
User Guide
VERSIONS
4.0v16 for Nuke 14.1
4.0v17 for Nuke 15.0

©2023 The Foundry Visionmongers Ltd. All rights reserved.

Ocula 4.0 User Guide

Use of this document and the Nuke software is subject to an End User License Agreement (the "EULA"), the terms of which are incorporated herein
by reference. This document and the Nuke software may be used or copied only in accordance with the terms of the EULA. This document, the Nuke
software and all intellectual property rights relating thereto are and shall remain the sole property of The Foundry Visionmongers Ltd. ("The Foundry")
and/or The Foundry's licensors.

The EULA is available here: End User License Agreement (EULA)

No part of this manual may be reproduced, stored in a retrieval system, or transmitted in any form without the prior written permission of The Foundry.

The Foundry logo is a trademark of The Foundry Visionmongers Ltd. Nuke is a registered trademark of The Foundry Visionmongers Ltd. All other
products or brands are trademarks or registered trademarks of their respective companies or organisations.

Special thanks to Disney Enterprises, Inc. for use of the TRON: LEGACY images throughout this user guide.

https://www.foundry.com/eula

Contents
Introduction 7

Example Images 7

Installation 7

Installation on Windows 8

Installation on Mac 9

Installation on Linux 10

Licensing 10

Licensing on a Single Machine 11

Licensing over a Network 12

Other Foundry Products 15

DisparityGenerator 17

Description 17

Inputs 18

Generating Disparity Maps 19

O_DisparityGenerator Controls 23

O_DisparityGenerator Example 27

OcclusionDetector 30

Description 30

Inputs 31

Creating and Editing Occlusion Masks 31

O_OcclusionDetector Controls 34

O_OcclusionDetector Example 36

NewView 37

Description 37

Inputs 37

Creating a New View 38

O_NewView Controls 39

O_NewView Example 41

ColourMatcher 44

Description 44

Inputs 45

Performing a Color Match 45

O_ColourMatcher Controls 46

O_ColourMatcher Example 50

FocusMatcher 55

Description 55

Inputs 56

Performing a Focus Match 56

O_FocusMatcher Controls 57

O_FocusMatcher Example 60

Solver 63

Introduction 63

Inputs 64

Solving the Camera Relationship 65

O_Solver Controls 72

O_Solver Example 77

VerticalAligner 80

Description 80

Inputs 82

Using O_VerticalAligner 82

O_VerticalAligner Controls 85

O_VerticalAligner Example 92

VectorGenerator 94

Description 94

Inputs 95

Generating Motion Vectors 96

O_VectorGenerator Controls 97

O_VectorGenerator Example 99

Retimer 100

Description 100

Inputs 101

Using O_Retimer 101

O_Retimer Controls 106

O_Retimer Example 107

InteraxialShifter 111

Description 111

Inputs 112

Using O_InteraxialShifter 112

O_InteraxialShifter Controls 113

DepthToDisparity 115

Description 115

Inputs 116

Generating a Disparity Map from Depth 117

O_DepthToDisparity Controls 118

O_DepthToDisparity Example 118

DisparityToDepth 120

Description 120

Inputs 121

Using O_DisparityToDepth 121

O_DisparityToDepth Controls 125

O_DisparityToDepth Example 125

MultiSample 128

Description 128

Inputs 128

Using O_MultiSample 129

O_MultiSample Controls 134

O_MultiSample Example 137

Quality Control Tools 139

Description 139

DisparityViewer 139

DisparityReviewGizmo 148

StereoReviewGizmo 153

Appendix A: Node Dependencies 158

Appendix B: External Software 160

Introduction

Welcome to this User Guide for Ocula 4.0 on Nuke. Ocula is a collection of tools that solve common
problems with stereoscopic imagery, improve productivity in post production, and ultimately help to deliver a
more rewarding 3D-stereo viewing experience.

All Ocula nodes integrate seamlessly into Nuke. They are applied to your clips as any other node and they
can all be animated using the standard Nuke animation tools.

This guide tells you how to install and use the Ocula 4.0 nodes and tools. Each node or tool is described in
detail later on. Licensing Ocula is covered in the separate Foundry Licensing Tools (FLT) User Guide, which
you can download from support.foundry.com.

This guide assumes you are familiar with Nuke and the machine it is running on.

Note: For the most up-to-date information, please see the Ocula product page on our website at
www.foundry.com.

Special thanks to Disney Enterprises, Inc. for use of the TRON: LEGACY images throughout this user guide.

Contacting Support

Should questions arise that the documentation fails to address, you can visit the Support Portal at
support.foundry.com.

Example Images
Example images are provided for use with Ocula. You can download these images from here and try Ocula
out with them.

Installation
Installing Ocula 4.0 does NOT overwrite any versions of Ocula 3.x, Ocula 2.x, or Ocula 1.x.

To see the installation instructions for your operating system, go to:
• Installation on Windows

7

https://support.foundry.com/hc/en-us/categories/200904012-License-Help
https://www.foundry.com/products/ocula
https://support.foundry.com/
http://s3.amazonaws.com/thefoundry/products/ocula/nuke/releases/4.0v1/Ocula_4.0v1_Examples.zip

8

• Installation on Mac
• Installation on Linux

Note: You can put the Ocula nodes anywhere as long as you set the environment variable NUKE_
PATH to point to it.

Installation on Windows
Ocula is distributed as a software download from our website. To install Ocula on a computer running
Windows, follow these instructions:
1. Download the following file from our website at www.foundry.com/products/ocula

ocula-<version>-win-x86-64-installer.exe

2. Double-click on the .exe file to launch the installer. Follow the on-screen instructions to install Ocula.
3. Proceed to Licensing.

Installing Ocula from the command line

To install Ocula from the command line, do the following:
1. Download correct file from our website at www.foundry.com/products/ocula

ocula-<version>-win-x86-64-installer.exe

2. To open a command prompt window, select Start > All Programs > Accessories > Command Prompt.
3. Use the cd (change directory) command to move to the directory where you saved the installation file.

For example, if you saved the installation file in C:\Temp, use the following command and press Return:
cd \Temp

4. To install Ocula, do one of the following:
• To install Ocula and display the installation dialog, type the name of the install file without the file
extension and press Return:
ocula-<version>-win-x86-64-installer

• To install Ocula silently so that the installer does not prompt you for anything but displays a progress
bar, enter /S /ACCEPT-FOUNDRY-EULA after the installation command:
ocula-<version>-win-x86-64-installer /S /ACCEPT-FOUNDRY-EULA

Note: If you omit /ACCEPT-FOUNDRY-EULA the installer displays an error message. By using
the /ACCEPT-FOUNDRY-EULA install option, you agree to the terms of the End User Licensing
Agreement. To see this agreement, please refer to Foundry's End User License Agreement or run
the installer in standard, non-silent mode.

| Installation on Windows

https://www.foundry.com/products/ocula
https://www.foundry.com/products/ocula
https://www.foundry.com/eula

9

Tip: You can display a list of install options using the /HELP command:
ocula-<version>-win-x86-64-installer /HELP

By default, Ocula is installed to:
C:\Program Files\Common Files\Nuke\<version>\plugins\Ocula\<version>

• To install Ocula to a specified directory during silent installations, use the /D install option:
ocula-<version>-win-x86-64-installer /S /ACCEPT-FOUNDRY-EULA /D=E:\Ocula\

Note: If you install Ocula in a non-standard location, don't forget to add the directory to the NUKE_
PATH environment variable so that Nuke can locate the plug-ins. See Defining the Nuke Plug-in
Path for more information.

5. Proceed to Licensing.

Installation on Mac
Ocula is distributed as a software download from our website. To install Ocula 4.0 on a Mac, follow these
instructions:
1. Download the correct installation file from our website at www.foundry.com/products/ocula
2. Change the permissions on the .sh file using the chmod command:

chmod 755 Ocula-<version>-mac-x86-installer.sh

3. Extract Ocula from the .sh archive with the following terminal command, replacing <version> with the
current version:
sudo ./Ocula-<version>-mac-x86-installer.sh

Tip: You can display a list of install options using the --help command:
Ocula-<version>-mac-x86-64-installer.sh --help

The installer displays the End User Licensing Agreement (EULA) and prompts you to accept it.
4. If you agree with the EULA, enter y and press Return to continue. If you don’t agree with the EULA and

press N instead, the installation is canceled.

Tip: If you've already read and agreed to the terms of the EULA, you can skip to the end of the text
by pressing Q.

You can skip the EULA step using the --accept-foundry-eula option, which means you agree to the
terms of the EULA:
sudo ./Ocula-<version>-mac-x86-64-installer.sh --accept-foundry-eula
To see the EULA, please refer to End User License Agreement.

| Installation on Mac

https://learn.foundry.com/nuke/content/comp_environment/configuring_nuke/defining_nuke_plugin_path.html
https://learn.foundry.com/nuke/content/comp_environment/configuring_nuke/defining_nuke_plugin_path.html
https://www.foundry.com/products/ocula
https://www.foundry.com/eula

10

This creates the /Library/Application Support/Nuke/<version>/plugins/ocula/<version> sub-directory
(if it doesn’t already exist), and installs Ocula in that directory.

5. Proceed to Licensing.

Installation on Linux
Ocula is distributed as a software download from our website. To install Ocula 4.0 on a computer running
Linux, follow these instructions:
1. Download the correct installtion file from our website at www.foundry.com/products/ocula
2. Extract Ocula from the .run archive with the following terminal command, replacing <version> with the

current version:
sudo ./ocula-<version>-linux-x86-64-installer.run

Tip: You can display a list of install options using the --help command:
ocula-<version>-linux-x86-64-installer --help

The installer displays the End User Licensing Agreement (EULA) and prompts you to accept it.
3. If you agree with the EULA, enter y and press Return to continue. If you don’t agree with the EULA and

press N instead, the installation is canceled.

Tip: If you've already read and agreed to the terms of the EULA, you can skip to the end of the text
by pressing Q.

You can skip the EULA step using the --accept-foundry-eula option, which means you agree to the
terms of the EULA:
sudo ./ocula-<version>-linux-x86-64-installer.run --accept-foundry-eula
To see the EULA, please refer to End User License Agreement.
This creates the /usr/local/Nuke/<version>/plugins/ocula/<version> sub-directory (if it doesn’t already
exist), and installs Ocula in that directory.

4. Proceed to Licensing.

Licensing

About Licenses

If you simply want to try out Ocula, you can obtain a trial license, which allows you to run Ocula for free for 15
days.

To use Ocula after this trial period, you need either a valid license key or a floating license and server
running the Foundry Licensing Tools (FLT):

| Installation on Linux

https://www.foundry.com/products/ocula/
https://www.foundry.com/eula

11

• License Keys - These can be used to install and activate node locked (also known as uncounted) licenses.
Node locked licenses allow you to use Ocula on a single machine. This license does not work on a different
machine and if you need it to, you’ll have to transfer your license. Node locked licenses do not require
additional licensing software to be installed. See Licensing on a Single Machine for more information.

• Floating Licenses - also known as counted licenses, enable Ocula to work on any networked client
machine. The floating license should be put on the server and is locked to a unique number on that server.
Floating licenses on a server require additional software to be installed. This software manages those
licenses on the server, giving licenses out to client stations that want them. The software you need to
manage these licenses is called the Foundry License Tools (FLT) and it can be freely downloaded from our
website. Floating licenses often declare a port number on the server line and a port number on the vendor
line. See Licensing over a Network for more information.

Warning: If there is an interruption between the license server and Ocula, rendering aborts with an
exit code of 1. You can use the --cont command line argument to force Ocula to continue rendering
on failure, producing black license failure frames rather than aborting the whole render.

The instructions below run through both licensing methods, and you can find a more detailed description in
the Foundry Licensing Tools User Guide available on our website: support.foundry.com.

Licensing on a Single Machine

Obtaining a License Key

You can purchase license keys by:
• going to our website at www.foundry.com,
• e-mailing us at sales@foundry.com,

To generate a license key, we need to know your System ID. The System ID (sometimes called Host ID or
rlmhostid) returns a unique number for your computer. We lock our license keys to the System ID.

