cube and want each
face to have a different color, you would use uniform
interpolation..

l Varying - Uses one value for each vertex, but the value is
smoothly interpolated over the whole face. This can an be used
for smooth color gradients across faces.

l Vertex - Uses one value per vertex of the primitive. For a mesh,
this could be colors or UVs specified at each vertex, leading to
gradients across the faces.

l FaceVarying - Uses one value per vertex per face. This is often
used for UV coordinates and allows for each face of a mesh to
have its own separate set of UVs or vertex attributes, even if the
vertices are shared between faces.

Miscellaneous Nodes | Other Nodes (Misc)

REFERENCE GUIDE
1096

Control (UI) Default Value Function

Note: The names of these types are different to the
convention used by Katana’s arbitrary attributes’ scope. For
reference, see Arbitrary Attributes.

value n/a Assign a value to the primvar.

UsdPythonWrite
The UsdPythonWrite node lets you use Python in the Parameters tab to author USD layers. The resulting
layer is composed with layers upstream.

Note: The UsdPythonWrite node is not meant for standard workflow usage. We recommend you
to use it for debugging and rapid testing.

Enabling the UsdPythonWrite Node
By default, the UsdPythonWrite node type is disabled. To enable it you must edit your launcher script.

For Windows
Copy and paste this environment variable into your launcher script.

set KATANA_ENABLE_USDPYTHONWRITE_NODE=1

For Linux
Copy and paste this environment variable into your launcher script.

export KATANA_ENABLE_USDPYTHONWRITE_NODE=1

Miscellaneous Nodes | Other Nodes (Misc)

https://learn.foundry.com/katana/dev-guide/AttributeConventions/ArbitraryAttributes.html

REFERENCE GUIDE
1097

Control (UI) Default Value Function

layerContent layer.definePrim
("/root", "Scope")

A Python script to describe a USD scene.

Edit in External Editor N/A This feature allows you to edit your Python scripts using
software other than Katana.

This opens an external editor, as set up in Edit >
Preferences > externalTools > Editor, for editing the
script without blocking Katana's user interface. Under
editor enter the location of the application you want to
use.

Katana monitors the text files you are editing, and when
it detects that they have changed, it updates the node
accordingly.

UsdReferenceSet
In Universal Scene Description (USD), references are fundamental composition operations used to construct
scenes using a modular approach. They enable the reuse and assembly of content by incorporating the
contents of one layer into another layer. This reuse goes beyond simple import and offers powerful overrides
and variations when combined with other composition operations.

Artists can add external USD files, like assets or scene fragments, to a scene using references. This promotes
reusability and flexibility, enabling the use of a single asset across multiple scenes without making
destructive edits.

Example: When an artist makes a generic tree asset as a USD file, they can reference this tree in different
environments or scenes. If they want to create a forest, they can reference the same tree multiple times with
different overrides. This creates variation in size, color, or form, resulting in a diverse forest using just one
base asset.

References facilitate layered composition and versioning by allowing localized changes without modifying
the original asset file. In essence, they help efficiently manage and deploy assets in complex scenes, ensuring
consistent updates and enabling targeted modifications.

Miscellaneous Nodes | Other Nodes (Misc)

REFERENCE GUIDE
1098

To help understand how references are defined, consider referencing a simple sphere primitive from a scene
file. Imagine the sphere is called blueSphere and has been defined in a file called aSphere.usda. Our simple
scene file could reference the file as follows:

#usda 1.0
def "SceneRoot" {
references = @./aSphere.usda@blueSphere
}

Setting USD References
Use UsdReferenceSet to add references to your scene that refer to other prims..

Prims to contain the references are added to primPaths.

You can then browse to a USD asset file using the asset field. Once selected, the assetPrimPath is populated
with the scene hierarchy for the asset, allowing you to select a prim to reference.

Once the reference has been selected, you can decide how to place the reference in relation to existing
references on the prim using the listPosition dropdown. Choose to append to the end of the existing list of
references, prepend to the start, or clear the existing references and replace with the ones you’re adding
(reset to explicit). Alternatively, choose delete to remove the references that you’ve specified in the node
parameters.

Controls

Control (UI) Default Value Function

primPaths N/A Specify locations where references are applied. References are
generated at each path, following the order in which they are
listed.

asset N/A Load a USD file to use for references. This gets converted to the
"asset/path.usda" section of a full reference path:
@asset/path.usda@</prim/path>

assetPrimPath N/A The path to the Prim to be used as a reference. All prims in the
asset file are given in their scene hierarchy.

If no reference file is added, you can use the prim path to a prim
in the current stage. This becomes the "prim/path" part of a full

Miscellaneous Nodes | Other Nodes (Misc)

REFERENCE GUIDE
1099

Control (UI) Default Value Function

reference path, in this format:
@asset/path.usda@</prim/path>.

listPosition prepend Specifies how the references are added to the scene. Options
are:

l append - adds the new reference(s) by positioning them
at the end of the current list, ensuring they are evaluated
after existing values, allowing them to potentially override
preceding definitions.

l prepend - adds the reference(s) to the front of the list,
causing them to be evaluated before, and potentially
overridden by values added later or in subsequent layers.

l delete - removes one or more references from the list,
preventing their properties from influencing the
composed prim in the scene.
reset to explicit - clears any existing references on the
prim and sets the reference list to be only the new
reference(s) you're adding. It essentially instructs the USD
scene to ignore any previous references on the prim(s)
and only use the new ones

For more information, refer to the USD Glossary under List
Editing.

UsdRelationshipSet
UsdRelationshipSet sets a relationship on a prim. In USD, a relationship (or relationship property) is a
directed connection between a prim and a property. It helps to establish references, dependencies, and links
within the scene graph, avoiding data duplication. Instead of duplicating data in multiple locations, a
reference points to the source. Any updates made to the source are then reflected in the referring prim.

Example: For example, let's say you have a skyscraper called "MegaStructure" with multiple interchangeable
lobby designs. Instead of storing lobby details within the "MegaStructure" prim, we can use a relationship to
reference a particular lobby layout. For example, rel lobbyDesign = </path/to/futuristicLobbyAsset>.

Miscellaneous Nodes | Other Nodes (Misc)

https://openusd.org/release/glossary.html#list-editing
https://openusd.org/release/glossary.html#list-editing

REFERENCE GUIDE
1100

This relationship has the name lobbyDesign and its value is the path to the choice of lobby asset. This allows
"MegaStructure" to dynamically associate with the futuristic lobby design. If the design preference changes,
the relationship can easily point to a different lobby asset, enabling simple swaps and modifications while
optimizing data storage and scene management.

Custom and Pre-Defined Relationships
In a USD schema, relationship properties may already exist to construct the prim in accordance with the prim
schema. Alternatively, a custom relationship property is not predefined by any schema. Instead, it is added to
meet specific needs. They allow the expansion of properties of a prim beyond what the predefined schemas
offer.

When adding relationship, you can tell Katana if it is a custom relationship by setting isCustom to Yes. You
should choose the correct option to ensure correct operation.

Inputs

Connection Type Connection Name Function

input in The incoming scene graph data that the node will operate
on or modify.

Controls

Control (UI) Default
Value

Function

primPaths N/A The list of prim paths to receive the relationship.

Manage this list using the Add Locations menu.

relationshipName N/A Assign a name to the relationship.

isCustom No Select Yes if this is a custom relationship.

Miscellaneous Nodes | Other Nodes (Misc)

REFERENCE GUIDE
1101

Control (UI) Default
Value

Function

value N/A The destination of the relationship. It can be a path to another prim,
multiple prims, or specific properties. The target path is represented in a
string format as </path/to/targetPrim>.Manage this list using the Add
Locations menu.

UsdSchemaSet
A USD schema is structured data that determines the role of a prim on the stage. Schemas provide a
framework to define common types and are essentially the blueprint for specific objects or behaviors within
the stage.

The schema specifies attributes such as size, height, display color, and other characteristics that make up the
object.

Creating a prim of a certain type directly assigns a predefined schema, dictating its properties and behavior.

The UsdSchemaSet node associates an additional type or category of behavior and data with a prim. By
setting the schema in the node, you indicate that this specific prim should be handled using an additional
defined set of attributes and behaviors particular to that schema.

For example, you could use UsdSchemaSet to add shadow properties to a light giving it attributes that it
normally wouldn’t have.

With the UsdSchemaSet you are setting a schema using an API (like a MaterialBindingAPI or VisibilityAPI).
API schemas ending in "API" are designed to be applied to prims to add supplementary capabilities or
attributes to an existing prim non-destructively (without altering the original type of the prim). This flexibility
allows artists and TD’s to create more complex and layered scene descriptions while maintaining a clear and
efficient structure.

There are many schemas available such as lights, shadows, render-specific attributes, and you also have the
flexibility to create custom schemas to suit your specific needs.

Example: Imagine you have a light in your 3D scene. By default, this light doesn't cast shadows. If you want it
to, you can use the UsdSchemaSet to add a "ShadowAPI" schema, providing new attributes related to
shadows. This way, without changing the original light, you add the ability for it to cast shadows in your
scene, showcasing how schemas in USD let you flexibly add features to prims.

Miscellaneous Nodes | Other Nodes (Misc)

REFERENCE GUIDE
1102

In the UsdSchemaSet node, you can pick an API Schema from a list that automatically updates itself. This
keeps the list current, even if new items are added after setting up Katana or with updated USD versions. This
way, you always see the most up-to-date options available and can integrate schemas beyond Katana's
original set.

Note: For more information on USD schema see The USD Glossary.

Apply Schemas to a Prim
You can apply multiple schemas to a prim. For example, if we take a diskLight created with UsdPrimCreate
we can add a cone shaping by applying a schema.

1. In the viewer monitor select display and untick default lighting.
2. Create a plane using another UsdPrimCreate, specify the primPath (for example /bg) but this time set

the type to Plane. This will be the background for the light to shine on. Without it the light would be
invisible.

3. Set the plane’s axis to Y under properties and increase length and width to 10.
4. Let’s now create a UsdPrimCreate node and in primPaths specify the path where your new diskLight

prim will reside in the USD scene hierarchy. (For example /light)
5. Set the type parameter to DiskLight.
6. Increase the exposure property of the diskLight under properties>inputs. For example, set it to 20 to

enhance it’s visibility.

Miscellaneous Nodes | Other Nodes (Misc)

https://openusd.org/release/glossary.html#usdglossary-apischema

REFERENCE GUIDE
1103

You can then apply a ShapingAPI on top of the light using the UsdSchemaSet node. To do this follow these
next steps:

1. Create a UsdSchemaSet node, then drag and drop the diskLight prim path (in this example /light)
from the Scene Explorer into primPaths using your middle mouse button.

2. Change type to ShapingAPI.

3. Then adjust the angle in properties>inputs>shaping>cone and the focus in >shaping to control
the cone's opening and achieve your desired light shape.

Miscellaneous Nodes | Other Nodes (Misc)

REFERENCE GUIDE
1104

This now means that the diskLight, which already has properties like diffuse, color, intensity, exposure will
also inherit all the attributes of the ShapingAPI, such as angle, softness, focus, and other ShapingAPI
properties. The diskLight now has an enhanced set of properties, combining both its inherent attributes and
those inherited from the ShapingAPI, enabling more nuanced control over its visual appearance and
behavior in the scene.