To display your System ID, do the following:
• On Windows and Mac

Download the Foundry License Utility (FLU) from support.foundry.com and run it. The System ID is
displayed at the bottom of the window.

• On Linux

Download the Foundry License Utility (FLU) from support.foundry.com and run it from the command line:

<download location>/FoundryLicenseUtility -i

| Licensing on a Single Machine

https://support.foundry.com/hc/en-us/categories/200904012-License-Help
http://www.foundry.com/
https://support.foundry.com/hc/en-us/categories/200904012-License-Help
https://support.foundry.com/hc/en-us/categories/200904012-License-Help

12

Note: The <download location> refers to the location where you saved the Foundry Licensing
Utility.

Just so you know what a System ID number looks like, here’s an example: 000ea641d7a1.

Installing the License

Once a license has been generated for you, we e-mail you the license key and instructions on how to obtain
the correct version of the Foundry License Utility (FLU). Gunzip or untar the file and save the FLU and your
license key to a folder of your choice. The instructions below tell you what to do with these.

OnWindows and Mac

Just drop the license key on the Foundry License Utility (FLU) application to install it. This checks the license
key and copies it to the correct directory.

On Linux
1. Navigate to the location of the FLU_[version]_linux-x86-release-64.tgz file.
2. Type the following commands to extract and install the FLU. Note that you need to replace [version] with

the version of FLU you are using and [my license] with the location of your license key.
tar xvzf FLU_[version]_linux-x86-release-64.tgz

cd FLU_[version]_linux-x86-release-64

./FoundryLicenseUtility -l [my license]

For example, if you saved your license key to /tmp/Foundry.lic, the last line should be:
./FoundryLicenseUtility -l /tmp/foundry.lic

This checks the license key and copies it to the correct directory.

Licensing over a Network

Obtaining Floating Licenses

You can purchase a floating license key by:
• going to our website at www.foundry.com,
• e-mailing us at sales@foundry.com,

To generate you a license key, we need to know the System ID of the machine that will act as the server. The
System ID (sometimes called Host ID or rlmhostid) returns a unique number for the computer. We lock our
license keys to the System ID. See Installing Floating Licenses.

To display your System ID, do the following:

| Licensing over a Network

https://www.foundry.com/

13

• OnWindows and Mac

Download the Foundry License Utility (FLU) from support.foundry.com and run it. The System ID is
displayed at the bottom of the window.

• On Linux

Download the Foundry License Utility (FLU) from support.foundry.com and run it from the command line:

<download location>/FoundryLicenseUtility -i

Note: The <download location> refers to the location where you saved the Foundry Licensing
Utility.

Note: The System ID needs to be from the machine that will act as the server and not one of the
client machines.

Just so you know what a System ID number looks like, here’s an example: 000ea641d7a1.

Installing Floating Licenses

Once a floating license has been created for you, we e-mail you a file containing the license key and
instructions on how to obtain the correct version of the Foundry License Utility (FLU). Gunzip or untar the file
and save the FLU and your license key to a folder of your choice.

Having installed a floating license key, you need to install some additional software (FLT) to manage the
licenses on your network. Then you need to tell the client machines where to find the licenses.

OnWindows and Mac
1. Just drop the license key on the Foundry License Utility (FLU) application to install it. This checks the

license key and copies it to the correct directory.
The license server address is displayed on screen:
<number>@<license server name>
You should make a note of the address as you’ll need it to activate the client machines.

2. In order for the floating license to work, you need to install the Foundry Licensing Tools (FLT) on the
license server machine (not the client machines). For more information on how to install floating licenses,
refer to the FLT user guide, which you can download from our website:
support.foundry.com.

3. Once your license server is up and running, you need to direct your client machines to the server in order
to obtain a license. See Telling the Client Machines Where to Find the Licenses.

| Licensing over a Network

https://support.foundry.com/hc/en-us/categories/200904012-License-Help
https://support.foundry.com/hc/en-us/categories/200904012-License-Help
https://support.foundry.com/hc/en-us/categories/200904012-License-Help

14

On Linux
1. Navigate to the location of the FLU_[version]_linux-x86-release-64.tgz file.
2. Type the following commands to extract and install the FLU. Note that you need to replace [version] with

the version of FLU you are using and [my license] with the location of your license key.
tar xvzf FLU_[version]_linux-x86-release-64.tgz

cd FLU_[version]_linux-x86-release-64

./FoundryLicenseUtility -l [my license]

For example, if you saved your license key to /tmp/Foundry.lic, the last line should be:
./FoundryLicenseUtility -l /tmp/Foundry.lic

This checks the license key and copies it to the correct directory.
The license server address is displayed on screen:
<number>@<license server name>
You should make a note of the address as you’ll need it to activate the client machines.

3. In order for the floating license to work, you need to install the Foundry Licensing Tools (FLT) on the
license server machine (not the client machines). For more information on how to install floating licenses,
refer to the FLT user guide, which you can download from our website:
support.foundry.com.

4. Once your license server is up and running, you need to direct your client machines to the server in order
to obtain a license. See Telling the Client Machines Where to Find the Licenses.

Telling the Client Machines Where to Find the Licenses

In order for the client machines to get a license from the server, they need to be told where to look.

OnWindows and Mac
1. Launch the Foundry License Utility (FLU).
2. Make sure you are viewing the License Install tab and copy and paste in an RLM server line:

HOST <server name> any <port>

For example: HOST red any 4101
This creates and installs both a FLEXlm and an RLM client license.

3. Repeat this process for each machine you wish to have access to licenses on the server.

On Linux
1. Launch a shell and navigate to the location of the FLU_[version]_linux-x86-release-64.tgz file.
2. Type the following commands, replacing [version] with the version of FLU you are using:

tar xvzf FLU_[version]_linux-x86-release-64.tgz

cd FLU_[version]_linux-x86-release-64

| Licensing over a Network

https://support.foundry.com/hc/en-us/categories/200904012-License-Help

15

./FoundryLicenseUtility -c <port>@<server name>

For example, the last line may be:
./FoundryLicenseUtility -c 4101@red

This creates and installs both a FLEXlm and an RLM client license.
3. Repeat this process for each machine you wish to have access to licenses on the server.

Further Reading

There is a lot to learn about licenses, much of which is beyond the scope of this manual. For more
information on licensing Ocula, displaying the System ID number, setting up a floating license server, adding
new license keys and managing license usage across a network, you should read the Foundry Licensing
Tools (FLT) User Guide, which can be downloaded from our website, support.foundry.com.

Other Foundry Products
Foundry is a leading developer of visual effects and image processing technologies for film and video post
production. Its stand-alone products include Nuke, Modo, Mari, Hiero, Katana, and Flix. Foundry also
supplies a suite of plug-ins, including Ocula, CameraTracker, Keylight, Kronos, and Furnace and
FurnaceCore for a variety of compositing platforms, including Adobe® After Effects®, Autodesk® Flame®,
Avid® DS™, and Apple’s Final Cut Pro®. For the full list of products and supported platforms, visit our
website at www.foundry.com.

Nuke is an Academy Award® winning compositor. It has been used to create extraordinary images on scores
of feature films, including Avatar, District 9, The Dark Knight, Iron Man, Quantum of Solace, The Curious
Case of Benjamin Button, Transformers, and Pirates of the Caribbean: At World’s End.

Modo brings you the next generation of 3D modeling, animation, sculpting, effects and rendering in a
powerful integrated package.

Mari is a creative texture-painting tool that can handle extremely complex or texture-heavy projects. It was
developed at Weta Digital and has been used on films, such as District 9, The Day the Earth Stood Still, The
Lovely Bones, and Avatar.

Hiero is a collaborative, scriptable timeline tool that conforms edit decision lists and parcels out VFX shots to
artists, allowing progress to be viewed in context, and liberating your finishing systems and artists for more
creative tasks.

Katana is a look development and lighting tool, replacing the conventional CG pipeline with a flexible recipe-
based asset workflow. Its node-based approach allows rapid turnaround of high-complexity shots, while
keeping artists in control and reducing in-house development overheads. Extensive APIs mean it integrates
with a variety of renderers and your pre-existing shader libraries and workflow tools.

Flix is a collaborative, visual story-development tool. It allows directors, editors, cinematographers,
storyboard artists, and pre-visualization artists to explore ideas quickly, saving valuable time, and to easily
collaborate on the visual story development of a film.

| Other Foundry Products

https://support.foundry.com/hc/en-us/categories/200904012-License-Help
http://www.foundry.com/

16

Ocula is a collection of tools that solve common problems with stereoscopic imagery, improve productivity in
post production, and ultimately help to deliver a more rewarding 3D-stereo viewing experience.

CameraTracker is an After Effects plug-in allowing you to pull 3D motion tracks and matchmoves without
having to leave After Effects. It analyses the source sequence and extracts the original camera's lens and
motion parameters, allowing you to composite 2D or 3D elements correctly with reference to the camera
used to film the shot.

Keylight is an industry-proven blue/green screen keyer, giving results that look photographed, not
composited. The Keylight algorithm was developed by the Computer Film Company who were honoured with
a technical achievement award for digital compositing from the Academy of Motion Picture Arts and
Sciences.

Kronos is a plug-in that retimes footage using motion vectors to generate additional images between frames.
Utilising NVIDIA’s CUDA technology, Kronos optimises your workflow by using both the CPU and GPU.

Furnace and FurnaceCore are collections of film tools. Many of the algorithms utilise motion estimation
technology to speed up common compositing tasks. Plug-ins include wire removal, rig removal, steadiness,
deflicker, degrain and regrain, retiming, and texture tools.

| Other Foundry Products

DisparityGenerator
Description
The O_DisparityGenerator node is used to create disparity maps for stereo images. A disparity map
describes the location of a pixel in one view in relation to the location of its corresponding pixel in the other

view. It includes two sets of disparity vectors: one maps the left view to the right, and the other maps the right
view to the left.

Note: O_DisparityGenerator only requires an O_Solver node as one of its inputs if you intend to
use the Alignment control. Alignment defaults to 0, but increasing it forces the disparity map to
match the camera geometry to remove noise on the vertical component of disparity. You might
want to do this if your plates don't contain much detail, such as bluescreen images with markers in
the background or plates with a lot of featureless areas like sky.

The following Ocula nodes rely on disparity maps to produce their output:
• O_OcclusionDetector
• O_ColourMatcher
• O_FocusMatcher
• O_VerticalAligner (in Local Alignment mode)
• O_NewView
• O_InteraxialShifter
• O_DisparityToDepth, and
• O_DisparityViewer.

If you have more than one of these nodes in the Node Graph with one or more of the same inputs, they might
well require identical disparity map calculations. O_DisparityGenerator is a utility node designed to save
processing time by allowing you to create the disparity map separately, so that the results can then be re-
used by other Ocula nodes.

The final disparity vectors are stored in disparity channels, so you might not see any image data appear
when you first calculate the disparity map. To see the output inside Nuke, select a disparity channel from the
channel controls in the top-left corner of the Viewer. Examples of what a disparity map might look like using
the RGB and R channels, after adjusting the Viewer gain and gamma controls, are shown below. As you can
see, the RGB layers on the left are harder to read than the single R channel.

17

18

In general, once you have generated a disparity map that describes the relation between the views of a
particular clip well, it will be suitable for use in most of the Ocula nodes. We recommend that you insert a
Write node after O_DisparityGenerator to render the original images and the disparity channels as a stereo
.exr file (sometimes referred to as .sxr). This format allows for the storage of an image with multiple views
and channel sets embedded in it. Later, whenever you use the same image sequence, the disparity map is
loaded into Nuke together with the sequence and is readily available for other Ocula nodes. For information
on how to render disparity in to an .exr file, see Writing Disparity into a Clip.

If you have a CG scene with camera information and a z-depth map available, you can also create disparity
maps using the O_DepthToDisparity node. For more information, see DepthToDisparity.

Inputs
O_DisparityGenerator has the following inputs:

Source A stereo pair of images. If you intend to use the Alignment control, O_
DisparityGenerator requires an O_Solver node as one of its inputs. Alignment
defaults to 0, but increasing it forces the disparity map to match the camera
geometry to remove noise on the vertical component of disparity.