Controls

Control (UI) Default Value Function

primPaths none Specify locations where API Schemas are applied. Schemas are
generated at each specified path, following the order in which
they are listed.

type none Choose the type of API Schema to create from the list. This list
is updated in real-time. This ensures it includes newer schemas
beyond Katana's original set, providing you with the latest
options.

listPosition prepend Specifies how the API Schema is added to the scene. Options

Miscellaneous Nodes | Other Nodes (Misc)

REFERENCE GUIDE
1105

Control (UI) Default Value Function

are:

l append - integrates new schemas by positioning them
at the end of the list, ensuring they are evaluated after
existing values, and thereby, allowing them to
potentially override preceding definitions.

l prepend - adds one or more schemas to the front of the
list, causing them to be evaluated before, and
potentially overridden by values added later or in
subsequent layers.

l delete - removes one or more schemas from the list,
preventing their properties from influencing the
composed prim in the scene.

l reset to explicit - Ignoring all previously compiled
schemas, this operation sets the list strictly to the
defined value(s), providing a clear and explicit new
starting point for schema evaluation.

"list" specifically refers to the finalized list of all values and
properties applicable to a prim, derived after evaluating all
USD layers and compositional arcs.

For more information, refer to the USD Glossary under List
Editing.

properties n/a A list of dynamically generated properties and settings
depending on which type of API Schema type is selected.

UsdSpecializeSet
Specializes are a composition arc that allows one prim to "specialize" another prim. This means the
specializing prim inherits the structure and properties of the prim it specializes, but it doesn't replace or
override it. The specializes relationship is a means to establish a "class-like" inheritance mechanism within
USD.

Miscellaneous Nodes | Other Nodes (Misc)

https://openusd.org/release/glossary.html#list-editing
https://openusd.org/release/glossary.html#list-editing

REFERENCE GUIDE
1106

Like inheritance, you can create a specialized prim from another prim. However, the overrides on the
specialized prim level will always take precedence over any further references. This can be useful to ensure
certain aspects are never overridden.

Unlike references, which can replace a prim with content from another USD file, specializes allows one prim
to inherit the attributes and children of another without replacing it.

Multiple prims can specialize a single prim, allowing layered inheritance where each specializing prim can
further refine or extend the properties of the original.

Specializes are often used to set up a base set of properties or structure that can be shared across multiple
prims. Think of it as setting up a "class" in programming, where multiple objects can inherit properties and
methods from the class but can also have their unique attributes.

It's a powerful tool in the composition toolkit of USD, allowing for the setup of shared structures and
properties that can be extended in a modular and non-destructive manner.

Example: Consider constructing digital models of cars using USD. There's a fundamental "car" prim, which
describes generic attributes like having wheels, and seats.

Now, we wish to create specialized versions of this car, such as a convertible and truck. Employing the
"specializes" relationship in USD, both the convertible and the truck inherit the foundational attributes from
the car prim, ensuring they have wheels, and seats. Yet, they bring in their distinct characteristics like a
retractable roof for the convertible and extra space for the truck.

If a modification is made to the basic car prim, such as changing the wheel design, both the convertible and
truck automatically incorporate the change while preserving their individual specialties. This approach
ensures a consistent base among all car models while allowing each specialized version to express its unique
features.

Inputs

Connection Type Connection Name Function

input in The incoming scene graph data that the node will operate
on or modify.

Miscellaneous Nodes | Other Nodes (Misc)

REFERENCE GUIDE
1107

Controls

Control (UI) Default Value Function

primPaths N/A Specify locations where specializes are applied. They are
generated at each specified path, following the order in
which they are listed.

specializePath N/A The path to a Prim you wish to specialize from.

listPosition prepend Specifies how the specializes are added to the scene.

Options are:

l append - adds the new specializes by putting them at
the end of the current list, ensuring they are evaluated
after existing values,. This allows them to potentially
override preceding definitions.

l prepend - adds the new specializes to the front of the
list, causing them to be evaluated before, and
potentially overridden by, values added later or in
subsequent layers.

l delete - removes one or more specializes from the list,
preventing their properties from influencing the
composed prim in the scene.

l reset to explicit - ignore all previously compiled
specializes and set the to only the new value(s),
providing a clear and explicit new starting point for
specializes evaluation.

For more information, refer to the USD Glossary under List
Editing.

Miscellaneous Nodes | Other Nodes (Misc)

https://openusd.org/release/glossary.html#list-editing
https://openusd.org/release/glossary.html#list-editing

REFERENCE GUIDE
1108

UsdSubLayerAdd
A layer is a foundational element in the USD stage and is typically a file containing scene information. The file
can be a .usda (ASCII) or .usdc (binary) file, though the more generic .usd extension may be used for either
type.

Sublayers allow artists to build complex scenes by layering various USD files together, each one potentially
containing different elements or variations of a scene. Sublayers are ordered in a stack, and they are
composed together based on this order, enabling artists to manage, override, and organize scene content in
a non-destructive and scalable manner.

This structuring allows for efficient collaboration across departments, as different aspects of a scene (like
lighting, animation, or shading) can be worked on in parallel and then combined together cohesively.

Layers can be further broken down into sublayers, where content is organized into its parts, each stored in a
separate USD file.

Example: The layers could be separated as follows:

Layout layer - Items are brought into their initial positions on the stage.
Animation layer - Allows your animation department to override any characters or props with animation
data.
FX layer - FX is added to bring additional motion and life to the scene.
Lighting layer - Lights are added and any final rendering optimizations are applied.

Each of these layers can have both an entire sequence and a per-shot level version.

Layer Interaction
Layers are organized in a stack, where the topmost layer can override the data in the layers below. This
enables non-destructive editing, as the data can be overridden but not lost.

Given the fact that data can be overridden, it is not absolutely certain that it will be used. Consequently, the
data is known as an “opinion”. As part of scene composition, opinions are resolved to establish the data to
use depending on the strength of the opinion. This strength is determined by a prescribed set of rules
including layer order.

The various mechanisms that are used to combine layers and resolve data are known as the “composition
arc”, which essentially determines how everything fits together to produce the final composition.

Miscellaneous Nodes | Other Nodes (Misc)

REFERENCE GUIDE
1109

Organizing Layers
The UsdSubLayerAdd node resembles the functionality of the UsdIn node but expands its capabilities with
layer separation. You can create separate sublayers like "fx," "layout," and "lighting" to organize your project
into department-specific layers.

You can also divide these sublayers into additional sublayers to accommodate different versions, variants, or
sequence-based effects, forming multiple branches from this structure.

Plus, sublayers offer you the flexibility to selectively choose which data to override at different points in your
project.

Miscellaneous Nodes | Other Nodes (Misc)

REFERENCE GUIDE
1110

Layering sublayers into layer stacks is especially helpful for loading root-level layers without requiring a
specific prim path. This feature is useful for incorporating entire stages, or layering prims that share the same
hierarchy.

Note: For more information, refer to the USD Glossary under SubLayers.

Inputs

Connection Type Connection Name Function

Input in The incoming scene graph data that the node will operate
on or modify.

Control (UI) Default Value Function

asset Loads in a file as a sublayer.

l Browse… - open a file browser to locate the USD file.

l Set Node Name from Path - automatically rename your
node to match the name of the imported asset.

UsdTransformSet
In USD, a "transform" commonly refers to the spatial transformation of a prim in the scene. Transformations
are used to position, orient, and scale prims in 3D space. The main types of transformations are translation,
rotation, and scale. You can also set a pivot point from which translation or rotation occurs.

UsdTransformSet applies a 3D transform to one or more prims as defined by their paths in the USD scene.
You can choose to append the transform to existing transforms using appendTransform, or leave it
unchecked to overwrite any transforms on that prim.

Enter transform values along the x, y, and z axes for translate, rotate, and scale. You can also move the pivot
point for transformations away from the origin by translation and rotation.

Miscellaneous Nodes | Other Nodes (Misc)

https://openusd.org/release/glossary.html#usdglossary-sublayers

REFERENCE GUIDE
1111

The three transformation types can be applied in order as defined by any permutation of scale, rotate, and
translate. Select this using the order dropdown.

Note: UsdTransformSet is the USD equivalent of Transform3D.

Inputs

Connection Type Connection Name Function

input in The incoming scene graph data that the node will operate
on or modify.

Controls

Control (UI) Default
Value

Function

primPaths N/A The prim locations as described by their paths in the USD scene
hierarchy

xformOpName same as
node name

The name given to the node. This is assigned automatically as the
node name to make it unique. You can override the default to allow
overrides for specific transform Ops.

The node name is set using the ‘nodeName’ expression. This can be
edited if you prefer.

appendTransform off Check this to append the transform to the current list of transforms
that are active on the prim(s).

If unchecked, the transform overwrites any existing transforms on the
prim(s).

order Scale Rot
Trans

Select the order by which the three transformations are applied.

Miscellaneous Nodes | Other Nodes (Misc)

REFERENCE GUIDE
1112

Control (UI) Default
Value

Function

rotateOrder Rx Ry Rz Select the axes order by which the rotation takes place. By default the
rotation is first around the x axis, then y, and finally z.

translate 0.0,0.0,0.0 The amounts to translate along the x, y, and z axes.

rotate 0.0,0.0,0.0 The amounts to rotate the prims around the x, y, and z axes.

scale 1.0,1.0,1.0 The amounts to scale the prims along the x, y, and z axes.

pivotTranslate 0.0,0.0,0.0 The amounts by which the pivot point for transformations is translated
along the x, y, and z axes.

pivotRotate 0.0,0.0,0.0 Enter the amounts by which the pivot point for transformations is
rotated around the x, y, and z axes.

UsdVariantSet
USD's robust support for non-destructive editing offers various features for managing versions of prims. This
includes the ability to version parts of the scene while preserving the original data using variants. A variant
allows multiple alternative versions of scene data to coexist in the same stage. They enable artists and
technical directors to handle multiple versions of a prim or a group of prims without having to duplicate the
entire asset.

Key to working with variants is the concept of a VariantSet. This is a convenient container that holds groups
of variants for a prim or prims. For example, you might place different lighting variants in a VariantSet called
“DuskLighting”, holding several options for different lighting styles that you could use in a dusk-lit scene.

UsdVariantSet lets you select a variant for a prim from a VariantSet. The variantSet dropdown is
automatically populated with any variant sets associated with the prim location in primPath. Select from
variantSet to populate the variant dropdown with all the variants contained in the set. You can then choose a
variant to apply to the prim from the variant dropdown.

Note: The node UsdVariantSet node is named consistently with the other “set” nodes and refers to
setting the variant on the prim, not the noun for a collection, “set”.

Miscellaneous Nodes | Other Nodes (Misc)

REFERENCE GUIDE
1113

Use Add Locations to manage the list of additional prims for the variant.

l Path - Add an entry path field to populate as required.

l Append Scene Explorer Selection - Add a new path field to the list containing the current selection
in the Scene Explorer.

l Replace with Scene Explorer Selection - Replace all current path entries with the selection from the
Scene Explorer.

Inputs

Connection Type Connection Name Function

input in The incoming scene graph data that the node will operate
on or modify.

Controls

Control (UI) Default
Value

Function

primPath n/a Specify the location of a prim that is to be assigned the variant.

variantSet n/a Choose a VariantSet from the ones available on the prims in
primPath.

variant n/a Choose a variant from the list of those in the set named in
variantSet.

Miscellaneous Nodes | Other Nodes (Misc)

REFERENCE GUIDE
1114

Control (UI) Default
Value

Function

additionalPrimPaths n/a Add any additional prims that should use the variant.

Use the Add Locations menu (see above) to manage this list.

VariableDelete
This node deletes the locally-set graph state variable listed in the node's variableName parameter.

Connection Type Connection Name Function

Input in The place in the node graph where you want to delete
locally-set graph state variables.

Control (UI) Default Value Function

variableName var1 Specify the name of the local graph state variable that is to
be deleted by the node.