Mask An optional mask that specifies areas to exclude from the disparity
calculation. You can use this input to prevent distortions at occlusions or to
calculate disparity for a background layer by ignoring foreground elements.

Note that masks should exist in both views, and O_DisparityGenerator treats
the alpha values of 1 as foreground and blurs to the 0 value using nearby
disparity to recreate object boundaries, rather than image data. When you
create a mask using Roto or RotoPaint, you can use the feather control to
extend the calculation. For example, the disparity map may have a sharper
transition at depth edges with a binary mask, but applying feather on the mask
can help smooth the resulting image.

| Inputs

19

The left view. A mask to select the dancers in the
left view.

To see a table listing the nodes or channels each Ocula node requires in its inputs, see Appendix A: Node
Dependencies.

Generating Disparity Maps
To generate a disparity map, do the following:
1. Launch Nuke and press S on the Node Graph to open the project settings. Go to the Views tab and click

the Set up views for stereo button.
2. From the Toolbar, select Image > Read to load your stereo clip into Nuke. If you don’t have both views in

the same file, select Views > JoinViews to combine them, or use a variable in the Read node’s file field
to replace the name of the view (use the variable %V to replace an entire view name, such as left or
right, and %v to replace an initial letter, such as l or r). For more information, refer to the Nuke User
Guide.

3. Select Ocula > Ocula 4.0 > O_DisparityGenerator to insert an O_DisparityGenerator node after the
Read node.

Note: If you intend to use the Alignment control, O_DisparityGenerator requires an O_Solver node
as one of its inputs. Alignment defaults to 0, but increasing it forces the disparity map to match the
camera geometry to remove noise on the vertical component of disparity. See Generating Disparity
Using Alignment for more information.

4. Open the O_DisparityGenerator controls. O_DisparityGenerator renders using the Local GPU specified,
if available, rather than the CPU. The output between the GPU and CPU is identical, but using the GPU
can significantly improve processing performance.
If no suitable GPU or the required NVIDIA CUDA drivers are available, O_DisparityGenerator defaults to
the CPU. You can select a different GPU Device, if available, by opening Nuke's Preferences and
selecting an alternative card from the GPU Device dropdown.

Note: Selecting a different GPU requires you to restart Nuke before the change takes effect.

| Generating Disparity Maps

20

5. From the Views to Use menu or buttons, select which views you want to use for the left and right eye
when creating the disparity map.

6. If there are areas in the image that you want to ignore when generating the disparity map, supply a mask
either in the Mask input or the alpha of the Source input. In the O_DisparityGenerator controls, set Mask
to the component you want to use as the mask.
Note that masks should exist in both views, and O_DisparityGenerator treats the alpha values of 1 as
foreground and blurs to the 0 value using nearby disparity to recreate object boundaries, rather than
image data. When you create a mask using Roto or RotoPaint, you can use the feather control to extend
the calculation. For example, the disparity map may have a sharper transition at depth edges with a
binary mask, but applying feather on the mask can help smooth the resulting image.

7. Attach a Viewer to the O_DisparityGenerator node, and display one of the disparity channels in the
Viewer by selecting it from the channels dropdown above the Viewer.
O_DisparityGenerator calculates the disparity map and stores it in the disparity channels.

The Source clip. A disparity map.

Tip: Reading depth in disparity maps can be tricky in RGB. There are a number of ways to make
the depth easier to read, but the simplest is to:

• Set the Viewer channels control to disparityL and the R layer within the channel.
• Move the pointer around the image to locate the highest positive or negative red value using the
Viewer info bar.
• Set the gain field to +/-1 divided by the red value. For example, 1/20 for positive values or -1/20
for negative values.
• Adjust the gain and gamma controls to reveal edges and areas of contrast. Darker areas of the
image are closer to the camera and lighter areas farther away. If you use a positive gain, the light
and dark colors are flipped.

| Generating Disparity Maps

21

8. If the calculated disparity map does not produce the results you’re after (and you have already checked
the quality of the solve as described in Reviewing and Editing the Results), use the O_
DisparityGenerator controls to adjust the way the disparity map is calculated. You can either adjust the
controls manually or use the Preset dropdown to automatically make adjustments for you:
• Custom - automatically selected when you adjust the controls manually,
• Normal - the default values for all controls.
• Strong - reduces match Stabilisation between images and concentrates on the Strength of image
matching.

• Aggressive - increases the Strength to reconstruct images as close as possible to the source, but
reduces Stablilisation in favor of accuracy.

• Smooth - reduces match Strength between images and concentrates on Stabilisation.
• Aligned - enables the Alignment control, which requires an O_Solver upstream. See Solver and
Generating Disparity Using Alignment for more information.

• Fast - disables the Stabilisation control, speeding up processing time.
The available controls are described in O_DisparityGenerator Controls.

9. You can also use the Parallax Histogram display in O_DisparityViewer to review the disparity range. For
more details, see DisparityViewer.

Tip: To check the quality of the generated disparity map, you can add a DisparityReviewGizmo
from the Ocula > Ocula 4.0 menu. This gizmo allows you to view the disparity in each view using
the output and background dropdowns to control what is displayed in the Viewer. See Quality
Control Tools for more information.

You can then use a RotoPaint (Draw > RotoPaint) node to edit the generated disparity channels.
For example, if a specific region in the image is producing incorrect disparity vectors and you know
that those vectors should match the vectors in the surrounding areas, you can use the Clone tool to
clone out the problematic area.

You can also use O_MultiSample to fill or replace problematic areas. See MultiSample for more
information.

| Generating Disparity Maps

22

Generating Disparity Using Alignment

Using O_DisparityGenerator in conjunction with O_Solver alignment data allows you to constrain the
resulting disparity vectors to match global plate alignment. You might want to do this if your plates don't
contain much detail, such as bluescreen images with markers in the background or plates with a lot of
featureless areas like sky.

Using the O_Solver alignment data can reduce changes in vertical disparity with depth that are required for
Local alignment in O_VerticalAligner and cause a vertical shift in O_NewView, where disparity doesn't pick
up the local vertical shift required to match the images.

To generate a disparity map using O_Solver alignment data, do the following:
1. Start Nuke and press S on the Node Graph to open the project settings. Go to the Views tab and click the

Set up views for stereo button.
2. From the Toolbar, select Image > Read to load your stereo clip into Nuke. If you don’t have both views in

the same file, select Views > JoinViews to combine them, or use a variable in the Read node’s file field
to replace the name of the view (use the variable %V to replace an entire view name, such as left or
right, and %v to replace an initial letter, such as l or r). For more information, refer to the Nuke User
Guide.

3. Select Ocula > Ocula 4.0 > O_Solver to insert an O_Solver node after either the stereo clip or the
JoinViews node.

Note: Solve data passed downstream to O_VerticalAligner is updated to match the aligned plates,
except when Vertical Skew or Local Alignment is enabled. See VerticalAligner for more
information.

O_Solver calculates the geometrical relationship between the two views in the input clip and requires at
least one keyframe. For more instructions on how to use O_Solver, see Solver.

4. Select Ocula > Ocula 4.0 > O_DisparityGenerator to insert an O_DisparityGenerator node after the
Read node.

5. Set the Alignment control to a value greater than 1, so that disparity requires solve data upstream.
6. Continue from step 4 in Generating Disparity Maps to generate disparity vectors, including alignment

data from the solve.

Writing Disparity into a Clip

When you're happy with the disparity map generated, you can save time down the line by writing the disparity
into a new clip combining the source and disparity channels.
1. Select the O_DisparityGenerator node in the Node Graph.
2. Select Image > Write (or press W on the keyboard) to insert a Write node after O_DisparityGenerator.
3. In the Write node controls, select all from the channels dropdown and set file type to exr.

| Generating Disparity Maps

23

4. Enter a name for the clip in the file field (for example, my_clip.####.exr), and click Render.
The newly created disparity channels are saved in the channels of your stereo clip. When you need to
manipulate the same clip again later, the disparity vectors are loaded into Nuke together with the clip.
The disparity channels are represented on nodes in the Node Graph by the dark green chip on the right
of the node.

Rendering the output to combine the clip and the disparity
channels for future use.

O_DisparityGenerator Controls

Use GPU

Open the O_DisparityGenerator controls. O_DisparityGenerator renders using the Local GPU specified, if
available, rather than the CPU. The GPUmay significantly improve processing performance.

If there is no suitable GPU, or the required NVIDIA CUDA drivers are unavailable, O_DisparityGenerator
defaults to using the CPU. You can select a different GPU Device, if available, by opening Nuke's
Preferences and selecting an alternative card from the GPU Device dropdown.

Note: Selecting a different GPU requires you to restart Nuke before the change takes effect.

Views to Use

From the views that exist in your project settings, select the two views you want to use to create the disparity
map. These views are mapped for the left and right eye.

Preset

Use the Preset dropdown to automatically make adjustments to the disparity results by changing the
appropriate refinement controls:

Custom Automatically selected when you adjust the controls manually,

| O_DisparityGenerator Controls

24

Normal The default value for all controls.

Strong Increases match Strength between images at the expense of Stabilisation.

You can use Strong when picture building is poor using O_NewView, O_
ColourMatcher, and O_FocusMatcher.

Aggressive Increases the Strength used to reconstruct images as close as possible to the
source, but reduces Stablilisation in favor of accuracy.

This option gives the best result in O_NewView to reproduce the appearance
of one view from another and is useful for color or focus matching.

Note: Aggressive calculation can produce poor stability, which
makes it unsuitable for copying fixes from one view to the other.

Smooth Reduces match Strength between images and concentrates on Stabilisation.

This option produces smoother, temporally stable vectors. Use Smooth to
generate clean depth maps and to prevent flicker when copying a fix from one
view to the other.

Note: Smooth vectors are cleaner and stable from one frame to the
next, but the image may not reconstruct well with O_NewView.

Aligned This option enables the Alignment control, which requires an O_Solver
upstream.

Fast This option disables the Stabilisation control, reducing processing time.

Mask

An optional mask that specifies areas to exclude from the disparity calculation. You can use this input to
prevent distortions at occlusions or to calculate disparity for a background layer by ignoring all foreground
elements.

Note that masks should exist in both views, and O_DisparityGenerator treats the alpha values of 1 as
foreground and blurs to the 0 value using nearby disparity to recreate object boundaries, rather than image
data. When you create a mask using Roto or RotoPaint, you can use the feather control to extend the
calculation. For example, the disparity map may have a sharper transition at depth edges with a binary mask,
but applying feather on the mask can help smooth the resulting image.

| O_DisparityGenerator Controls

25

None Use the entire image area.

Source Alpha Use the alpha channel of the Source clip as an ignore mask.

Source Inverted Alpha Use the inverted alpha channel of the Source clip as an ignore mask.

Mask Luminance Use the luminance of the Mask input as an ignore mask.

Mask Inverted
Luminance

Use the inverted luminance of the Mask input as an ignore mask.

Mask Alpha Use the alpha channel of the Mask input as an ignore mask.

Mask Inverted Alpha Use the inverted alpha channel of the Mask input as an ignore mask.

Vector Detail

Adjusts the density of the calculated disparity vectors. Higher detail picks up finer disparity changes, but
takes longer to calculate.

Strength

Sets the strength applied when matching pixels between the left and right views. Higher values allow you to
accurately match similar pixels in one image to another, concentrating on detail matching even if the
resulting disparity map is jagged. Lower values may miss local detail, but are less likely to provide you with
the odd spurious vector, producing smoother results.

Often, it is necessary to trade one of these qualities off against the other. You may want to increase Strength
to force the views to match where fine details are missed, or decrease it to smooth out the disparity map.

Low Strength values smooth the disparity map, but
can miss local detail.

High Strength values add detail, but can cause
jagged disparity.

Consistency

Sets how accurately the same points in the left and right views are mapped to each other. Increase the value
to encourage the left and right disparity vectors to match.

| O_DisparityGenerator Controls

26

Smoothness

Controls how image edges are used as clues for sharp transitions in depth in the scene. The higher the
value, the smoother the transition between depths at edges in the image.

Low Smoothness can produce better depth definition
at edges.

High Smoothness produces smoother disparity
maps, but can lose depth detail at edges.