VariableEnabledGroup
This node works like a group, but allows you to enable or disable a variable pattern to which other variable
nodes attempt to match.

Control (UI) Default Value Function

variableName var1 Specify the name of the graph state variable to which you
want to match a specific pattern.

pattern N/A Specify the pattern input that the graph state variable

Miscellaneous Nodes | Other Nodes (Misc)

REFERENCE GUIDE
1115

Control (UI) Default Value Function

should match in order to enable the variable group. A
pattern can be any input.

The pattern parameter is a CEL statement widget. For more
information about CEL statements, refer to Common
Parameter Widgets.

VariableSet
This node sets a graph state variable pattern to which other variable nodes attempt to match.

Connection Type Connection Name Function

Input in The place in the node graph where you want to set a graph
state variable pattern.

Control (UI) Default Value Function

variableName var1 Specify the name of the graph state variable to which you
want to match a specific pattern.

variableValue N/A Specify the value input that the graph state variable should
match. A value must be a string.

VariableSwitch
This is a specialized Switch node that selects an input based on the value of a Graph State Variable.

Miscellaneous Nodes | Other Nodes (Misc)

REFERENCE GUIDE
1116

Connection Type Connection Name Function

Input Add numbered input
ports (i0, i1, i2) by

pressing in the
node.

The input ports you want to set for different parts of the
node graph.

Control (UI) Default Value Function

variableName var1 The name of the Graph State Variable used to select an
input port.

patterns N/A A set of patterns linked to input ports, used to select an
input port according to the value of the Graph State
Variable. Patterns may be added and deleted using the

wrench dropdown menu for the group and existing
patterns, respectively. Input ports for which no pattern is
defined match their exact port name.

A pattern takes the form of a CEL statement, where the {@
[name]=="value"} syntax may be used to specify
requirements of additional Graph State Variables.

Note: If a VariableSwitch node defines no patterns, input select is performed using a faster look-
up operation. This may be useful for nodes with a large number of input ports.

ViewerObjectSettings
Adjusts how objects are displayed in the Viewer and Viewer (Hydra) tab.

Connection Type Connection Name Function

Input in The object whose display you want to modify in the Viewer
tab.

Miscellaneous Nodes | Other Nodes (Misc)

REFERENCE GUIDE
1117

Control (UI) Default Value Function

CEL N/A The scene graph locations are specified using the
Collection Expression Language (CEL). The CEL
parameter options are available by clicking Add
Statements.

For more information, refer to the CEL Reference
document found on the documentation HTML page
(accessed through Help > Documentation) or the CEL
Statement Widget Type in Common Parameter
Widgets.

drawOptions

hide No Sets whether the object should be hidden in the Viewer.

fill inherit Sets how the object is displayed, as:
• points - display the object using points at the vertices

or control points.
• wireframe - display the object using wireframe mode.
• solid - display the object as a solid. If the display style

for the object uses a 3D lighting model, then display
the object using that lighting model, whereas if the
Viewer tab’s display style is points or wireframe,
display the object using a single solid color.

• inherit - no change to the object’s display style, use
the default.

light inherit Sets the lighting model for the object. This setting
doesn’t influence the object when it is drawn using
wireframe or points. You can set it to:
• default - uses the simple shaded lighting model.
• shaded - uses the viewer shader assigned to the

object (or the default viewer shader if one isn’t
assigned).

• inherit - don’t override the Viewer tab display style.

smoothing inherit When the objects referenced by the CEL statement are

Miscellaneous Nodes | Other Nodes (Misc)

REFERENCE GUIDE
1118

Control (UI) Default Value Function

being displayed as points or lines, this parameter sets
whether they should be anti-aliased. The options are:
• off - no anti-aliasing.
• lines - when displayed as a wireframe, the objects are

anti-aliased.
• points - when displayed using points, the objects are

anti-aliased.
• both - when displayed as a wireframe or using points,

the objects are anti-aliased.
• inherit - no object specific override, use the current

default.

windingOrder inherit Sets whether the object has a clockwise or
counterclockwise winding order. The winding order
determines which direction is considered out from an
object and which direction is in.

pointSize 4 Sets the size of the points when the object is rendered
as a series of points.

color 0.4, 0.4, 0.4 Sets the default draw color.

For more information, refer to the Color Widget Type in
the Common Parameter Widgets.

faceCulling inherit Allows geometry in the Hydra Viewer to be rendered
without culling faces.
• back - cull back-facing faces
• front - cull front-facing faces
• none - don't cull any faces
• inherit - inherit the culling style from ancestor

locations

By default, back-facing faces are culled in the Hydra
Viewer.

Miscellaneous Nodes | Other Nodes (Misc)

REFERENCE GUIDE
1119

Control (UI) Default Value Function

Note: The OSG Viewer does not cull faces.

annotation

text None Sets the text to display with the geometry. When
empty, no tag is displayed.

color 0.4, 0.4, 0.4 Sets the default background color for any annotation
text.

For more information, refer to the Color Widget Type in
the Common Parameter Widgets.

ViewerObjectSettings parameters continued

pickable Yes Sets whether the object is pickable or not.

resolveMaterialInViewer default Controls whether the Viewer should resolve materials.

l default - Use default rules to resolve materials in
the Viewer.

l always - Always resolve materials in the Viewer.
l never - Never resolve materials in the Viewer.

Lighting Tools

parameters N/A Add extra parameters to be displayed in the Lighting Tools light parameter widgets
when a light is selected, provided the parameters are present in the light.

The parameters are added after the default parameters Intensity, Exposure and
Color.

Enter the parameter path in the first text field, and the label for your widget
parameter to use in the second text field.

l Parameter path
For example, dlLightParams.coneAngle

Miscellaneous Nodes | Other Nodes (Misc)

REFERENCE GUIDE
1120

l Label (optional)
For example, Ang

Note: If the label is not provided, the parameter's original label will be
used.

Note: For a workflow example on customizing your light parameter
widgets, see Customizing the Light Widget.

hideHandle No Determines whether the center of interest arrow handles are drawn for unselected
lights.

l Yes - Center of interest arrow handles are hidden for unselected lights.
l No - Center of interest arrow handles are not hidden for unselected lights.

VisibilityAssign
The VisibilityAssign node changes the visibility setting of objects in the scene. The attribute is inherited, thus
large sections of the scene graph can be made visible/invisible by assigning to common parents

A child can be explicitly set to visible even if its parent is not visible. For example, to render just one of
several siblings, set the parent's visibility to 0, and set the item to render's visibility to 1. All siblings that are
not explicitly marked picks up the parent's visibility setting of 0, but the item to render uses its explicitly set
value of 1.

The Scene Graph tab displays visibility of each scene graph item as icons.

Connection Type Connection Name Function

Input in The object whose visibility setting you want to change.

Miscellaneous Nodes | Other Nodes (Misc)

REFERENCE GUIDE
1121

Control (UI) Default Value Function

CEL N/A Specifies what part of the scene graph to assign this
attribute to.

The scene graph locations are specified using the Collection
Expression Language (CEL). The CEL parameter options are
available by clicking Add Statements.

For more information, refer to the CEL Reference document
found on the documentation HTML page (accessed
through Help > Documentation) or the CEL Statement
Widget Type in Common Parameter Widgets.

visible 1 Sets the visibility of objects in the render. 0 specifies not
visible in render and anything else specifies visible in
render.

Miscellaneous Nodes | Other Nodes (Misc)

REFERENCE GUIDE
1122

End User License Agreement (EULA)
PLEASE READ THIS EULA CAREFULLY BEFORE ORDERING OR DOWNLOADING OR USING ANY SOFTWARE
PRODUCTS OF FOUNDRY. YOUR ATTENTION IS PARTICULARLY DRAWN TO: (A) CLAUSE 8 IN WHICH
SUBSCRIPTION CUSTOMERS AGREE TO THE AUTO-RENEWAL OF THEIR LICENSE ON AN ANNUAL BASIS; (B)
CLAUSES 14 AND 15 WHERE WE LIMIT OUR LIABILITY TO USERS OF OUR SOFTWARE PRODUCTS; (C)
CLAUSE 18.2 REGARDING THE DATA WE MAY COLLECT AND HOW WE MAY USE IT; AND (D) CLAUSE 18.3
WHERE YOU AUTHORISE FOUNDRY TO USE THE SOFTWARE TO ACCESS AND COLLECT CERTAIN
INFORMATION FROM YOUR COMPUTER NETWORKS AND TO TRANSMIT THIS INFORMATION TO
FOUNDRY.

IMPORTANT NOTICE TO ALL USERS: BY DOWNLOADING AND/OR USING THIS SOFTWARE YOU
ACKNOWLEDGE THAT YOU HAVE READ THIS EULA, UNDERSTAND IT AND AGREE TO BE BOUND BY ITS
TERMS AND CONDITIONS. IF YOU DO NOT AGREE TO THE TERMS OF THIS EULA DO NOT DOWNLOAD,
INSTALL, COPY OR USE THE SOFTWARE.

IMPORTANT NOTICE TO CONSUMERS WHO PURCHASE SOFTWARE PRODUCTS DIRECT FROM FOUNDRY:
YOU HAVE THE RIGHT TO CANCEL YOUR CONTRACT AND OBTAIN A FULL REFUND IN ACCORDANCE WITH
CLAUSE 9. HOWEVER YOU WILL LOSE THIS RIGHT ONCE YOU INSTALL THE SOFTWARE OR LOGIN TO AN
INDIVIDUAL LOGIN OR TEAM LOGIN LICENSE. THIS DOES NOT AFFECT YOUR CONSUMER RIGHTS IN
RELATION TO DEFECTIVE PRODUCTS OR SERVICES.

This END USER LICENSE AGREEMENT (“EULA”) is, in cases where you purchase our product(s) direct from
Foundry, incorporated into the agreement between The Foundry Visionmongers Ltd a company registered in
England and Wales with company number 4642027 and whose registered office is at Squire Patton Boggs
Secretarial Services Limited, Rutland House, 148 Edmund Street, Birmingham, United Kingdom, B3 2JR and
whose address for correspondence is 5 Golden Square, London W1F 9HT, (“Foundry”), and you, as either an
individual or a single company or other legal entity (“Licensee”) on the terms of which you will purchase the
products and services of Foundry (the “Agreement”). In cases where you purchase our product(s) from one
of our resellers, the use of the term “Agreement” in this EULA refers to the arrangements between Foundry
and Licensee on which Licensee is permitted to use Foundry’s product(s), including this EULA.

Foundry reserves the right to refuse to grant a License (as defined in clause 1.1) to any Licensee who has
failed to pay any sum due either to Foundry or to a reseller of Foundry, in connection with the Agreement, in
connection with any other software license to use any Software product(s) of Foundry and/or in connection
with any Maintenance and Support Agreement as defined in clause 8.5.

1. GRANT OF LICENSE

1.1 Subject to terms and the scope of the applicable licence model as set out in clause 2, the limitations of
clause 3 and all the other terms of the Agreement, Foundry grants to Licensee a limited, non-transferable

Miscellaneous Nodes | Other Nodes (Misc)

REFERENCE GUIDE
1123

(subject to clause 2.1(b) below) and non-exclusive license to download, install and use a machine readable,
object code version (subject to clauses 3 and 4 below) of the software program(s) purchased by Licensee (the
“Software”) and any accompanying user guide and other documentation (the “Documentation”), solely for
Licensee’s, where the Licensee is a business, own internal purposes or, where the Licensee is a consumer,
domestic and private purposes (the “License”); provided, however, that Licensee’s right to download, install
and use the Software and the Documentation is limited to those rights expressly set out in this EULA.

1.2 Some types of license models set out in clause 2.1 limit the installation and use of the Software to the
country in which Licensee is based at the date of purchase (the “Home Country”), unless otherwise agreed
in writing. Notwithstanding such limits, Licensee may still use the Software outside the Home Country if
traveling or working outside the Home Country on a temporary basis provided that such use does not
exceed 70 days in aggregate in any rolling twelve month period or, in the case of any license which lasts for
less than twelve months, does not exceed the number of days representing 20% of the term of the license.

1.3 Only to the extent that is proportionate to, and reasonably necessary to support, Licensee’s licensed use
of the Software in accordance with the Agreement, Licensee may (provided valid license keys or license
entitlements have been obtained) install the Software on more than one computer, provided always that
Licensee’s concurrent use of different installations of the Software does not exceed the number of valid
Licenses that Licensee has paid for or licensed (as applicable).

2. LICENSE MODELS

2.1 For each Software product that you purchase from Foundry, the product will be licensed (and not sold) to
you on the terms of one or more of the license models set out in this clause 2.1 and clause 2.2 as specified in
Foundry’s invoice or order confirmation (as applicable), and subject to the other terms and conditions of this
EULA. Please note that some licensing models set out below do not apply to certain Software products of
Foundry. Whichever licensing model applies, Licensee shall not at any one time use more copies of the
Software than the total number of valid licenses purchased by Licensee.

(a) “Offline Node Locked License”

If Licensee purchases an Offline Node Locked License, Licensee will install and use only a single copy of the
Software on only one computer at a time in the Home Country.

(b) “Modo Individual License”

If Licensee purchases a Modo Individual License then: (a) Licensee warrants and represents that Licensee is a
natural person and that only Licensee will use the Software; (b) Licensee may transfer or assign (“transfer”)
the Modo Individual License to another natural person (“Assignee”) subject to Licensee: (i) notifying
Foundry of such transfer and obtaining Foundry’s express written consent, (ii) paying an administrative fee
with respect to such transfer as may be required by Foundry, and (iii) after transferring a single copy of the
Software to the Assignee, deleting any copies of the Software that Licensee may have in Licensee’s
possession, custody or power; (c) Licensee shall not share its login details for the Software with any third

Miscellaneous Nodes | Other Nodes (Misc)

REFERENCE GUIDE
1124

party (d) Licensee shall be entitled to use the Software on different computers which may be located
anywhere and use is not limited to the Home Country; (e) use of the Software shall be limited to no more
than one concurrent use at all times.

(c) “Offline Floating License”

If Licensee purchases an Offline Floating License, then: (a) Licensee may use the Software on any number of
computers, provided that the number of concurrent users shall never exceed the total number of valid
Offline Floating Licenses purchased by Licensee; and (b) use of the Software shall be limited to any site in the
Home Country.

(d) “Individual Login License”

If Licensee purchases an Individual Login License, Licensee warrants and represents that Licensee is a natural
person and that only Licensee shall use the Software. Licensee will be issued with log in details and may use
the Software on any number of computers (but not simultaneously).

(e) “Team Login License”

If Licensee purchases a Team Login License, then: (a) Licensee may use the Software on any number of
computers, provided that the number of concurrent users shall never exceed the total number of valid Team
Login Licenses purchased by Licensee; (b) use of the Software shall be limited to any site in the Home
Country; and (c) use of the Software, and changes to the user authorizations within Licensee’s team
organization(s), shall be in accordance with the terms of Foundry’s Team Login Licensing Rules as published
on its website and which may be amended from time to time.

(f) “Nuke Indie License”

If Licensee purchases a License for Nuke Indie, then: (a) Licensee warrants and represents that Licensee (i) is a
natural person and that only Licensee will use the Software; (ii) is working independently and shall not use
the Nuke Indie License in a pipeline with other Nuke commercial or Nuke Indie licenses, whether those
licenses are held by the Licensee, other individuals or other businesses or organisations; and (iii) earns less
than $100,000 USD (or local equivalent) a year; and (iv) that Licensee satisfies all criteria set out in Foundry’s
Nuke Indie Eligibility Requirements as published on its website and which may be amended from time to
time (the “Nuke Indie Eligibility Requirements”); (b) Licensee shall not share its login details for the Software
with any third party; (c) Licensee shall not purchase or use more than one Nuke Indie License; (d) Licensee
may use the License on different computers, subject to (i) a maximum of two computer authorisations at any
one time and (ii) no more than one concurrent user at any one time; and (e) Licensee shall use the Software
in accordance with terms of the Nuke Indie Eligibility Requirements, including abiding by any functional
restrictions; and (f) the provisions of clause 8 shall apply.

(g) “Modo Subscription License”

If Licensee purchases an Individual License for Modo on a subscription basis, then: (a) Licensee warrants and
represents that Licensee is a natural person and that only Licensee will use the Software; (b) Licensee shall

Miscellaneous Nodes | Other Nodes (Misc)

REFERENCE GUIDE
1125

not share its login details for the Software with any third party; (c) Licensee may use the Software on different
computers which may be located anywhere and use is not restricted to the Home Country; (d) Licensee may
use the License on different computers, subject to (i) a maximum of two computer authorisations at any one
time and (ii) no more than one concurrent user at any one time; (e) Licensee shall not purchase or use more
than one Modo Subscription License; and (f) the provisions of clause 8 shall apply.

(h) “Mari Individual Subscription License”

If Licensee purchases an Individual License for Mari on a subscription basis then: (a) Licensee warrants and
represents that Licensee is a natural person and that only Licensee will use the Software; (b) Licensee shall
not share its login details for the Software with any third party; (c) Licensee may use the Software on different
computers which may be located anywhere and use is not restricted to the Home Country; (d) Licensee may
use the License on different computers, subject to (i) a maximum of two computer authorisations at any one
time and (ii) no more than one concurrent user at any one time; (e) Licensee shall not purchase or use more
than one Mari Individual Subscription License; and (f) the provisions of clause 8 shall apply.

(i) “Rental License”

If Licensee has purchased a License on a rental basis, the License shall be limited to the term of the rental as
agreed in writing with Foundry after which it shall automatically expire.

(j) “Educational License”

If Licensee has purchased the Software on the discounted terms of Foundry’s Educational Policy published
on its website (the “Educational Policy”), Licensee warrants and represents to Foundry as a condition of the
Educational License that: (i) (if Licensee is a natural person) he or she is a part-time or full-time student at the
time of purchase and will not use the Software for any commercial, professional or for-profit purposes; (ii) (if
the Licensee is not a natural person) it is an organization that will use the Software only for the purpose of
training and instruction, and for no other purpose, and (iii) Licensee will at all times comply with the
Educational Policy (as such policy may be amended from time to time). Unless the Educational License is a
Floating License, Licensee shall use the Software on only one computer at a time.

(k) “Graduate License”

If Licensee has purchased the Software on the discounted terms of Foundry’s Graduate Licence, Licensee
warrants and represents to Foundry as a condition of the Graduate Licence that the Licensee has graduated
from a university or tertiary education institute no more than six (6) months prior to the grant of the
Graduate Licence. The Licensee may use the Software in a personal capacity only (namely, as a sole trader or
freelancer). For the avoidance of doubt, Licensee may not use the Graduate License in connection with any
employment or other such collaborations with studios or similar organisations. Foundry reserves the right to
require evidence of graduation by the Licensee. Each Graduate License shall be deemed to be a one (1) year
Rental License after which it shall automatically expire.

(l) “Non-Commercial License”

Miscellaneous Nodes | Other Nodes (Misc)

REFERENCE GUIDE
1126

If the License is a Non-Commercial License, Licensee warrants and represents that Licensee is a natural
person, that they will only access and/or use one copy of a Non-Commercial License for personal,
recreational and non-commercial purposes and that only Licensee will use the Software. Under a Non-
Commercial License, Licensee will not use the Software: (a) in conjunction with any other copies or versions
of the Software, under any type of License model; (b) for any commercial, professional, for-profit and/or on-
sale purpose or otherwise to provide any commercial service(s) to a third party (whether or not for financial
or other reward and including for education, instruction of or demonstration to any third party for
commercial purposes); (c) in the course of any employment or business undertaking of Licensee; (d) on any
commercial premises during business hours (except where use of the Software is solely for a personal,
recreational, educational or other non-commercial purpose); and/or (e) to create any commercial tools or
plug ins.

(m) “Modo Steam Edition”

A version of Modo with limited functionality as described in the Documentation is available to purchase on
discount terms through Valve Corporation’s Steam store. If Licensee has purchased such version, Licensee
warrants and represents to Foundry as a condition of the Agreement that: (i) Licensee is a natural person;
and (ii) Licensee will use the Software strictly through Steam and only for personal, recreational and non-
commercial use, except only that if Licensee uses the Software to create assets and content Licensee may sell
such assets and content through Valve’s Steam Workshop.

(n) “Modo indie” and “Mari indie”

Variants of Modo and Mari with limited functionality as described in the Documentation are available to
purchase on discount terms through Valve Corporation’s Steam store. If Licensee has purchased such a
variant, Licensee warrants and represents to Foundry as a condition of the Agreement that: (i) Licensee is a
natural person; or (ii) Licensee is an entity in the direct ownership of a single natural person; (iii) Licensee will
only access and/or use one copy of either variant; and (iv) only Licensee will use the Software.

(o) “Trial License”

Licensee may register for a “Trial License” of the Software (not available for all products or in all regions or
markets). A Trial License lasts a limited specified period on the expiry of which the Software will automatically
cease to function. Foundry may terminate any Trial License for convenience immediately on notice to
Licensee. Licensee will use the Software for product evaluation and learning purposes only and on only one
computer at a time.

(p) “Subscription License”

Any reference to a Subscription License shall mean a Modo Subscription License, Nuke Indie License or a
Mari Individual Subscription License, as the case may be.

2.2 If Licensee has purchased a License that permits “non-interactive” use of the Software (“Headless
Rendering”), Licensee is authorized to use a non-interactive version of the Software for rendering purposes

Miscellaneous Nodes | Other Nodes (Misc)

REFERENCE GUIDE
1127

only (i.e. without a user, in a non-interactive capacity) and shall not use such Software on workstations or
otherwise in a user-interactive capacity. Headless Rendering is not available on all products. In all cases
except Modo (in respect of which there is no limit on the amount of Headless Rendering allowed), Headless
Rendering licenses may be used on any number of computers, provided that the number of concurrent
computers shall never exceed the total number of valid Headless Rendering licenses purchased by Licensee.

3. RESTRICTIONS ON USE

Please note that in order to guard against unlicensed use of the Software, a license key is required to
access and enable the Software. Licensee is authorised to use the Software in machine readable, object
code form only (subject to clause 4), and Licensee shall not: (a) assign, sublicense, sell, distribute, transfer,
pledge, lease, rent, lend, share or export the Software, the Documentation or Licensee’s rights under this
EULA; (b) alter or circumvent the license keys or other copy protection mechanisms in the Software or
reverse engineer, decompile, disassemble or otherwise attempt to discover the source code of the Software
in each case except as and to the extent that applicable law requires such reverse engineering,
decompilation, disassembly or discovery to be permitted and it is not lawful to contract out of such
requirement; (c) implement or use any method or mechanism designed to enable product functionality not
available in the Software but available in (i) other Foundry products; or (ii) other Foundry releases of the
same product; (d) (subject to clause 4) modify, adapt, translate or create derivative works based on the
Software or Documentation; (e) use, or allow the use of, the Software or Documentation on any project other
than a project produced by Licensee (an “Authorized Project”) or to provide a service (whether or not any
charge is made) to any third party; (f) allow or permit anyone (other than Licensee and Licensee’s authorized
employees to the extent they are working on an Authorized Project) to use or have access to the Software or
Documentation; (g) copy or install the Software or Documentation other than as expressly provided for in
this EULA; or (h) take any action, or fail to take action, that could adversely affect the trademarks, service
marks, patents, trade secrets, copyrights or other intellectual property rights of Foundry or any third party
with intellectual property rights in the Software (each, a “Third Party Licensor”). For purposes of this clause
3, the term “Software” shall include any derivatives of the Software.