Alignment

Sets how much to constrain the disparities to match the vertical alignment defined by an upstream O_Solver
node. Increasing the value forces the disparities to be aligned and requires at least one keyframe match.

Note: The default Alignment value of 0 calculates the disparity using unconstrained motion
estimation, and therefore, does not require O_Solver data.

Using O_DisparityGenerator in conjunction with O_Solver alignment data allows you to constrain the
resulting disparity vectors to match global plate alignment. You might want to do this if your plates don't
contain much detail, such as bluescreen images with markers in the background or plates with a lot of
featureless areas like sky.

Note: Using the O_Solver alignment data can reduce changes in vertical disparity with depth that
are required for Local alignment in O_VerticalAligner and cause a vertical shift in O_NewView,
where disparity doesn't pick up the local vertical shift required to match the images.

Stabilisation

Sets how heavily vectors are forced to be temporally consistent by generating disparity over multiple frames,
rather than a single stereo frame. Increasing the value produces smoother vectors, which are more stable
over time, but at the expense of increased processing time.

| O_DisparityGenerator Controls

27

Tip: Decreasing the value can produce more accurate results when rebuilding views using O_
NewView. See NewView for more information.

Default Stabilisation can lose detail at edges in the
image.

High Stabilisation produces smoother vectors, which
are more stable over time.

O_DisparityGenerator Example
In this example, we read in a stereo image, use O_DisparityGenerator to calculate its disparity map, review
the results using DisparityReviewGizmo, and render the result as a single .exr file that contains the left and
the right view and the newly created disparity channels. Later, whenever you use the same image, the
disparity map is loaded into Nuke together with the image. This makes the disparity map readily available for
the other Ocula nodes, many of which need it to produce their output.

The stereo image used in this example can be downloaded from here.

Step by Step
1. Start Nuke and press S on the Node Graph to open the project settings. Go to the Views tab and click the

Set up views for stereo button.
2. Select Image > Read to import Dance_Group.exr. The .exr format allows both views to exist in a single

file, so Nuke reads in both the left and the right view using the same Read node.
3. Select Ocula > Ocula 4.0 > O_DisparityGenerator to insert an O_DisparityGenerator node.

The node tree with O_DisparityGenerator.

4. Display one of the disparity channels by selecting it from the channel set and channel menus in the
upper-left corner of the Viewer.

| O_DisparityGenerator Example

http://s3.amazonaws.com/thefoundry/products/ocula/nuke/releases/4.0v1/Ocula_4.0v1_Examples.zip

28

O_DisparityGenerator calculates the disparity map. You will probably see something colorful and
seemingly unreadable, much like the image below. Don’t worry - that’s what the disparity channels are
supposed to look like.
Reading depth in disparity maps can be tricky in RGB. There are a number of ways to make the depth
easier to read, but the simplest is to adjust the Viewer controls to display the results:
• Set the Viewer channels control to disparityL and the R layer within the channel.
• Move the pointer around the image to locate the highest negative red value using the Viewer info bar.
• Set the Viewer gain numeric field to -1/<red value>, such as -1/40.
• Adjust the Viewer gain and gamma controls to reveal edges and areas of contrast. Darker areas of the
image are closer to the camera and lighter areas farther away.

The calculated RGB disparity map. The same map, but with the Viewer adjusted.

Ocula also ships with a disparity checking gizmo, called DisparityReviewGizmo, to help you check that
your disparity calculations are correct before you pass the data down the Node Graph.

5. Select Ocula > Ocula 4.0 > DisparityReviewGizmo to insert the gizmo after the O_DisparityGenerator
node.

Note: To use the gizmo's full toolset, you'll also need an occlusion map. See OcclusionDetector for
more information on how to generate occlusion maps.

6. The gizmo's default settings display your stereo source image, desaturated so that the overlay generated
by the gizmo is easily visible. Disparity on the X and Y axes are displayed in red and green, respectively,
and occlusions are displayed in blue (if you've generated an occlusion map).

| O_DisparityGenerator Example

29

In our example, we haven't added occlusion data (blue) and there isn't any appreciable Y axis
displacement (green). The red overlay is generally picking out the changes in depth pretty well.

7. Select Image > Write to insert a Write node between the O_DisparityGenerator and the Viewer.
8. In the Write node controls, select all from the channels menu to include the disparity channels in the

rendered file.
9. In the file field, enter a file name and location for the new .exr file. Make sure file type is set to exr. Then,

click the Render button to render the image as usual.
10. Import the .exr file you created. Using the Viewer controls, check that it contains the left and the right

view and the disparity channels.
You can now use the .exr file you created together with many of the other Ocula nodes without having to
insert an O_DisparityGenerator node before them.

| O_DisparityGenerator Example

OcclusionDetector
Description
O_OcclusionDetector generates a mask for the occluded regions in each view. Occluded regions are pixels
that are visible in one view but not the other.

The left view of a stereo image. The occlusion mask generated
for the left view (pixels occluded in the left view).

An occlusion mask identifies areas that cannot be rebuilt as some of the pixels in one view are not visible in
the other. You can use it to quality check the result of O_DisparityGenerator and to identify image regions
that are likely to fail when using the Ocula nodes that rely on rebuilding one view from the other. If the pixel
information isn’t there in one view, it cannot be generated for the other. After you have identified the areas
which are not suitable for picture building, you can choose how to handle these in order to get the best
possible result.

You may want to generate an occlusion mask for each view when using the following nodes:

FocusMatcher This node requires an occlusion mask upstream to produce its output.

ColourMatcher This node requires an occlusion mask upstream to produce its output.

DisparityGenerator This node does NOT require an occlusion mask, but you can use one
downstream to quality check the generated disparity map.

NewView This node requires an occlusion mask upstream to produce its output.

InteraxialShifter This node requires an occlusion mask upstream to produce its output.

Retimer This node does NOT require an occlusion mask to produce its output, but you
can use one upstream to preview where they may struggle to generate a new
view.

The final occlusion masks for each view are stored in the mask_occlusion channel. You can view them in
Nuke by setting the alpha channel menu to mask_occlusion.alpha and pressing M on the keyboard with the

30

31

Viewer selected. This superimposes the occlusion mask for the current view as a red overlay on top of the
image’s RGB channels as shown below.

An occlusion mask displayed on top of the color channels.

After you have generated an occlusion mask, you can use a Write node to render the mask into the channels
of your stereo .exr file along with the color and disparity channels. When you use the same image sequence
at a different time, the occlusion mask is loaded into Nuke along with the sequence.

The O_OcclusionDetector requires upstream disparity channels to produce its output. For an in-depth
explanation of how to create disparity channels, see DisparityGenerator.

Inputs
O_OcclusionDetector has one input:

Source A stereo pair of images. If disparity channels are not embedded in the images,
you need to add an O_DisparityGenerator node after the image sequence.

To see a table listing the nodes or channels each Ocula node requires in its inputs, see Appendix A: Node
Dependencies.

Creating and Editing Occlusion Masks

Creating an Occlusion Mask

Note: Disparity vectors are required to generate an occlusion mask.

To generate an occlusion mask, do the following:

| Inputs

32

1. If disparity vectors do not yet exist in the script, insert an O_DisparityGenerator node after your image
sequence to calculate the disparity vectors. See DisparityGenerator for more information.

Note: Disparity vectors may already exist in the image sequence, in which case you do not need to
insert an O_DisparityGenerator node to generate an occlusion mask.

2. From the toolbar, select Ocula > Ocula 4.0 > O_OcclusionDetector to add an O_OcclusionDetector
node. Insert the O_OcclusionDetector node either after the O_DisparityGenerator node (if you added
one in the previous step), or the stereo image sequence. Your node tree should now look something like
this:

3. Open the O_OcclusionDetector controls. O_OcclusionDetector renders using the Local GPU specified, if
available, rather than the CPU. The output between the GPU and CPU is identical, but using the GPU
can significantly improve processing performance. See O_OcclusionDetector Controls for more details.

4. In the O_OcclusionDetector controls, you can see all the views that exist in your project settings under
Views to Use. Select the two views you want to use to calculate the occlusion mask. The two views you
select are mapped for the left and right eye. O_OcclusionDetector calculates the occlusion mask and
stores it in the mask_occlusion.alpha channel.

5. In the Viewer controls, set the alpha channel menu to mask_occlusion.alpha as shown below.

Set this menu to mask_occlusion.alpha.

This sets the occlusion mask that O_OcclusionDetector generated as the channel displayed in the alpha
channel.

6. Next, you can either select Matte overlay from the RGB dropdown or press M on the keyboard with the
Viewer selected, to superimpose that channel as a red overlay on top of the image’s RGB channels.

Set RBG to Matte overlay

| Creating and Editing Occlusion Masks

33

The red overlay indicates occluded regions where
picture building operations are likely to fail.

7. Adjust the Gradient Threshold, Consistency Threshold and Dilate Occlusions controls as required to
generate the best possible result. See O_OcclusionDetector Controls for information about the controls.

8. When you’re happy with the results, press M again to return to the RGB display.

Manually Editing an Occlusion Mask

If there are occluded regions in the mask, which have not been marked correctly, you can manually edit the
mask by doing the following:
1. Press P on the Node Graph to add a RotoPaint node after O_OcclusionDetector.
2. To add regions to the occlusion mask, set output to mask_occlusion in the RotoPaint controls, and use

the paint tools to mark additional regions.
3. To remove or correct existing occluded regions, set output to mask_occlusion in the RotoPaint controls,

and set the paint brush color to black to manually paint out or correct the occluded areas.

Rendering Out and Loading Occlusion Masks

To render and save the color channels, disparity channels and occlusion mask into the channels of a stereo
.exr file, insert a Write node after the O_OcclusionDetector node. When you load the image sequence at a
different time, the occlusion mask is loaded with it.

Note: If you correct occlusions using RotoPaint, insert a Write node after the RotoPaint node to
include your corrections in the occlusion channel.

| Creating and Editing Occlusion Masks

34

Editing Rendered Occlusion Masks

You can edit the rendered occlusion mask that you have loaded for use with O_FocusMatcher or O_
ColourMatcher, using two different methods:
• Insert a RotoPaint node to adjust the occlusions manually with paint.
• Replace the occlusions by inserting a new O_OcclusionDetector. This overwrites the original occlusion
mask. However, you can disable or delete the new O_OcclusionDetector node to revert back to the original
mask.

O_OcclusionDetector Controls

Use GPU

Open the O_OcclusionDetector controls. O_OcclusionDetector renders using the Local GPU specified, if
available, rather than the CPU. The GPUmay significantly improve processing performance.

If there is no suitable GPU, or the required NVIDIA CUDA drivers are unavailable, O_OcclusionDetector
defaults to using the CPU. You can select a different GPU Device, if available, by opening Nuke's
Preferences and selecting an alternative card from the GPU Device dropdown.

Note: Selecting a different GPU requires you to restart Nuke before the change takes effect.

Views to Use

From the views that exist in your project settings, select the two views you want to use to generate an
occlusion mask. These views are mapped for the left and right eye.

Gradient Threshold

The gradient measures the change in depth from horizontal disparity. You can use the Gradient Threshold
control to define where occlusions occur at depth changes. The lower the gradient threshold, the greater the
number of occluded regions.

| O_OcclusionDetector Controls

35

The occlusion mask with the
default Gradient Threshold.

The occlusion mask with a
low Gradient Threshold set.

Consistency Threshold

The Consistency Threshold control allows you to set occlusions where the left and right disparities are not
consistent. A low Consistency Threshold value, detects more inconsistencies.

The occlusion mask with a low
Consistency Threshold set.

The occlusion mask with a high
Consistency Threshold set.

Dilate Occlusions

You can use the Dilate Occlusions control to expand the occluded regions by a specified number of pixels.
The maximum you can dilate the occlusions by is 20 pixels.

Occlusion Dilate = 1. Occlusion Dilate = 15.

| O_OcclusionDetector Controls

36

O_OcclusionDetector Example
See O_FocusMatcher Example for an example of how to use O_OcclusionDetector with O_FocusMatcher.

| O_OcclusionDetector Example

NewView
Description
You can use the O_NewView node to reconstruct a view – either left or right – using the pixels from the other
view. For example, you can choose to reconstruct the left view using the pixels from the right view. This can

be useful if you want to manipulate one view (with a gizmo, node, or graphics editor for example) and
replicate the changes into the other view.

Note: The O_NewView node requires disparity vectors that relate the two views. If they don't
already exist, you can use the O_DisparityGenerator node to calculate these vectors. See
DisparityGenerator for how to do this.

If there are no occlusions (features visible in one view but not the other), O_NewView generally produces a
good result. When there are occlusions, the result may require further editing but can often save you time
over not using the node at all.

If you use O_NewView to reproduce changes made to one view in the other view, you may want to create the
disparity vectors using either the modified view and its corresponding view, or the original views with no
changes applied. It's recommended to choose the views that produce the best disparity vectors. For
example, the former method may be preferable if you are correcting an unwanted color shift between views.
The latter method may be preferable if your changes in one view produce an occlusion or a change in texture
appearance, which makes the process of finding correspondences between the modified images harder.

When you are using Ocula to update one view to match another, it is advised to quality check the updated
view using the DisparityReviewGizmo. See DisparityReviewGizmo for more information.

Note: To reproduce changes you have made using Nuke’s Roto node, RotoPaint node, or any
node or gizmo that has controls for x and y coordinates, see Nuke's Online Help or the
Stereoscopic Scripts section in the Nuke User Guide.

Inputs
O_NewView has the following inputs:

CleanPlate A clean background plate used to fill areas of occlusion when Correction is
set to Use CleanPlate.

37

https://learn.foundry.com/nuke/content/comp_environment/stereoscopic_films/stereo_projects.html

38

Note: If no image is connected, a Channels missing at CleanPlate
input. Please connect RGB input to CleanPlate error is displayed.

Source A stereo pair of images. If disparity channels are not embedded in the images,
you need to add an O_DisparityGenerator node after the image sequence. O_
NewView also requires an occlusion mask, which you can generate using an
O_OcclusionDetector node.

To see a table listing the nodes or channels each Ocula node requires in its inputs, see Appendix A: Node
Dependencies.

Creating a New View

Note: O_NewView requires disparity vectors and an occlusion mask to operate correctly.

To create a new view, complete the following steps:
1. If disparity vectors don’t yet exist in the script, you can insert an O_DisparityGenerator node to calculate

the disparity vectors.
2. Select Ocula > Ocula 4.0 > O_OcclusionDetector to insert an O_OcclusionDetector node. Insert the O_

OcclusionDetector node after either the O_DisparityGenerator node (if you added one in the previous
step) or the stereo image sequence.

3. Select Ocula > Ocula 4.0 > O_NewView to insert an O_NewView node after the O_OcclusionDetector
node.

4. Attach a Viewer to the O_NewView node. Your node tree should now look something like this:

5. In the O_NewView controls, select the two views you want to use under View to Use. The two views you
select are mapped for the left and right eye.

6. From the View to build dropdown menu, select either Left from Right or Right from Left, depending on
which view you want to rebuild.

7. Adjust the required controls to get the best possible result. See O_NewView Controls for more
information.

| Creating a New View

39

O_NewView Controls

Use GPU

Open the O_NewView controls. O_NewView renders using the Local GPU specified, if available, rather than
the CPU. The GPUmay significantly improve processing performance.

If there is no suitable GPU, or the required NVIDIA CUDA drivers are unavailable, O_NewView defaults to
using the CPU. You can select a different GPU Device, if available, by opening Nuke's Preferences and
selecting an alternative card from the GPU Device dropdown.

Note: Selecting a different GPU requires you to restart Nuke before the change takes effect.

Views to Use

From the views that exist in your project settings, select the two views you want to use to generate the new
view. These views are mapped for the left and right eye.

View to Build

Select which inputs to use to generate the new view.

Left from Right Use the pixels from the right view to build a new left view.

Right from Left Use the pixels from the left view to build a new right view.

Pass through other view

Select the Pass through other view checkbox to output both views; the new view and the original source
view. If this checkbox is disabled, only the new view is output.

Occlusions

Output occlusions to alpha

Select the Output occlusions to alpha checkbox to output the occlusions to the alpha channel. Occlusions
occur when some pixels are not visible in the source view, and therefore cannot be used to create the new

| O_NewView Controls

40

view. You can use the alpha channel as an overlay to determine where the occlusion correction is applied.

Correction

You can use the Occlusions – Correction control to determine how occluded regions are dealt with.

Use original Select this option to retain the original view in the occluded regions. For
example, if you are using the original left view to build a new right view, the
original right view is retained in the occluded regions to help build the new
right view.

Expand foreground Select this option to fill occluded regions by expanding the surrounding area
from the original source view. For example, if you are using the original left
view to build a new right view, the foreground of the original left view is
expanded to help build the new right view.

Note: Expanding the foreground may offset the edges.

Use CleanPlate Select this option to fill occluded areas using a clean background, which is
connected using the CleanPlate input.

Note: If no image is connected, a Channels missing at CleanPlate
input. Please connect RGB input to CleanPlate error is displayed.

None Select this option to avoid filling the occluded regions.

Edges

Output edges to alpha

You can use the Output edges to alpha checkbox to output the edges to the alpha channel. Use the alpha
channel as an overlay to determine where the edge correction is applied.

Correction

You can use the Edges – Correction control to determine how image edges at depth boundaries are handled.

Match original Select this option to match the appearance of the original view at the edges.
For example, if you are using the original left view to build a new a right view,

| O_NewView Controls

41

the edges are matched from the original right view to help build the new right
view.

Match foreground Select this option to match the edges from the original source view that was
used to build the new view. For example, if you are using the original left view
to build a new right view, the edges are matched from the original left view to
help build the new right view.

None Select this option to avoid applying edge correction.

Adjust Edges

You can use the Adjust Edges control to set the extent of the region where the edge correction is applied. To
blend the correction into the background, use a positive value. To restrict the correction to the edges, use a
negative value.

O_NewView Example
In this example, we have a stereo image of a cathedral. In the left view, one of the cathedral windows is
missing. Our aim is to reproduce the missing window from the right view into the left view using O_NewView.
To do this. we can use O_NewView to produce a completely new left view, using the pixels from the right
view.

The stereo image used in the example can be downloaded from our website. For more information, see
Example Images.

The necessary disparity channels have been embedded in the download image, so you don’t need to insert
an O_Solver node and an O_DisparityGenerator node in this example.

Step by Step
1. Launch Nuke and open the project settings (press S on the Node Graph). Go to the Views tab and click

the Set up views for stereo button.
2. Import cathedral1.exr and attach a Viewer to the image. Switch between the left and the right view using

the Viewer controls (or the ; and ' hotkeys). Notice that the cathedral is missing a window in the left view,
as shown below.

| O_NewView Example

42

The left view. The right view.

We want to build a new left view to replicate the additional window, using the O_NewView node.
3. Select Ocula > Ocula 4.0 > O_OcclusionDetector to insert an O_OcclusionDetector node after the

stereo image.
4. Select Ocula > Ocula 4.0 > O_NewView to insert an O_NewView node after the O_OcclusionDetector

node.

5. In the O_NewView controls, select Left from Right from the View to Build menu to generate the new left
view using the right view as a source. The image below shows the new left view. As you can see, it now
includes the window that was previously missing.

6. Select the Pass through other view checkbox. This means both the new view and the original source
view are output.

7. Using the Viewer controls, switch between the left and the right views. The window that was previously
missing from the left view, is now present in both views.

| O_NewView Example

43

The new left view. The original right view.

| O_NewView Example

ColourMatcher
Description
The O_ColourMatcher node enables you match the colors of one view with those of another. It has been
specifically designed to deal with the subtle color differences that are sometimes present between stereo
views.

The original left view. The original right view. The color corrected right view.

Color discrepancies between views can be caused by several factors. For example, stereo footage may have
been shot with cameras that had different polarization, or there may have been slight differences between
the physical characteristics of the two camera lenses or image sensors. If the color differences are not
corrected, viewers may experience difficulty in fusing objects and as a result may not enjoy the viewing
experience.

Correcting color differences manually in post-production can be a time-consuming process and requires
considerable skill. O_ColourMatcher enables you to automate the color grading required.

O_ColourMatcher has two different modes you can use to perform a color match; Basic mode and Local
Matching mode. Both modes require an O_DisparityGenerator node and an O_OcclusionDetector node
upstream of the O_ColourMatcher node.

Basic Mode

The Basic color matching mode takes the color distribution of one entire view and modifies it to match the
distribution of the other view.

Local Matching Mode

The Local Matching mode first divides the two images into square blocks according to the Block Size
control. Then, it matches the color distribution from the view that want to modify to a reconstructed version of
the same view, which has been constructed using the pixels of the source view. When an occluded pixel is
detected by an upstream occlusion mask, O_ColourMatcher finds the closest unoccluded pixel and then
uses this to make the color match for the occluded pixel.

Local Matching mode can be useful if there are local color differences between the views, such as highlights
that are brighter in one view than the other.

44

45

Inputs
O_ColourMatcher has the following inputs:

Source A stereo pair of images. If disparity channels and occlusion masks are not
embedded in the images and you are using the Local Matching mode, you
need to add an O_Solver, an O_DisparityGenerator, and an O_
OcclusionDetector node after the image sequence.

Mask An optional mask that determines where to take the color distribution from.
For example, if you have a clip showing a person in front of a green screen,
you might want to use a mask to exclude the green area so the node
concentrates on matching the person.

In the Basic mode, O_ColourMatcher calculates the transform on the masked
area of the source view but applies it to the whole of the view it's correcting. In
the Local Matching mode, it calculates the transform on the masked area and
applies it to that area only.

To see a table listing the nodes or channels each Ocula node requires in its inputs, turn to Appendix A: Node
Dependencies.

Performing a Color Match
O_ColourMatcher has two different modes you can use to perform a color match: Basic mode and Local
Matching mode. Both modes require an O_DisparityGenerator and an O_OcclusionDetector node upstream
of the O_ColourMatcher node.

To perform a color match, complete the following steps:
1. If they don't exist already, insert an O_DisparityGenerator node and an O_OcclusionDetector node after

your stereo clip. See DisparityGenerator and OcclusionDetector
2. Select Ocula > Ocula 4.0 > O_ColourMatcher to insert an O_ColourMatcher node after the O_

DisparityGenerator and O_OcclusionDetector nodes.
3. Connect a Viewer to the O_ColourMatcher node. Your node tree should now look something like this:

O_ColourMatcher node tree.

| Inputs

46

4. In the O_ColourMatcher controls, select the two views you want to use for the color match under View to
Use. The two views you select are mapped for the left and right eye.

5. From the Match menu, select either Left to Right or Right to Left depending on the direction in which
you want to perform the color match.

6. Select the required mode from the Mode dropdown in the O_ColourMatcher controls. See O_
ColourMatcher Controls for more information about the different modes.

7. Adjust the O_ColourMatcher controls to get the best possible result. See O_ColourMatcher Controls for
more information about the controls.

Editing Color Match Results

If you can see areas where the color match is wrong, make sure they are included in the upstream occlusion
mask. You can edit the occlusion mask in two ways:
• Adjust O_OcclusionDetector controls.
• Use a RotoPaint node before O_ColourMatcher and manually edit the mask by using the paint tool to add
occluded regions into the mask_occlusion channel.

O_ColourMatcher Controls

Use GPU

Open the O_ColourMatcher controls. O_ColourMatcher renders using the Local GPU specified, if available,
rather than the CPU. The GPUmay significantly improve processing performance.

If there is no suitable GPU, or the required NVIDIA CUDA drivers are unavailable, O_ColourMatcher defaults
to using the CPU. You can select a different GPU Device, if available, by opening Nuke's Preferences and
selecting an alternative card from the GPU Device dropdown.

Note: Selecting a different GPU requires you to restart Nuke before the change takes effect.

Views to Use

From the views that exist in your project settings, select the two views you want to use to generate an
occlusion mask. These views are mapped for the left and right eye.

Match

The Match control allows you specify the direction in which to perform the color match.

| O_ColourMatcher Controls

47

Left to Right Adjust the colors of the left view to match with those of the right.

Right to Left Adjust the colors of the right view to match with those of the left.