Notwithstanding clause 3(b) above, where the reduction of the Software to human readable form is
necessary for the purposes of integrating the operation of the Software with the operation of other software
or systems used by the Licensee in accordance with section 50B of the Copyright Designs and Patents Act
1988 (or any analogous legislation in other jurisdictions), prior to reducing the Software to human readable
form (whether by reverse engineering, decompilation or disassembly), the Licensee shall notify Foundry and
allow Foundry a reasonable period to either carry out such action as is required to fulfil the integration or
provide the information necessary to achieve such integration to the Licensee, and in either case the
Licensee shall meet Foundry’s reasonable costs in doing so.

Unless Licensee has purchased an Individual License, a Team Login License or an Individual Login License, if
the Software is moved from one computer to another (or, in the case of an Offline Floating License, from one
license server to another), the issuing of replacement or substituted license keys is subject to and strictly in

Miscellaneous Nodes | Other Nodes (Misc)

REFERENCE GUIDE
1128

accordance with Foundry’s License Transfer Policy, which is available on Foundry’s website and which
requires a fee to be paid in certain circumstances. Foundry may from time to time and at its sole discretion
vary the terms and conditions of the License Transfer Policy.

4. SOURCE CODE

Notwithstanding that clause 1 defines “Software” as an object code version and that clause 3 provides that
Licensee may use the Software in object code form only:

4.1 if Foundry has agreed to license to Licensee (including by way of providing SDKs, upgrades, updates or
enhancements/customization) source code or elements of the source code of the Software, the intellectual
property rights in which belong either to Foundry or to a Third Party Licensor (“Source Code”), Licensee
shall be licensed to use the Source Code as Software on the terms of this EULA and: (a) notwithstanding
clause 3 (c), Licensee may use the Source Code at its own risk in any reasonable way for the limited purpose
of enhancing its use of the Software solely for, where the Licensee is a business, its own internal business
purposes or, where the Licensee is a consumer, domestic and private purposes and in all respects in
accordance with this EULA; (b) Licensee shall in respect of the Source Code comply strictly with all other
restrictions applying to its use of the Software under this EULA as well as any other restriction or instruction
that is communicated to it by Foundry at any time during the Agreement (whether imposed or requested by
Foundry or by any Third Party Licensor);

4.2 to the extent that the Software links to or itself incorporates any open source software and/or software
libraries (“OSS Components”) that are provided to Licensee with or as part of the Software, then where such
OSS Components are licensed on the terms of an open source software licence that requires Foundry to
make the OSS Components available to the Licensee on specific terms (the “OSS Licence Terms”), those
OSS Components are licensed to Licensee on, and subject to, the terms of the relevant OSS Licence Terms;

4.3 where Foundry is required by any OSS Licence Terms to make the source code of the relevant OSS
Component available to the Licensee, Foundry will at any time during the three year period starting on the
date of the Agreement, at the request of Licensee and subject to Licensee paying to Foundry a charge that
does not exceed Foundry’s costs of doing so, provide Licensee with the source code of the relevant OSS
Component (the “OSS Source Code”) in order that Licensee may modify the OSS Component in accordance
with the relevant OSS Licence Terms, together (where appropriate) with certain object code of the Software
necessary to enable Licensee to re-link any modified OSS Components to the Software (the “Object”); and

4.4 notwithstanding any other term of the Agreement, Foundry gives no express or implied warranty,
undertaking or indemnity whatsoever in respect of the Source Code, the OSS Components, the OSS Source
Code or the Object, all of which are licensed on an “as is” basis, or in respect of any modification of the
Source Code, the OSS Components or the OSS Source Code made by Licensee (“Modification”). Licensee
may not use the Object for any purpose other than its use of the Software in accordance with this EULA.
Notwithstanding any other term of the Agreement, Foundry shall have no obligation to provide support,
maintenance, upgrades or updates of or in respect of any of the Source Code, the OSS Components (save for

Miscellaneous Nodes | Other Nodes (Misc)

REFERENCE GUIDE
1129

any obligations Foundry may have in respect of any elements that form part of the Software as a whole), the
OSS Source Code, the Object or any Modification. Licensee shall indemnify Foundry against all liabilities and
expenses (including reasonable legal costs) incurred by Foundry in relation to any claim asserting that any
Modification infringes the intellectual property rights of any third party.

5. BACK-UP COPY

Licensee may store one copy of the Software and Documentation off-line and off-site in a secured location
within the Home Country that is owned or leased by Licensee in order to provide a back-up in the event of
destruction by fire, flood, acts of war, acts of nature, vandalism or other incident. In no event may Licensee
use the back-up copy of the Software or Documentation to circumvent the usage or other limitations set
forth in this EULA.

6. OWNERSHIP

Licensee acknowledges that the Software (including, for the avoidance of doubt, any Source Code that is
licensed to Licensee) and Documentation and all related intellectual property rights and other proprietary
rights are and shall remain the sole property of Foundry and the Third Party Licensors. Licensee shall not
remove, or allow the removal of, any copyright or other proprietary rights notice included in and on the
Software or Documentation or take any other action that could adversely affect the property rights of
Foundry or any Third Party Licensor. To the extent that Licensee is authorized to make copies of the Software
or Documentation under this EULA, Licensee shall reproduce in and on all such copies any copyright and/or
other proprietary rights notices provided in and on the materials supplied by Foundry hereunder. Nothing in
the Agreement shall be deemed to give Licensee any rights in the trademarks, service marks, patents, trade
secrets, confidential information, copyrights or other intellectual property rights of Foundry or any Third
Party Licensor, and Licensee shall be strictly prohibited from using the name, trademarks or service marks of
Foundry or any Third Party Licensor in Licensee’s promotion or publicity without Foundry’s prior express
written approval.

Subject to clause 4.3, Foundry undertakes (the “Undertaking”) to defend Licensee or at Foundry’s option
settle any claim brought against Licensee alleging that Licensee’s possession or use of the Software or
Documentation in accordance with the Agreement infringes the intellectual property rights of a third party in
the same country as Licensee (“Claim”) and shall reimburse all reasonable losses, damages, costs (including
reasonable legal fees) and expenses incurred by or awarded against Licensee in connection with any such
Claim, provided that the Undertaking shall not apply where the Claim in question is attributable to
possession or use of the Software or Documentation other than in accordance with the Agreement, or in
combination with any hardware, software or service not supplied or specified by Foundry. The Undertaking is
conditional on Licensee giving written notice of the Claim to Foundry as soon as reasonably possible,
cooperating in the defence of the Claim and not making any admission of liability or taking any step
prejudicial to the defence of the Claim. If any Claim is made, or in Foundry’s reasonable opinion is likely to be

Miscellaneous Nodes | Other Nodes (Misc)

REFERENCE GUIDE
1130

made, against Licensee, Foundry may at its sole option and expense (a) procure for Licensee the right to
continue using the Software, (b) modify the Software so that it ceases to be infringing, (c) replace the
Software with non-infringing software, or (d) terminate the Agreement immediately by notice in writing to
Licensee and refund the License Fee (less a reasonable sum in respect of Licensee’s use of the Software to
the date of termination) on return of the Software and all copies by Licensee. The Undertaking constitutes
Licensee’s exclusive remedy and Foundry’s only liability in respect of any Claim.

7. LICENSE FEE

7.1 Licensee acknowledges that the rights granted to Licensee under this EULA are conditional on Licensee’s
timely payment of the license fee payable to Foundry in connection with the Agreement or, as the case may
be, payable to Foundry’s reseller (the “License Fee”). Except as expressly set out in clause 8.8, License Fee
shall be payable in full as one single payment.

7.2 Licensee will be charged and agrees to pay to Foundry or Foundry’s authorised reseller (as applicable): (a)
the License Fee as notified by Foundry (or its reseller) at the time of the initial purchase of the License; and
(b) in respect of any Subscription Autorenewal Period for a Subscription License, the License Fee as notified
by Foundry (or its reseller) on or about the applicable Renewal Date. Unless stated otherwise, any Licence
Fee notified to the Licensee by Foundry (or its reseller) is exclusive of VAT and any other similar taxes, duties
or levies, which shall be payable by the Licensee (and the Licensee agrees to pay) in addition to the Licence
Fee.

7.3 In the cases of Non-Commercial NUKE or Trial Licenses for the avoidance of doubt, the fact that no
License Fee may be payable shall not be construed as a waiver by Foundry of any right or remedy available
to it in relation to any breach by Licensee of this EULA or the Agreement, or of any other right or remedy
arising under applicable law, all of which are expressly reserved.

8. SUBSCRIPTION LICENSES AND AUTO-RENEWAL

8.1 If Licensee has purchased a Subscription Licence, the License shall be limited to the Initial Subscription
Period and any/all Auto-renewal Periods (each as defined below) (together the “Subscription Period”) after
which it shall automatically expire.

8.2 The Subscription Licence shall begin as soon as Foundry accepts Licensee’s order by issuing Licensee with
a license key (the “Subscription Start Date”) and shall continue for an initial period of twelve (12) months
(the “Initial Subscription Period”) unless earlier terminated in accordance the terms of this EULA.

8.3 Unless Licensee opts out of auto-renewal in accordance with clause 8.6 then upon the first anniversary of
the Subscription Start Date and each subsequent anniversary (each a “Subscription Renewal Date”),
Licensee’s Subscription Licence shall renew automatically for a further twelve (12) months (each an “Auto-

Miscellaneous Nodes | Other Nodes (Misc)

REFERENCE GUIDE
1131

renewal Period”). Licensee’s Subscription License will continue to auto-renew in this manner until Licensee
opts out of auto-renewal or unless earlier terminated in accordance with the terms of this EULA.

8.4 Prior to each Subscription Renewal Date, Foundry shall send one (1) email to advise you that your
Subscription License is approaching auto-renewal to the contact email address as provided by Licensee in
accordance with clause 22. The reminder email will be sent not less than thirty (30) days prior to the relevant
Subscription Renewal Date.

8.5 Subject to Licensee’s timely payment of the applicable License Fee, a Subscription Licence shall include
access to certain maintenance and support services for the Subscription Licence in accordance with the
terms of the Maintenance and Support Agreement which is available on Foundry’s website (the
“Maintenance and Support Agreement”).

8.6 Opting Out of Auto-renewal. If Licensee wishes to opt out of auto-renewal then you must email
licenses@foundry.com providing details of the Subscription Licences which you wish to opt out not less than
seventy-two (72) hours prior to the relevant Subscription Renewal Date. Provided that Licensee notifies
Foundry in accordance with the provisions of this clause 8.6 then your Subscription License will not auto-
renew and shall expire at the end of the then-current Subscription Period. If you require further Maintenance
and Support then please refer to Foundry’s Maintenance and Support Policy as published on its website
from time to time.

8.7 Increases to the License Fee for Subscription Licenses. Foundry reserves the right to increase the
License Fee for Subscription Licenses from time to time provided that it shall provide Licensee with not less
than thirty (30) days’ notice of any increase prior to the relevant Subscription Renewal Date.