Mode

You can use two different modes to perform a color match:

Basic This mode takes the color distribution of one entire view and modifies that to
match the distribution of the other view.

Local Matching This mode first divides the two images into square blocks according to the
Block Size control. Then, it matches the color distribution from the view that
want to modify to a reconstructed version of the same view, which has been
constructed using the pixels of the source view. This can be useful if there are
local color differences between the views, such as highlights that are brighter
in one view than the other.

Note: Both modes require an O_DisparityGenerator node and an O_OcclusionDetector node
upstream of the O_ColourMatcher node.

Mask

If there are areas in the image that you want to ignore when calculating the color transformation, you can use
the Mask control to supply a mask. In the O_ColourMatcher controls, set Mask to the component you want to
use as the mask. The following Mask settings are available:

None Use the entire image area.

Source Alpha Use the alpha channel of the Source clip as a mask.

Source Inverted Alpha Use the inverted alpha channel of the Source clip as a mask.

Mask Luminance Use the luminance of the Mask input as a mask.

Mask Inverted
Luminance

Use the inverted luminance of the Mask input as a mask.

Mask Alpha Use the alpha channel of the Mask input as a mask.

Mask Inverted Alpha Use the inverted alpha channel of the Mask input as a mask.

| O_ColourMatcher Controls

48

Note: You can also use the alpha channel of the Source input to supply a mask.

View Menu Button

The View menu button allows you to select different settings for the left and right view. It is displayed to the
right of a control that it can be applied to. See Block Size further in this section for an example of how to use
it.

Local Matching

Note: These settings are only available with the Local Matching mode selected.

Preview colour correction

Enable this control to preview the areas of color correction applied to the original image as a difference
overlay.

Block Size

This control defines the width and height (in pixels) of the square blocks that the images are divided into
when calculating the color match. You can set different block sizes for each view by doing the following:
1. Click the View menu button to the right of the block size.
2. Select Split off left.

This displays two fields for Box Size, one for the left view and one for the right view.

3. To revert back to using the same size for both views, click the View menu button again and select
Unsplit left.

Scale

Set the image scale for local color matching. You can increase the Scale to broaden the color update and
preserve the image structure, helping to prevent image shift and wobble. Decrease the Scale to pick up
highlights and detailed color changes.

| O_ColourMatcher Controls

49

Limit

Sets a limit on local color matching against the average correction in a region. If you notice excessive color
changes in areas of highlight, try reducing the Limit.

Noise

The Noise control allows you to set how much noise to retain from the original image. If the color matching
smooths the input noise, increase the Noise value. If the value is too high, color differences at very fine
details are retained.

Occlusions

Note: These settings are only available with the Local Matching mode selected.

Output corrected area to alpha

Select the Output corrected area to alpha checkbox to output the corrected area to the alpha channel. The
corrected area can consist of the occlusion mask and the disparity edge mask set using the Adjust Edges
control, depending on what the Correction control is set to (Occlusions, Occlusions and Edges, or None).

Correction

Defines which areas receive the color correction when local color matching is not valid.

Occlusions Fill occluded pixels only, where color is missing from the other view.

Occlusions and Edges Fill occluded pixels, where color is missing from the other view, and
compensate for disparity changes at edges where matching and/or
reconstruction can fail.

None Apply no occlusion or edge correction.

Adjust Edges

The Adjust Edges control allows you to set the threshold for treating image edges as occlusions to reduce
haloing and edge flicker. The higher the value, the more image edges are considered occlusions even if they
are not marked as such in the upstream occlusion mask.

| O_ColourMatcher Controls

50

Colour Tolerance

The Colour Tolerance control allows you to set the amount of blurring across edges in the color match at
occluded regions. Decrease this to restrict the color correction in occluded regions to similar colors. Increase
the value to blur the color correction.

Support Size

Use the Support Size control to set the size of the region (in pixels) of unoccluded pixels used to calculate
the color correction at an occluded pixel. O_ColourMatcher first finds the closest unoccluded pixel and then
expands that distance by this number of pixels to determine the amount of unoccluded pixels to use.

Stabilise occlusions

Enabling this control can reduce flicker in occluded areas by using data from multiple frames.

O_ColourMatcher Example
In this example, there is a subtle color discrepancy between our stereo views and reflections that are present
in one view but not the other. To fix this, we need to match the colors of the right view with those of the left
using the Local Matching mode. The stereo image used in the example can be downloaded from our
website. For more information, please see Example Images.

Step by Step
1. Start Nuke and open the project settings by pressing S on the Node Graph. Select the Views tab and

click the Set up views for stereo button.
2. Import the dance_group_disp.exr footage. This image already includes both the left and the right view,

and the necessary disparity channels.
3. Attach a Viewer to the image. Using the Viewer controls (or the ; and ' hotkeys), switch between the left

and the right view. As you can see, there is a subtle color difference between the views.

| O_ColourMatcher Example

51

The original left view. The original right view.

We are going to match the colors of the left view with those of the right.
4. Select Ocula > Ocula 4.0 > O_OcclusionDetector to add an O_OcclusionDetector node after the stereo

images.
5. Insert an O_ColourMatcher node after O_OcclusionDetector by selecting select Ocula > Ocula 4.0 > O_

ColourMatcher.

The node tree with O_ColourMatcher.

6. In the O_ColourMatcher controls, you can select either Left to Right or Right to Left from the Match
dropdown, depending on the direction in which you want to perform the color match. The Match menu is
already set to Left to Right, which is what we want.

7. Set Mode to Local Matching.
In this mode, O_ColourMatcher first divides the two images into square blocks according to the Block
Size control. Then, it matches the color distributions between corresponding blocks in the two views.
As the Occlusion options are enabled in the Local Matching mode, O_ColourMatcher can produce
better results in the occluded areas defined by the upstream occlusion mask. In these areas, O_
ColourMatcher cannot correct the color in one view by using the color from the other. Instead, it looks for
similar colors in the nearby unoccluded areas that it has already been able to match and uses the closest
color it finds.

8. View the result and switch between the two views again. Compare the new left view to the original left
view by displaying the left view in the Viewer, selecting the O_ColourMatcher node, and pressing D a
couple of times to disable and enable the node. Notice that the colors of the left view now match those of
the right, but there are some artifacts in the middle of the image.

| O_ColourMatcher Example

52

The color corrected left view.

9. To fix this, we are going to add more areas to the occlusion mask. Press P on the Node Graph to add a
RotoPaint node after O_OcclusionDetector.

The node tree with RotoPaint.

10. In the Viewer controls, set the alpha channel menu to mask_occlusion.alpha as shown below.

This sets the occlusion mask that O_OcclusionDetector generated as the channel that is displayed in the
alpha channel.
Next, press M on the keyboard with the Viewer selected to superimpose that channel as a red overlay on
top of the image’s RGB channels.

| O_ColourMatcher Example

53

The occlusion mask in a Viewer overlay.

11. Open the RotoPaint controls and set output to mask_occlusion. Activate the Brush tool in the Viewer
toolbar and paint over any areas that were producing poor results. If it helps, press D on the O_
ColourMatcher node to disable it and stop it updating after each paint stroke. Pressing D again re-
enables the node.

Adding more areas to the occlusion mask.

12. Press M on the Viewer to hide the occlusion mask overlay.
13. Enable and disable O_ColourMatcher to compare the original and the color corrected view. The results

should now be more accurate. If you still see some problematic areas, you can add them to the occlusion
mask too or adjust the Local Matching and Occlusion controls in the O_ColourMatcher Properties.

| O_ColourMatcher Example

54

The final left view. The original right view.

| O_ColourMatcher Example

FocusMatcher
Description
O_FocusMatcher is designed to correct subtle focus differences that are sometimes present between the left
and right views of a stereo image. It does this by matching the focus distribution of one view to the other,

based on the disparity vectors upstream. For details on how to calculate disparity vectors, see
DisparityGenerator.

The original left view. The corrected left view.

The focus matching can be done using two different modes; the Match Edges mode and the Reconstruct
Edges mode.

Note: Both modes require an O_DisparityGenerator node and an O_OcclusionDetector node
upstream of the O_FocusMatcher node.

Match Edges Mode

The Match Edges mode matches the appearance of the edges from one view to the other. If you want to
preserve the original image structure, it is recommended to use this mode. Also, if the blurring in your input
images is subtle, the Match Edges mode may produce the best result.

Reconstruct Edges Mode

The Reconstruct Edges mode rebuilds the edges in one view from scratch, using the pixels from the other. If
you want to rebuild focus exactly, or if the blurring in your image is heavy or varying, it is recommended that
you use this mode.

Note: The result of this mode depends on the accuracy of the existing disparity vectors.

55

56

Inputs
O_FocusMatcher has the following inputs:

Source A stereo pair of images. If disparity channels and occlusion masks are not
embedded in the images, you need to insert an O_DisparityGenerator and an
O_OcclusionDetector node after the image sequence.

Mask An optional mask that determines where to perform the focus matching
calculation.

To see a table listing the nodes or channels each Ocula node requires in its inputs, see Appendix A: Node
Dependencies.

Performing a Focus Match
O_FocusMatcher has two different modes you can use to perform a color match: Match Edges mode and
Reconstruct Edges mode. Both modes require an O_DisparityGenerator node and an O_OcclusionDetector
node upstream of the O_FocusMatcher node.

To perform a focus match, complete the following steps:
1. If they don't exist already, insert an O_DisparityGenerator node and an O_OcclusionDetector node after

your stereo clip. See DisparityGenerator and OcclusionDetectorfor more information.
2. From the toolbar, select Ocula > Ocula 4.0 > O_FocusMatcher to insert an O_FocusMatcher node after

the O_OcclusionDetector node. Your node tree should now look something like this:

3. Select the required mode from the Mode dropdown in the O_FocusMatcher controls. You can use the
Match Edges mode or the Reconstruct Edges mode. See O_FocusMatcher Controls for more details
about the different modes.

4. Select the two views you want to use for the color match under View to Use. The two views you select
are mapped for the left and right eye.

5. From the Match menu, select either Left to Right or Right to Left depending on the direction in which
you want to perform the focus match.

6. Adjust the Local Matching and Occlusion controls to get the best possible result. See O_FocusMatcher
Controls for more information about the controls.

| Inputs

57

O_FocusMatcher Controls

Use GPU

Open the O_FocusMatcher controls. O_FocusMatcher renders using the Local GPU specified, if available,
rather than the CPU. The GPUmay significantly improve processing performance.

If there is no suitable GPU, or the required NVIDIA CUDA drivers are unavailable, O_FocusMatcher defaults
to using the CPU. You can select a different GPU Device, if available, by opening Nuke's Preferences and
selecting an alternative card from the GPU Device dropdown.

Note: Selecting a different GPU requires you to restart Nuke before the change takes effect.

Views to Use

From the views that exist in your project settings, select the two views you want to use to generate an
occlusion mask. These views are mapped for the left and right eye.

Match

The Match control allows you specify the direction in which to perform the focus match in.

Left to Right Deblur or rebuild the left view to match the right.

Right to Left Deblur or rebuild the right view to match the left.

Mode

You can use two different modes to perform a focus match:

Match Edges The Match Edges mode matches the appearance of the edges from one view
to the other. If you want to preserve the original image structure, it is
recommended to use this mode. If the blurring in your input images is subtle,
the Match Edges mode may produce the best possible result.

Reconstruct Edges The Reconstruct Edges mode rebuilds the edges in one view from scratch
using the pixels from the other. If you want to rebuild focus exactly, or if the

| O_FocusMatcher Controls

58

blurring in your image is heavy or varying, it is recommended that you use this
mode. The result of this mode depends on the accuracy of the existing
disparity vectors.

Mask

If there are areas in the image that you want to ignore when calculating the focus calculation, you can use the
Mask control to supply a mask. In the O_FocusMatcher controls, set Mask to the component you want to use
as the mask. The following Mask settings are available:

None Use the entire image area.

Source Alpha Use the alpha channel of the Source clip as a mask.

Source Inverted Alpha Use the inverted alpha channel of the Source clip as a mask.

Mask Luminance Use the luminance of the Mask input as a mask.

Mask Inverted
Luminance

Use the inverted luminance of the Mask input as a mask.

Mask Alpha Use the alpha channel of the Mask input as a mask.

Mask Inverted Alpha Use the inverted alpha channel of the Mask input as a mask.

Note: You can also use the alpha channel of the Source input to supply a mask.

Local Matching

Edge Scale

This allows you to scale the edges where focus matching is performed. To restrict matching to sharp edges,
use a small scale value. To match wider edges in the image, increase the scale value.

Strength

You can use the Strength control to set the amount of focus correction to apply. Set this to 0 for no
correction, or 1 for complete correction.

| O_FocusMatcher Controls

59

Noise

Note: This option is only available when the Reconstruct Edges mode is selected.

The Noise control allows you to preserve the noise of the original image when using the Reconstruct Edges
mode. To ignore noise, set this control to a low value. This matches the focus of fine details and can
reconstruct noise from the other view. To retain as much of the original noise as possible, use higher values.
This ensures that noise is not coherent between views, but may not match the focus at fine details in the
image.

Occlusions

Output occlusions to alpha

Select the Output occlusions to alpha checkbox to output the corrected area to the alpha channel.The
corrected area can consist of the occlusion mask and the disparity edge mask set using the Adjust Edges
control, depending on what the Correction control is set to (Occlusions, Occlusionsand Edges, or None).

Correction

Defines which areas receive the focus correction when local focus matching is not valid.

Occlusions Fill occluded pixels only, where color is missing from the other view.

Occlusions and Edges Fill occluded pixels, where color is missing from the other view, and
compensate for disparity changes at edges where matching can fail.

None Apply no occlusion or edge correction.

Adjust Edges

The Adjust Edges control allows you to set the threshold for treating image edges as occlusions to reduce
haloing and edge flicker. The higher the value, the more image edges are considered occlusions, even if they
aren’t marked as such in the upstream occlusion mask.

Colour Tolerance

The Colour Tolerance control allows you to set the amount of blurring across edges in the focus match at
occluded regions. Decrease this to restrict the color correction in occluded regions to similar colors. Increase
the value to blur the focus correction.

| O_FocusMatcher Controls

60

Support Size

Use the Support Size control to set the size of the region (in pixels) of unoccluded pixels used to calculate
the focus correction at a corrected pixel.

Stabilise occlusions

Enabling this control can reduce flicker in occluded areas by using data from multiple frames.

O_FocusMatcher Example
In this example, we correct the focus distribution in the right view of a stereo image by rebuilding it using the
pixels from the left view.

You can download the stereo image used here from our website - please see Example Images.

Step by Step
1. Launch Nuke. Open the project settings (press S on the Node Graph), select the Views tab, and click the

Set up views for stereo button.
2. Import lobby.exr. This image already includes both the left and the right view as well as the necessary

disparity channels.
3. Attach a Viewer to the image and zoom in. Switch between the left and the right view using the Viewer

controls (or the ; and ' hotkeys). As you can see, the focus distribution of the right view doesn’t match that
of the left.

The left view. The right view.

O_FocusMatcher can fix this by rebuilding the right view using pixels from the left. In order to do so, it
needs an upstream occlusion mask that identifies occluded pixels in each view. You can generate an
occlusion mask using the O_OcclusionDetector node.

4. From the toolbar, select Ocula > Ocula 4.0 > O_OcclusionDetector to insert an O_OcclusionDetector
node between the image and the Viewer.

| O_FocusMatcher Example

61

O_OcclusionDetector calculates a mask for the occluded pixels in each view and stores it in the mask_
occlusion channel. You can adjust the mask using the O_OcclusionDetector controls, but for this
example, we’re going to go with the default settings.

5. Next, add an O_FocusMatcher node after O_OcclusionDetector.

6. By default, O_FocusMatcher is set to rebuild the left view to match the focus of the right. We need it to do
the opposite, so set the Match menu to Right to Left.
O_FocusMatcher now rebuilds the right view using pixels from the left. If the upstream disparity map is
accurate and there are no occlusions (pixels visible in one view but not the other), this generally
produces good results. We have already generated an occlusion mask in step 4, so we can use it to
check which areas are occluded.

7. To see the occlusion mask for the right view, select the right view from the Viewer controls and set the
alpha channel menu to mask_occlusion.alpha. Then, press M on the Viewer.

The occlusion mask is shown in a red overlay on top of the color channels. Any pixels highlighted in red
are only visible in the right view but not the left.

| O_FocusMatcher Example

62

Because these pixels don’t exist in the left view, they cannot be used to rebuild the right view. In other
words, O_FocusMatcher is likely to produce poor results in these occluded areas.

8. To get the best result, adjust the Local Matching and Occlusion controls. If required, you can manually
edit the occlusion mask using a RotoPaint node (see Creating and Editing Occlusion Masks).

9. You now have your final result, so compare the rebuilt right view to both the original right view and the left
view in the Viewer. You should see that the focus distribution of the right view better matches that of the
left.

| O_FocusMatcher Example

Solver
Introduction
The O_Solver node defines the geometric relationship between the two views in the input images (that is, the
camera relationship or solve). This is necessary when aligning footage with O_VerticalAligner. It is also

required to calculate aligned disparity vectors, when using the alignment control in DisparityGenerator. O_
Solver data is not necessary for color and focus matching using O_ColourMatcher and O_FocusMatcher.

To define the camera relationship, O_Solver detects a number of features in one view and locates the
corresponding features in the other (see the image below). The feature matches and analysis data are not
available until you have set at least one analysis key on O_Solver. Any frames set as analysis keys show up
on the Viewer timeline and can be visualized in the Curve Editor and Dope Sheet.

O_Solver detects features in each view and tries to match them.

O_Solver calculates alignment data at the keyed analysis frames. Alignment at other frames is created by
interpolating between the results at the analysis frames. This ensures that the alignment data delivered to O_
DisparityGenerator and O_VerticalAligner varies smoothly across the sequence.

Tip: If you have an interactive license (ocula_i and nuke_i), you can run O_Solver from the
terminal to automatically set up analysis frames. Running from the terminal also removes the need
to manually set up an Ocula node tree. See Solving Using Python for more information.

The output of the O_Solver node consists of:
• the unaltered input images, and
• the results of the feature detection and analysis, which are passed down the node tree as hidden metadata.

63

64

Because the results of the analysis are available downstream, you can use multiple Ocula nodes in the tree
without having to re-analyze the camera relationship. However, if a node generates or modifies views, the
current metadata becomes invalid and is removed from the tree from that point forward.

To get the best possible results, you can identify features to ignore in the analysis. This can be done by
supplying a mask in the Ignore input.

You can also add your own feature matches to the automatically detected ones. O_Solver considers any
feature matches you’ve added yourself superior to the ones it detects automatically and pays them more
attention. This can also influence which of the automatically detected features are included in the final solve.
To force the feature matches to be recalculated based on the manual feature matches, use the Re-analyse
Frame button.

If you have a pre-tracked camera that describes the camera setup used to shoot the images, you can also
supply this in the Camera input. If you connect the Camera node before adding a keyframe, the
automatically-detected feature matches are validated against the input camera. Alternatively, you can add
the Camera node after the analysis and use the Re-analyse Frame button to recalculate matches based on
the input camera. For more information, see Inputs below.

Tip: You can improve the alignment data calculated by O_Solver by adding user matches. This
can be used to correct O_VerticalAligner in tricky shots, where there are few automatic matches,
such as on bluescreen or greenscreen footage. See Solver for more information.

Inputs
O_Solver has the following inputs:

Camera A pre-tracked Nuke stereo camera that describes the camera setup used to
shoot the Source image. This can be a camera you have tracked with the
CameraTracker node or imported to Nuke from a third-party camera tracking
application. This input is optional.

Tip: In Nuke, a stereo camera can be either:

• a single Camera node in which some or all of the controls are split,
or

| Inputs

65

• two Camera nodes (one for each view) followed by a JoinViews
node (Views > JoinViews). The JoinViews node combines the two
cameras into a single output.

Ignore A mask that specifies areas to ignore during the feature detection and
analysis. This can be useful if an area in the Source image is producing
incorrectly matched features. This input is optional.

Source A stereo pair of images. These can either be the images you want to work on,
or another pair of images shot with the same camera setup.

To see what data each Ocula node requires in its inputs, see Appendix A: Node Dependencies.

Solving the Camera Relationship
1. Launch Nuke and press S on the Node Graph to open the project settings. Go to the Views tab and click

the Set up views for stereo button.
2. From the Toolbar, select Image > Read to load your stereo clip into Nuke. This can either be the clip you

want to work on, or another clip shot with the same camera setup.
If you don’t have both views in the same file, select Views > JoinViews to combine them, or use a
variable in the Read node’s file field to replace the name of the view (use the variable %V to replace an
entire view name, such as left or right, and %v to replace an initial letter, such as l or r). For more
information, refer to the Nuke User Guide.

3. Select Ocula > Ocula 4.0 > O_Solver to insert an O_Solver node after either the stereo clip or the
JoinViews node (if you inserted one in the previous step).

4. Connect a Viewer to the O_Solver node.

| Solving the Camera Relationship

66

The node tree with O_Solver.

5. Open the O_Solver controls. Under Views to Use, you can see all the views that exist in your project
settings. Select the two views you want to use for the left and right eye when calculating the camera
relationship.
The two views you selected are mapped for the left and right eye.

6. If you have a pre-tracked Nuke stereo camera that describes the camera setup used to shoot the Source
image, connect that to O_Solver’s Camera input. O_Solver uses the camera information to calculate the
relationship between the two views.

7. Set keyframes on your sequence for O_Solver to analyze:
• Key Frame - if the camera rig doesn't change, you can set analysis keys only on one or two frames (for
example, on the first and last frames). If you do set a few analysis keys, you can also check Single
Solve From All Keys in the O_Solver controls. This tells O_Solver to calculate a single solve using all
keyframes, which can improve the results.

• Key Sequence - click to analyze the whole sequence automatically. This adds analysis keys where a
change in camera alignment is detected.

• Key Nominated - click to analyze the frames specified in the Render dialog. You can specify frames
using Nuke's regular frame expressions. For example, if you enter "1-5 8 10 15 22-25", only those 12
frames are keyed.
If you know there is a zoom or change in the camera setup on certain frames, you need to add more
keyframes in between. Leave Single Solve From All Keys unchecked to use a separate solve for each
analysis key, and place keyframes where the camera alignment changes.

Note: You can remove analysis keys one at a time by scrubbing the playhead to the required
frame and clicking Delete Key or remove all the analysis keys from the sequence by clicking
Delete All.

O_Solver analyzes the frames you added and, if it finds more than one analysis key, it interpolates the
results between them. Interpolating between analysis keys ensures that the calculated camera
relationship varies smoothly across the sequence.
To visualize the analysis in the Curve Editor or Dope Sheet, right-click on the Analysis Key field and
select Curve editor or Dope sheet. Note, however, that you cannot edit the curve in either.

8. Proceed to Reviewing and Editing the Results.

| Solving the Camera Relationship

67

Note: Once O_Solver has detected feature matches, they are fixed and do not update in response
to changes in the node tree. You can edit them manually, however, or click Re-analyse Frame to
force O_Solver to recalculate the current frame.

Solving Using Python

If you have an interactive license (ocula_i and nuke_i), you can run O_Solver using Python. Running from
the command line, with the -i argument for interactive licenses, allows you to automate the setup of O_Solver
for different shots without having to open the UI and manually analyze frames.

Warning: If there is an interruption between the license server and Ocula, rendering aborts with an
exit code of 1. You can use the --cont command line argument to force Ocula to continue rendering
on failure, producing black license failure frames rather than aborting the whole render.

Using Python, you can:
• Scan the entire sequence automatically, adding keyframes when a change in camera is detected using
analyseSequence.