8.8 Payment in Installments. If Licensee is paying the License Fee for the Subscription License in
instalments (as shall be noted in the applicable invoice), then the License Fee shall be owing on the
Subscription Start Date and any/all Subscription Renewal Dates and shall be payable in twelve (12) equal
monthly instalments thereafter, or on termination of this agreement if earlier. By placing an order for a
Subscription License payable in instalments, Licensee requests and authorizes Foundry (or its agents) to take
one twelfth of the applicable annual License Fee from the means of payment provided by Licensee every
month during the Subscription Period. The Subscription License will terminate automatically if payment
cannot be taken from the means of payment provided by Licensee for any one month. In the event of
termination, Licensee shall remain liable for the balance of the License Fee which shall become payable
immediately and in full.

9. CANCELLATIONS

9.1 Licensee may cancel a License within 14 days of the original purchase date to obtain a full refund and
Licensee will no longer be able to use the Software from the cancellation date. Licensee’s right to obtain a
refund will be lost once the Software has been installed.

Miscellaneous Nodes | Other Nodes (Misc)

mailto:licenses@foundry.com

REFERENCE GUIDE
1132

9.2 Refunds are not payable for cancellations made after such date. This includes Subscription licenses which
are subject to the fixed twelve (12) month terms and for which the Licensee may opt out of auto-renewal in
accordance with Clause 8.

9.3 Cancellations and requests for refunds can be made by contacting Foundry’s Sales Support team at
licenses@foundry.com.

10. MAINTENANCE AND SUPPORT

If the Licensee has purchased maintenance and support services from Foundry for any Product licensed
under this EULA, or if the Licensee is entitled to receive maintenance and support services for a Subscription
Licence in accordance with clause 8.5, then Foundry shall provide those services subject to the terms of its
Maintenance and Support Agreement available on its website. Foundry may from time to time and at its sole
discretion vary the terms and conditions of the Maintenance and Support Agreement. If Licensee allows their
maintenance support services to lapse for a period of time (“Lapsed Period”) and then seeks to purchase
further maintenance and support services, Foundry reserves the right to require Licensee to back-pay fees
for the Lapsed Period.

11. TAXES AND DUTIES

Licensee agrees to pay, and indemnify Foundry from claims for, any local, state or national tax (exclusive of
taxes based on net income), duty, tariff or other impost related to or arising from the transaction
contemplated by the Agreement.

12. LIMITED WARRANTY

12.1 Subject to clause 12.3, Foundry warrants that, for a period of ninety (90) days after Licensee first
downloads the Software (“Warranty Period”): (a) the Software will, when properly used on an operating
system for which it was designed, perform substantially in accordance with the functions described in the
Documentation; and (b) that the Documentation correctly describes the operation of the Software in all
material respects. If, within the Warranty Period, Licensee notifies Foundry in writing of any defect or fault in
the Software as a result of which it fails to perform substantially in accordance with the Documentation,
Foundry will, at its sole option, either repair or replace the Software, provided that Licensee makes available
all the information that may be necessary to identify, recreate and remedy the defect or fault. This warranty
will not apply to, and Foundry shall have no liability for, any defect or fault caused by: (a) unauthorised use of
or any amendment made to the Software by any person other than Foundry; and/or (b) use of the Software
in conjunction with third party technology. If Licensee is a consumer, the warranty given in this clause is in
addition to Licensee’s legal rights in relation to any Software or Documentation that is faulty or not as
described.

Miscellaneous Nodes | Other Nodes (Misc)

mailto:licenses@foundry.com

REFERENCE GUIDE
1133

12.2 Foundry does not warrant that the Software or Documentation will meet Licensee’s requirements or
that Licensee’s use of the Software will be uninterrupted or error free.

12.3 If Licensee purchases a license of the Software that is of a fixed term duration, the Warranty Period in
clause 12.1 shall apply only to Licensee’s first purchase of such license and not to any subsequent renewal(s)
even if a renewal involves another download.

13. INDEMNIFICATION

Licensee agrees to indemnify, hold harmless and defend Foundry, the Third Party Licensors and Foundry’s
and each Third Party Licensor’s respective affiliates, officers, directors, shareholders, employees, authorized
resellers, agents and other representatives from all claims, defence costs (including, but not limited to, legal
fees), judgments, settlements and other expenses arising from or connected with any claim that any
authorised or unauthorised modification of the Software or Documentation by Licensee or any person
connected with Licensee infringes the intellectual property rights or other proprietary rights of any third
party.

14. LIMITATION OF LIABILITY TO BUSINESS USERS

This clause applies where Licensee is a business user (and for these purposes any Licensee that is not a
consumer shall be treated as a business user). Licensee acknowledges that the Software has not been
developed to meet its individual requirements, and that it is therefore Licensee’s responsibility to ensure that
the facilities and functions of the Software as described in the Documentation meet such requirements. The
Software and Documentation is supplied only for Licensee’s internal use for its business, and not for any re-
sale purposes or for the provision of the Software (whether directly or indirectly) to third parties. Foundry
shall not under any circumstances whatever be liable to Licensee, its affiliates, officers, directors,
shareholders, employees, agents or other representatives, whether in contract, tort (including negligence),
breach of statutory duty, or otherwise, arising under or in connection with the Agreement for loss of profits,
sales, business, or revenue, business interruption, loss of anticipated savings, loss or corruption of data or
information, loss of business opportunity, goodwill or reputation (in each case whether the loss is direct or
indirect) or any indirect or consequential loss or damage. In respect of any other losses, Foundry’s maximum
aggregate liability under or in connection with the Agreement whether in contract, tort (including
negligence) or otherwise, shall in all circumstances be limited to the greater of US$5,000 (five thousand USD)
and a sum equal to the License Fee. Nothing in the Agreement shall limit or exclude Foundry’s liability for
death or personal injury resulting from our negligence, for fraud or fraudulent misrepresentation or for any
other liability that cannot be excluded or limited by applicable law. This EULA sets out the full extent of our
obligations and liabilities in respect of the supply of the Software and Documentation. Except as expressly
stated in writing in this EULA, there are no conditions, warranties, representations or other terms, express or
implied, that are binding on Foundry. Any condition, warranty, representation or other term concerning the

Miscellaneous Nodes | Other Nodes (Misc)

REFERENCE GUIDE
1134

supply of the Software and Documentation which might otherwise be implied into, or incorporated in, the
Agreement, whether by statute, common law or otherwise, is excluded to the fullest extent permitted by law.

15. LIMITATION OF LIABILITY TO CONSUMERS

This clause applies where Licensee is a consumer. Licensee acknowledges that the Software has not been
developed to meet Licensee’s individual requirements, and that it is therefore Licensee’s responsibility to
ensure that the facilities and functions of the Software as described in the Documentation meet such
requirements. The Software and Documentation are only supplied for Licensee’s domestic and private use.
Licensee agrees not to use the Software and Documentation for any commercial, business or re-sale
purposes, and Foundry has no liability to Licensee for any loss of profit, loss of business, business
interruption, or loss of business opportunity. Foundry is only responsible for loss or damage suffered by
Licensee that is a foreseeable result of Foundry’s breach of the Agreement or its negligence but Foundry is
not responsible for any loss or damage that is not foreseeable. Loss or damage is foreseeable if they were an
obvious consequence of a breach or if they were contemplated by Licensee and Foundry at the time of
forming the Agreement. Our maximum aggregate liability under or in connection with the Agreement,
whether in contract, tort (including negligence) or otherwise, shall in all circumstances be limited to a sum
equal to the greater of US$5,000 (five thousand USD) and a sum equal to the License Fee. Nothing in the
Agreement shall limit or exclude Foundry’s liability for death or personal injury resulting from our
negligence, for fraud or fraudulent misrepresentation or for any other liability that cannot be excluded or
limited by applicable law.

16. TERM; TERMINATION

16.1 The Agreement is effective upon Licensee’s download of the Software, and the Agreement will remain in
effect until termination or expiry. Licensee may terminate the Agreement on written notice to Foundry if
Foundry is in material breach of this Agreement and fails to cure the breach within 10 (ten) working days of
receiving notice of such breach. If Licensee breaches the Agreement, Foundry may terminate the License
immediately by notice to Licensee.

16.2 If the Agreement expires or is terminated, the License will cease immediately and Licensee will
immediately cease use of any Software and Documentation and either return to Foundry all copies of the
Software and Documentation in Licensee’s possession, custody or power or, if Foundry directs in writing,
destroy all such copies. In the latter case, if requested by Foundry, Licensee shall provide Foundry with a
certificate confirming that such destruction has been completed.

16.3 Foundry reserves the right to terminate and/or suspend the License as it deems reasonable in its sole
discretion by notice to Licensee if it becomes aware that Licensee has failed to pay any sum due either to
Foundry or to a reseller of Foundry either in connection with the Agreement or in connection with any other
Software license to use any product(s) of Foundry, in connection with any Maintenance and Support
Agreement or if the Licensee is otherwise in breach of or fails to comply with any term of the Agreement.

Miscellaneous Nodes | Other Nodes (Misc)

REFERENCE GUIDE
1135

16.4 Foundry may also terminate this EULA if Licensee becomes subject to bankruptcy proceedings,
becomes insolvent, or makes an arrangement with Licensee’s creditors. This EULA will terminate
automatically without further notice or action by Foundry if Licensee goes into liquidation.

17. CONFIDENTIALITY

Licensee agrees that the Software (including, for the avoidance of doubt, any Source Code that is licensed to
Licensee) and Documentation are proprietary to and the confidential information of Foundry or, as the case
may be, the Third Party Licensors, and that all such information and any related communications
(collectively, “Confidential Information”) are confidential and a fundamental and important trade secret of
Foundry and/or the Third Party Licensors. If Licensee is a business user, Licensee shall disclose Confidential
Information only to Licensee’s employees who are working on an Authorized Project and have a “need-to-
know” such Confidential Information for the purposes of that Authorized Project, and shall advise any
recipients of Confidential Information that it is to be used only as expressly authorized in the Agreement.
Licensee shall not disclose Confidential Information or otherwise make any Confidential Information
available to any other of Licensee’s employees or to any third parties without the express written consent of
Foundry. Licensee agrees to segregate, to the extent it can be reasonably done, the Confidential Information
from the confidential information and materials of others in order to prevent commingling. Licensee shall
take reasonable security measures, which measures shall be at least as great as the measures Licensee uses
to keep Licensee’s own confidential information secure (but in any case using no less than a reasonable
degree of care), to hold the Software, Documentation and any other Confidential Information in strict
confidence and safe custody. Foundry may request, in which case Licensee agrees to comply with, certain
reasonable security measures as part of the use of the Software and Documentation. This clause shall not
apply to any information that is in or comes into the public domain (other than as a result of the Licensee’s
breach of its obligations under the Agreement), or was in Licensee’s lawful possession before receipt or
which Licensee develops independently and without breach of this clause. Licensee acknowledges that
monetary damages may not be a sufficient remedy for unauthorized disclosure of Confidential Information,
and that Foundry shall be entitled, without waiving any other rights or remedies, to such injunctive or other
equitable relief as may be deemed proper by a court of competent jurisdiction.

18. INSPECTION AND INFORMATION

18.1 Unless Licensee is a consumer, Licensee shall advise Foundry on demand of all locations where the
Software or Documentation is used or stored. Licensee shall permit Foundry or its authorized agents to audit
all such locations during normal business hours and on reasonable advance notice.

18.2 The Software may include mechanisms to access and collect limited information from computer(s) on
which it is installed and from any IT systems to which those computer(s) may be connected (including any
system registry files) and transmit it to Foundry and/or its resellers, including the ability to locally cache such
information on such computers. Such information (the “Information”) may include details of relevant

Miscellaneous Nodes | Other Nodes (Misc)

REFERENCE GUIDE
1136

license(s) to Foundry products, details of computer and network equipment, details of the operating system
(s) in use on such computer equipment, email domain relating to owners of such computer and network
equipment, the location of the computer(s) on which the Software is installed and the profile and extent of
use of the different elements of the Software and other Foundry software. Foundry may use the Information
to (a) model the profiles of usage, hardware and operating systems in use collectively across its customer
base in order to focus development and support, (b) to provide targeted support to individual customers, (c)
to ensure that the usage of the Software by Licensee is in accordance with the Agreement and does not
exceed any user number or other limits on its use, (d) to confirm the identity of Licensee, to identify
unlicensed use of the Software (including use of pirated or other unlicensed copies of the Software) and to
assist Foundry (and its resellers and any enforcement bodies) in contacting any unlicensed users of the
Software and seeking to terminate unlicensed use of the Software, and (e) to advise Licensee about service
issues such as available upgrades and maintenance expiry dates. To the extent that any Information
constitutes personal data for the purposes of the General Data Protection Regulation (EU) 2016/679 (“EU
GDPR”) and the version of the EU GDPR retained in UK domestic law as further defined in the Data Protection
Act 2018 (“UK GDPR”), in each case, as amended, superseded or replaced from time to time (as applicable,
“GDPR”) it shall be processed in accordance with the GDPR and with Foundry’s Privacy Notice (see
https://www.foundry.com/privacy-notice), as may be updated by Foundry from time to time. Licensee
undertakes to make all of users of the Software aware of the uses which Foundry will make of the
Information and of the terms of Foundry’s Privacy Policy.

18.3 By downloading or using the Software, you (i) warrant that you are entitled to control access to the
computer(s) on which the Software is downloaded and any IT systems to which they may be connected, and
(ii) irrevocably authorise Foundry (through the use of the Software) to access such computer(s) and IT
systems (including any system registry files) and collect the Information from them and to transmit that
Information to Foundry and its resellers (and any enforcement bodies) and use it for the purposes identified
at clause 18.2(a) to (e) above.

19. U.S. GOVERNMENT LICENSE RIGHTS

All Software, including all components thereof, and Documentation qualify as “commercial items,” as that
term is defined at Federal Acquisition Regulation (“FAR”) (48 C.F.R.) 2.101, consisting of “commercial
computer software” and “commercial computer software documentation” as such terms are used in FAR
12.212. Consistent with FAR 12.212 and DoD FAR Supp. 227.7202-1 through 227.7202-4, and
notwithstanding any other FAR or other contractual clause to the contrary in any agreement into which this
Agreement may be incorporated, a government end user will acquire the Software and Documentation with
only those rights set forth in this Agreement. Use of either the Software or Documentation or both
constitutes agreement by the government that all Software and Documentation are “commercial computer
software” and “commercial computer software documentation,” and constitutes acceptance of the rights and
restrictions herein. The Software is the subject of the following notices:

* Copyright (c) 2001 - 2022 The Foundry Visionmongers Ltd. All Rights Reserved.

Miscellaneous Nodes | Other Nodes (Misc)

REFERENCE GUIDE
1137

* Unpublished-rights reserved under the Copyright Laws of the United Kingdom.

20. SURVIVAL

Clause 6, clause 7 and clauses 11 to 23 inclusive shall survive any termination or expiration of the Agreement.

21. IMPORT/EXPORT CONTROLS

To the extent that any Software made available under the Agreement is subject to restrictions upon export
and/or re-export from any applicable jurisdiction (including the United States), Licensee agrees to comply
with, and not act or fail to act in any way that would violate, applicable international, national, state, regional
or local laws and regulations, including, without limitation, the U.S. Export Administration Act and the Export
Administration Regulations, the regulations of the U.S. Department of Treasury Office of Foreign Assets
Control, the International Traffic in Arms regulations, the United States Foreign Corrupt Practices Act, the UK
Export Control Act 2002 and the UK Export Control Order 2008 (collectively, “Export Laws”) as those laws
may be amended or otherwise modified from time to time, and neither Foundry nor Licensee shall be
required under the Agreement to act or fail to act in any way which it believes in good faith will violate any
such laws or regulations. Without limiting the foregoing, Licensee agrees that it will not export or re-export,
directly or indirectly, Foundry’s Software or related products and services, or any commodity, technology,
technical data, software or service that incorporates, contains or is a direct product of Foundry’s Software,
products and/or services, (i) in violation of the Export Laws; (ii) to any country for which an export license or
other governmental approval is required at the time of export, without first obtaining all necessary export
licenses or other approvals; (iii) to any country, or national or resident of a country, to which trade is
embargoed by the United States; (iv) to any person or firm on any government agency’s list of blocked,
denied or barred persons or entities, including but not limited to the U.S. Department of Commerce’s Denied
Persons List and Entities List, and the U.S Treasury Department’s Specially Designated Nationals List; or (v) for
use in any nuclear, chemical or biological weapons, or missile technology end-use.

22. MISCELLANEOUS

Unless Licensee is a consumer, the Agreement is the exclusive agreement between the parties concerning its
subject matter and supersedes any and all prior oral or written agreements, negotiations, or other dealings
between the parties concerning such subject matter. Licensee acknowledges that Licensee has not relied
upon any representation or collateral warranty not recorded in the Agreement inducing it to enter into the
Agreement.

The Agreement may be modified only in writing, by Foundry, at any time.

Miscellaneous Nodes | Other Nodes (Misc)

REFERENCE GUIDE
1138

The failure of either party to enforce any rights granted under the Agreement or to take action against the
other party in the event of any such breach shall not be deemed a waiver by that party as to subsequent
enforcement of rights or subsequent actions in the event of future breaches.

The Agreement and any dispute or claim arising out of or in connection with it or its subject matter or
formation (including, unless Licensee is a consumer, non-contractual disputes or claims) shall be governed
by, and construed in accordance with English Law and the parties irrevocably submit to the non-exclusive
jurisdiction of the English Courts, subject to any right that a consumer may have to bring proceedings or to
have proceedings brought against them in a different jurisdiction.

If Foundry fails to insist that Licensee performs any obligation under the Agreement, or delays in doing so,
that will not mean that Foundry has waived its rights.

If any provision or part-provision of this Agreement is or becomes invalid, illegal or unenforceable, it shall be
deemed deleted, but that shall not affect the validity and enforceability of the rest of this Agreement.

Unless Licensee is a consumer, Licensee agrees that Foundry may refer to Licensee as a client or a user of the
Software, may display its logo(s) for this purpose and may publish quotations and testimonials from
Licensee, its directors, partners, officers or employees. Foundry agrees to promptly cease any such use on
Licensee’s written request.

Foundry and Licensee intend that each Third Party Licensor may enforce against Licensee under the
Contracts (Rights of Third Parties) Act 1999 (the “Act”) any obligation owed by Licensee to Foundry under
this EULA that is capable of application to any proprietary or other right of that Third Party Licensor in or in
relation to the Software. Foundry and Licensee reserve the right under section 2(3)(a) of the Act to rescind,
terminate or vary this EULA without the consent of any Third Party Licensor.

Email Address for Notices. Licensee shall notify Foundry of an email address for the provision of any
notices and correspondence in connection with the Agreement and shall notify Foundry via
licenses@foundry.com of any change(s) to that email address. Please note, the email address you provide is
important for the provision of notices to you, including in relation to the autorenewal of any Subscription
License (if applicable). It is your responsibility to provide and maintain an up to date email address. Foundry
shall store details of and may use the email address to notify you in accordance with the terms of this
Agreement.

23. COMPLAINTS & ONLINE DISPUTE RESOLUTION PLATFORM

We hope that you are satisfied with any Software purchase made or service received from Foundry, but if you
have a complaint, in the first instance, please contact us on licenses@foundry.com or through our Support
Portal: https://support.foundry.com/hc/en-us (for technical support and bug reports), or you can request a
call back from the Sales team here: https://www.foundry.com/contact-us.

Last updated 3 November 2022.

Miscellaneous Nodes | Other Nodes (Misc)

mailto:licenses@foundry.com
mailto:licenses@foundry.com
https://support.foundry.com/hc/en-us
https://www.foundry.com/contact-us

REFERENCE GUIDE
1139

Copyright © 3 November 2022 The Foundry Visionmongers Ltd.
All Rights Reserved. Do not duplicate.

Miscellaneous Nodes | Other Nodes (Misc)

	User Guide
	Installation and Licensing
	Katana on Windows
	Installing on Windows
	Licensing Katana on Windows
	Uninstalling on Windows

	Katana on Linux
	Installing on Linux
	Licensing on Linux
	Uninstalling on Linux

	Renderers
	Connecting to a Renderer
	Network Configuration
	Python Search Path
	Setting the Temporary File Directory
	Managing Katana projects in Multi-Platform Environments

	Launching Katana
	Launching on Windows
	Launching on Linux
	Command-line Interface
	Katana License Requirements for Launch Modes
	Interactive Mode
	Script Mode
	Shell Mode
	Batch Mode

	Katana Resources
	Environment Variables

	What is Katana?
	Key Concepts

	Glossary of Katana Terms
	User Interface
	The Default Workspace
	The Default Tabs
	Menu Bar Components
	Customizing Your Workspace
	Adjusting Layouts
	Saving, Loading, and Deleting Layouts
	Managing Keyboard Shortcuts
	Getting Help

	Creating a Project
	Creating, Saving, and Loading a New Project
	Importing and Exporting a Project
	Changing a Project’s Settings
	Assets and Asset Managers
	Using the File Browser
	Autosaves

	Editing the Node Graph
	Navigating Inside the Node Graph
	Adding Nodes
	Node Basics
	Selecting Nodes
	Connecting Nodes
	Merging Nodes
	Removing, Replacing, and Deleting Nodes
	Copying, Pasting, and Cloning Nodes
	Grouping Nodes
	Backdrop Nodes
	Dot Nodes
	Advanced Display Options
	Editing a Node’s Parameters
	Node Parameter Basics
	Common Parameter Widgets
	Parameter State Badges
	Adding User Parameters
	Widget Types
	Widget Options
	Conditional Behavior
	Creating Help Text for User Parameters

	Animation
	Setting Keys
	Curve Editor Overview
	Dope Sheet Overview
	Using the Timeline

	Using the Scene Graph
	The Process of Generating Scene Graph Data
	Manipulating the Scene Graph
	Structured Scene Graph Data
	Bounding Boxes and Good Data for Renderers
	Proxies and Good Data for Users
	Level-of-Detail Groups
	Alembic and Other Input Data Formats

	Working Sets
	Changing What is Shown in the Viewer
	Bookmarking a Scene Graph State and Working Sets
	Controlling Live Rendering in the Scene Graph
	Making Use of Different Location Types and Proxies
	Using Assemblies and Components

	Resolvers
	Examples of Resolvers
	Implicit Resolvers
	Creating Your Own Resolvers

	Building Your Scene
	Adding 3D Assets
	Adopting Alembic

	Collections and CEL
	CEL in the User Interface
	Guidelines for using CEL
	CEL in Parameters

	Working with Attributes
	AttributeSet Nodes
	OpScript Nodes
	Adding an OpScript

	OpScript Tutorials

	Viewing Your Scene
	Changing the Layout
	Selecting Within the Viewer
	Using Flush Caches
	Using the OSG Viewer
	Changing the Overall Viewer Behavior
	Assigning a Viewer Material Shader
	Assigning a Viewer Light Shader
	Displaying Textures in the Viewer
	Changing Specific Viewer Behavior
	Setting Different Display Properties for Some Locations
	Stepping Through the Selection History
	Changing the View Position
	Choosing a Light or Camera to Look Through
	Looking Around the Viewport by Offsetting and Overscanning

	Changing What is Displayed Within the Viewport
	Using Manipulators
	Toggling the Heads Up Display (HUD)
	Displaying Normal Information Within the Viewer
	Transforming an Object in the Viewer
	Manipulating a Light Source
	Using Stereo Cameras in the OSG Viewer

	Using the Hydra Viewer
	Changing the View Position
	Pan and Zoom
	Selecting Objects and Faces
	Using Manipulators in the Hydra Viewer
	Geometry Display Options
	The Monitor Layer in the Hydra Viewer
	Image-Based Selection in the Monitor Layer

	Snapping
	Using Stereo Cameras in the Hydra Viewer
	Subdivision and Anti-Aliasing in the Hydra Viewer
	Live Rendering with the Hydra Viewer
	Render Delegates in the Hydra Viewer
	Proxies and Bounding Boxes
	Displaying Textures in the Hydra Viewer
	UsdPreviewSurface in the Hydra Viewer
	Loading USD Plug-ins into Katana
	Setting up USD Materials
	Setting up USD Lights

	Changing Display Properties for Some Locations
	Customizing the Viewport

	Lighting Your Scene
	Creating a Light
	Positioning Lights
	Light Linking
	Getting to Grips with the GafferThree Node
	Gaffer Object Table Overview
	Creating a Light Using the GafferThree Node
	Making Use of Rigs
	Defining a Template Light Material
	Creating a Light Filter Using the GafferThree Node
	Linking Shadows to Specific Objects
	Adopting Items from an Incoming Scene
	Soloing and Muting Lights, Light Filters, and Rigs
	Locking a Light or Rig's Transform
	Duplicating an Item Within the Gaffer Object Table
	Syncing the GafferThree Selection with the Scene Graph
	Using and Overriding Look Files with GafferThree Lights

	Lighting Tools
	Creating Lights using Lighting Tools
	Editing Lights Using the Lighting Tools Parameter Widget
	Cloning Lights and Using Template Materials With Lighting Tools

	Look Development
	Look Development with Look Files
	Using Look Files to Create a Material Palette
	Using Look Files in an Asset’s Look Development
	Creating a Look File Using LookFileBake
	Assigning a Look File to an Asset
	Resolving Look Files
	Overriding Look File Material Attributes
	Activating Look File Lights and Constraints

	Using Look Files as Default Settings
	Bringing a Look File into the Scene Graph
	Assigning and Unassigning a Global Look File
	Removing a Look File from the Look Files List
	Managing Passes in the LookFileManager
	Overriding Look Files

	Adding and Assigning Materials
	Material Basics
	Material Pipelines
	Adding Multiple Materials
	Building Materials Using NetworkMaterialCreate
	Creating Shading Networks
	Multiple NetworkMaterials with NetworkMaterialCreate
	Organizing Shading Networks with ShadingGroup Nodes
	Node Parameters and Interface Controls
	Editing Materials With The NetworkMaterialEdit Node
	Easily Preview Sections of Your LookDev Using Material Solo

	Network Materials
	Creating a Network Material
	Using a Network Shading Node
	Creating a Network Material’s Public Interface
	Changing a Network Material’s Connections
	Editing a Network Material

	Handling Textures
	Texture Handling Options
	Using Pipeline Data to Set Textures

	Checking UVs
	Bringing up the UV Viewer Tab
	Navigating in the UV Viewer Tab
	Selecting Faces
	Adding Textures to the UV Viewer
	Using Multi-Tile Textures

	Changing the UV Viewer Display

	Look Files
	Handing off Looks from Look Development to Lighting
	Look File Baking
	Other Uses of Look Files
	How Look Files Work
	Setting Material Overrides using Look Files
	Collections using Look Files
	Look Files for Palettes of Materials
	Look File Globals
	Lights and Constraints in Look Files
	The Look File Manager

	Rendering Your Scene
	Render Types
	Render Type Availability

	Performing a Render
	Starting Multiple Renders
	Multiple Live Renders with Foresight+
	Katana Queue

	Configuring a Render
	Render Dependencies
	Rendering only Selected Locations
	Setting up Interactive Render Filters
	Managing Color

	Viewing Your Renders
	Using the Monitor Layer and Monitor Tab
	Changing the Image Size and Position
	Overlay Masking
	Changing How to Trigger a Render
	Rendering a Region of Interest (ROI)
	Changing the Displayed Channels
	Changing How the Alpha Channel is Displayed
	Selecting Which Output Pass to View
	Viewing the Pixel Values of the Front and Back Images
	Comparing Front and Back Images
	Toggling 2D Manipulator Display
	Underlaying and Overlaying an Image

	Using the Catalog Tab
	Using the Histogram

	Custom Render Resolutions
	Influencing a Render
	Controlling Live Rendering
	Global Options

	Setting up a Render Pass
	Defining and Overriding a Color Output
	Defining Outputs Other than Color
	Defining an AOV Output
	Previewing Interactive Renders for Outputs Other than Primary

	Instancing
	Rendering Instances

	OpenEXR Header Metadata
	Setting up Render Dependencies

	Batch Mode

	Advanced Workflow & Extensions
	See a Nuke Comp of Your Project in Katana Using the Nuke Bridge
	Asset Management
	Asset Plug-ins
	Asset Management System Plug-in API

	Configuring the Asset Browser
	Implementing A Custom Asset Control Widget
	Asset Render Widget
	Additional Asset Widget Delegate Methods
	addAssetFromWidgetMenuItems()
	shouldAddStandardMenuItem()
	shouldAddFileTabToAssetBrowser()
	getQuickLinkPathsForContext()
	The Asset Publishing Process
	Choosing an Asset Plug-in
	Example Asset Plug-in

	Retrieve and Publish
	LiveGroups and LiveShadingGroups
	Creating a LiveGroup
	Editing LiveGroup Parameters
	Loading and Reloading a LiveGroup
	Editing the Contents of a LiveGroup
	Making a LiveGroup Node Editable
	Modified State of Editable LiveGroup Nodes

	Publishing a LiveGroup
	LiveGroup Conversion

	Graph State Variables
	Setting Graph State Variables
	Inspecting Graph State Variables
	Reading Graph State Variables
	How Do Graph State Variables Work?

	Scripting and Programming in Katana
	Scripting with Python
	Shelf Item Scripts
	Using the Python Tab
	Automating Procedures
	Message Logging

	The Op API

	Groups, Macros, and SuperTools
	Macros
	SuperTools
	Writing a SuperTool

	Customizing GafferThree
	Optimizing Performance
	Geolib3-MT Configuration
	Geolib3-MT Profiling
	Op Cook Profiling
	Starting and Ending a Profiling Session
	Profiling Renders
	Profiling Reports

	Profiling and Optimization Guide
	Optimize Projects Using the Performance Tab
	Improving Your Node Graph
	Improving Your Ops
	Composing Concurrency-Friendly Scenes
	Improving OpScript Performance

	Preferences
	Keyboard Shortcuts

	Reference Guide
	2D Nodes
	Color Nodes
	ImageBackgroundColor
	ImageBrightness
	ImageChannels
	ImageClamp
	ImageContrast
	ImageExposure
	ImageFade
	ImageGain
	ImageGamma
	ImageInvert
	ImageLevels
	ImageSaturation
	ImageThreshold
	OCIOCDLTransform
	OCIOColorSpace
	OCIODisplay
	OCIOFileTransform
	OCIOLogConvert
	OCIOLookTransform

	Composite Nodes
	ImageIn
	ImageMerge
	ImageOut
	ImagePremultiply
	ImageUnpremultiply
	ImageZMerge

	Filter Nodes
	ImageBlur

	I/O Nodes
	ImageRead
	ImageWrite

	Source Nodes
	ImageCheckerboard
	ImageColor
	ImageRamp
	ImageText

	Transform Nodes
	ImageCrop
	ImageOrient
	ImagePosition
	ImageReformat
	ImageTransform2D

	3D Nodes
	Constraint Nodes
	AimConstraint
	BillboardConstraint
	CameraScreenWindowConstraint
	ClippingConstraint
	DollyConstraint
	FOVConstraint
	OrientConstraint
	ParentChildConstraint
	PointConstraint
	ReflectionConstraint
	ScaleConstraint
	ScreenCoordinateConstraint

	Input Nodes
	AttributeFile_In

	Lookfile Nodes
	LookFileBake
	LookFileLightAndConstraintActivator
	LookFileManager
	LookFileMaterialsIn
	LookFileMaterialsOut
	LookFileMultiBake
	LookFileOverrideEnable
	LookFileResolve
	UsdMaterialBake

	Output Nodes
	Render

	Procedural Nodes
	Alembic_In
	RendererProceduralArgs

	Resolve Nodes
	ConstraintResolve
	MaterialResolve

	Source Nodes
	AttributeFile_In
	CameraCreate
	CameraImagePlaneCreate
	CollectionCreate
	CoordinateSystemDefine
	InfoCreate
	LightCreate
	LocationCreate
	Material
	PrimitiveCreate
	TeapotCreate

	SuperTool Nodes
	Importomatic
	LookFileLightAndConstraintActivator
	LookFileManager
	LookFileMultiBake

	Other 3D Nodes
	ArnoldObjectSettings
	ArnoldGlobalSettings
	ArnoldLiveRenderSettings
	ArnoldOutputChannelDefine
	ArnoldShadingNode
	AttributeCopy
	AttributeEditor
	AttributeSet
	BoundsAdjust
	CameraClippingPlaneEdit
	ConstraintCache
	ConstraintListEdit
	FaceSetCreate
	GenericOp
	GroupMerge
	HierarchyCopy
	Isolate
	LightLink
	LightLinkEdit
	LightLinkResolve
	LightLinkSetup
	LightListEdit
	LocationGenerate
	LodGroupCreate
	LodSelect
	LodValuesAssign
	MaterialStack
	Merge
	NetworkMaterial
	NetworkMaterialCreate
	NetworkMaterialEdit
	NetworkMaterialInterfaceControls
	NetworkMaterialParameterEdit
	NetworkMaterialSplice
	OpResolve
	OpScript
	PrmanGlobalSettings
	PrmanObjectSettings
	PrmanOutputChannelDefine
	PrmanShadingNode
	Prune
	Rename
	RenderOutputDefine
	ReverseNormals
	ShadingGroup
	ShadingNodeArrayConnector
	ShadingNodeSubnet
	Transform3D
	TransformEdit
	VelocityApply
	ZoomToRect

	Miscellaneous Nodes
	SuperTool Nodes
	GafferThree
	ImageCoordinate
	PonyStack

	Other Nodes (Misc)
	Backdrop
	DependencyMerge
	Dot
	Group
	GroupStack
	InteractiveRenderFilters
	LiveGroup
	LookFileAssign
	LookFileGlobalsAssign
	MaterialAssign
	NonpersistentSwitch
	RenderScript
	RendererProceduralAssign
	ScenegraphObjectSettings
	Switch
	Teleport
	TimeOffset
	UsdActiveSet
	UsdAttributeSet
	UsdIn
	UsdInActivationSet
	UsdInheritSet
	UsdLayerWrite
	UsdMetadataSet
	UsdPayloadSet
	UsdPrimCreate
	UsdPrimvarSet
	UsdPythonWrite
	UsdReferenceSet
	UsdRelationshipSet
	UsdSchemaSet
	UsdSpecializeSet
	UsdSubLayerAdd
	UsdTransformSet
	UsdVariantSet
	VariableDelete
	VariableEnabledGroup
	VariableSet
	VariableSwitch
	ViewerObjectSettings
	VisibilityAssign

	End User License Agreement (EULA)