Create an O_Solver to analyze the whole sequence

def autoKeyOculaTree(filename, first_frame, last_frame):

set up views

nuke.root()["setlr"].execute()

create the read and set up for the frame range

reader = nuke.createNode("Read",inpanel=False)

reader.knob("file").setValue(filename)

reader.knob("first").setValue(first_frame)

reader.knob("last").setValue(last_frame)

set up the O_Solver node and create a key

solver = nuke.createNode('O_Solver4_0',inpanel=False)

solver.setInput(0, reader)

solver['analyseSequence'].execute()

set the file path and frame range

autoKeyOculaTree('/myFilePath/myFootage.####.sxr',1,206)

| Solving the Camera Relationship

68

save the script once complete

nuke.scriptSaveAs('/Users/OculaExpert/shot001.nk', True)

• Script the analysis of a specific set of frames through python.

frameList = [25, 73, 123]

frameRanges = nuke.FrameRanges(frameList)

nuke.execute(solver, frameRanges)

O_Solver also has a Python tab in the Properties panel, allowing you to call Python functions automatically
when various events happen in Nuke. See Help > Documentation > Python Developers Guide for more
information.

Reviewing and Editing the Results
1. Set Display to Keyframe Matches, if it's not displaying them already, and make sure you are viewing a

keyframe.
The features and matches used to calculate the camera relationship are shown in a Viewer overlay. The
views set up in the Project Settings dictate the color of the features in the overlay. If you used Set up
views for stereo to create the views, red indicates a feature in the left view and green a feature in the
right view.

2. You can specify areas of the footage to ignore using a mask in either the Ignore input or the alpha of the
Source image. In the O_Solver controls, set Mask to the component you want to use as the mask.

Note: Features generated on reflections often produce bad feature matches, but you can add user
matches around reflective areas if the auto-matches are poor. See Adding User Matches for more
information.

3. To preview how well the detected features describe the alignment of the stereo camera, set Display to
Preview Alignment.
Preview Alignment shows the aligned matches at keyframes, but also calculates matches at non-
keyframes. This allows you to review how well the interpolated solve works and whether additional
keyframes are required.

| Solving the Camera Relationship

69

Display set to Preview Alignment.

4. Ideally, most lines in the overlay should be horizontal. Any matches that aren’t horizontal and have a
vertical error greater than Error Threshold are pre-selected and displayed in yellow. These are
considered poor matches. If you scrub through the timeline and find frames with a lot of yellow matches,
add more keyframes for O_Solver to analyze or add user matches manually. See Adding User Matches
for more information.

Matches displayed with a low Error Threshold. Matches displayed with a high Error Threshold.

5. Increase the Match Offset value to artificially increase the disparity, so you can better see how horizontal
the feature matches are. Again, if you scrub through the timeline and find frames with a lot of yellow
matches, add more keyframes for O_Solver to analyze or add user matches manually. See Adding User
Matches for more information.

6. Next, decrease Match Offset to examine different points in the image. Accurate feature matches should
sit on top of each other when you converge on them. If you can see a vertical offset between any feature
matches, add more keyframes for O_Solver to analyze or add user matches manually. See Adding User
Matches for more information.

Adding User Matches

User matches assist O_Solver when calculating the camera relationship. The solve considers these
manually added matches superior to the ones detected automatically by Ocula, and pays them more
attention when calculating the final results.

| Solving the Camera Relationship

70

You can add more feature matches manually if the automatic feature detection didn’t produce enough
matches in some parts of the image. In cases like this, it’s a good idea to add at least four user matches (one
in each corner of the image), but the more (accurate) matches you have, the better.

This is a feature you’ve added manually.

This is a feature O_Solver has detected automatically.

To add a feature match:
1. Click the Add User Match button above the Viewer to enable add mode.
2. Locate a feature in either view that is easily recognizable in both views (for example, edges or areas of

high contrast), and then click in the Viewer to place the user match. The Add User Match button stays
enabled so you can continue adding user matches.

Tip: You can also add user matches by holding Ctrl/Cmd+Alt and clicking in the Viewer.

A cross is placed in the Viewer, representing the user match in that view, and then O_Solver
automatically adds a corresponding match in the other view.

3. You can fine-tune matches by dragging a user match in one view to its corresponding position in the
other view. By default, the two views are overlaid using a difference merge, in a 256px texture at x2
magnification.

You can change the size of the overlay and magnification using the texture size and magnification
dropdowns above the Viewer.

| Solving the Camera Relationship

71

Tip: Holding Ctrl/Cmd displays the left view and Ctrl/Cmd+Shift the right view, allowing you to
ping-pong between views. Holding Shift displays a left/right mix, using an over merge, to help you
locate bad matches.

4. If you’re not happy with the results, you can try using O_Solver on another sequence shot with the same
camera setup.

Warning: If you use another sequence to calculate the solve, check Single Solve From All Keys
or you'll be taking the interpolated solve from one sequence and applying it to the frames on the
other.

5. Then, connect the O_Solver node to the Solver input of O_DisparityGenerator, if you intend to use the
camera Alignment to generate disparity, or O_VerticalAligner.

6. Once you are happy with the results of O_Solver, proceed to Feeding the Results to Other Ocula Nodes.

Feeding the Results to Other Ocula Nodes

You can use the same O_Solver output throughout your script, so you don't have to calculate the camera
relationship several times.

Do one of the following:
• Select Ocula > Ocula 4.0 > O_DisparityGenerator to insert an O_DisparityGenerator node after O_Solver.
This is necessary if you want to use O_DisparityGenerator's Alignment control to constrain the resulting
disparity vectors to match global plate alignment. You might want to do this if your plates don't contain
much detail, such as bluescreen images with markers in the background.

O_Solver followed by O_DisparityGenerator.

Note: If you don't intend to use O_DisparityGenerator's Alignment control, you don't need an O_
Solver node. See DisparityGenerator for more information.

• Select Ocula > Ocula 4.0 > O_VerticalAligner to insert an O_VerticalAligner node after O_Solver. This
node can be used to correct the vertical alignment of either O_Solver’s input clip or another clip shot with
the same camera setup.

| Solving the Camera Relationship

72

O_Solver followed by O_VerticalAligner.

Note: If you intend to use O_VerticalAligner's Local alignment control, you also need an O_
DisparityGenerator node. See DisparityGenerator for more information.

To learn more about O_DisparityGenerator and O_VerticalAligner, see DisparityGenerator and
VerticalAligner.

O_Solver Controls

O_Solver Tab

Views to Use

From the views that exist in your project settings, select the two views you want to use to calculate the
features and the camera relationship. These views will be mapped for the left and right eye.

Analysis

Mask

If an area in the Source clip is producing poor feature matches, you can use this control to select areas of the
image to ignore during the feature detection and analysis.

Note: Masks should exist in both views, and O_DisparityGenerator expects alpha values of either
0 (for regions to use) or 1 (for regions to ignore).

None Use the entire image area.

Source Alpha Use the alpha channel of the Source clip as an ignore mask.

| O_Solver Controls

73

Source Inverted Alpha Use the inverted alpha channel of the Source clip as an ignore mask.

Mask Luminance Use the luminance of the Ignore input as an ignore mask.

Mask Inverted
Luminance

Use the inverted luminance of the Ignore input as an ignore mask.

Mask Alpha Use the alpha channel of the Ignore input as an ignore mask.

Mask Inverted Alpha Use the inverted alpha channel of the Ignore input as an ignore mask.

Analysis Key

This shows the analysis keys that have been created. When you add an analysis key, O_Solver calculates
feature matching and analysis and then sets an analysis key. The solves for all other frames are created by
interpolating between the results on the analysis keys on either side. This field is for display only. To edit the
keyframes, use Key Frame and Delete Key.

Note: Keyframe interpolation helps to ensure smooth changes in the calculated camera
relationship between views. We recommend using Key Sequence to analyze the entire sequence,
and then adding additional analysis keys where the offsets between matches occur. You can
visualize how well the interpolated geometry matches the images by setting Display to Preview
Alignment in the O_Solver controls. If you see a lot of yellow matches (matches that have a vertical
error greater than the Error Threshold), you may need to add more keyframes.

Tip: Alternatively, you can quality check the interpolated geometry by using O_VerticalAligner
followed by an Anaglyph node. Enable Global > Preset > Full to interpolate the calculated camera
relationship and check whether there is any vertical displacement between the aligned views in the
anaglyph view. See O_VerticalAligner Example for an example of how to use O_Solver, O_
VerticalAligner, and Anaglyph.

Delete Key Delete an analysis key at the current frame.

Delete All Delete all analysis keys.

Key Frame Set an analysis key at the current frame.

Key Sequence Analyze the whole sequence automatically and set analysis keys when a
change in camera alignment is detected.

Tip: Key Sequence detects changes in camera alignment

| O_Solver Controls

74

automatically, but can be time-consuming on longer sequences.

Key Nominated Set analysis keys at the frames specified in the Render dialog. You can
specify frames using Nuke's regular frame expressions. For example, if you
enter "1-5 8 10 15 22-25", only those 12 frames are keyed.

Single Solve From All
Keys

When enabled, O_Solver calculates a single solve using all the keyframes
you have set. Use this for rigs that don’t change over time to get more
accurate results than when using a single keyframe or when the O_Solver
analysis is performed on one clip and then re-used for another clip.

Do not use this if there is jitter in the alignment or there is a change in
separation, convergence, or zoom. Instead, use a separate solve for each
keyframe and place keys where the alignment changes.

Display

Display Dropdown

Change the display mode:

Nothing Only show the Source image.

Keyframe Matches Show the features and matches for the camera relationship calculation in a
Viewer overlay. Feature matches are only calculated for the keyframes.

Features and Keyframe Matches for the camera relationship calculation in a
Viewer overlay.

| O_Solver Controls

75

You can use this mode to see where O_Solver has found features and
matches, and evaluate how accurate they are. You can also edit the feature
matches manually. To delete a poor match, right-click on it and select delete
selected. To add matches manually, see Adding User Matches.

You can also activate this mode by selecting display matches from the
Viewer’s right-click menu.

Preview Alignment Preview how well the calculated feature matches describe the alignment of
the stereo camera. This shows the aligned matches at keyframes, but also
calculates matches at non-keyframes, allowing you to review how well the
interpolated solve works and whether additional keyframes are required. If the
lines between feature matches are horizontal, they describe the alignment of
the camera rig well. If any lines are skewed (and displayed in yellow), you
may want to delete the feature matches in question. If necessary, you can
also add manual feature matches to replace them and preview the effect of
the manual matches in the overlay.

Visualizing the alignment of the calculated feature matches.

You can also activate this mode by selecting preview alignment from the
Viewer’s right-click menu.

Match Offset

The offset (in pixels) applied to the aligned feature matches. You can:
• increase this value to artificially increase the disparity, so it’s easier to see how horizontal the feature
matches are.

• decrease this value to set the disparity of particular matches to zero and examine the vertical offset at each
feature. The matches should sit on top of each other.

| O_Solver Controls

76

Note: If you find a lot of yellow matches, you can add user matches manually. See O_Solver
Controls for more information.

The Match Offset control is only available when Display is set to Preview Alignment. You can also adjust it
by selecting decrease offset or increase offset from the Viewer’s right-click menu.

Error Threshold

The threshold on the vertical alignment error in pixels. When Display is set to Preview Alignment, any
matches with a vertical error greater than the threshold are highlighted in the Viewer. This allows you to
easily delete poor matches with large errors when previewing alignment at keyframes - adjust the Error
Threshold to highlight poor matches and press Backspace to remove them.

Current Frame

Re-analyse Frame Clear the automatic feature matches from the current frame and recalculate
them. This can be useful if there have been changes in the node tree
upstream from O_Solver, you have deleted too many automatic feature
matches, or you want to calculate the automatic matches based on any user
matches you have created.

Delete Auto Matches Delete all automatically generated matches added to the current frame.

Delete User Matches Delete all user matches you have manually added to the current frame.

Python Tab

These controls are for Python callbacks and can be used to have Python functions automatically called when
various events happen in Nuke.

before render These functions run prior to starting rendering in execute(). If they throw an
exception, the render aborts.

before each frame These functions run prior to starting rendering of each individual frame. If they
throw an exception, the render aborts.

after each frame These functions run after each frame is finished rendering. They are not
called if the render aborts. If they throw an exception, the render aborts.

after render These functions run after rendering of all frames is finished. If they throw an
error, the render aborts.

render progress These functions run during rendering to determine progress or failure.

| O_Solver Controls

77

O_Solver Example
In this example, we read in a stereo image, use O_Solver to calculate the camera relationship, review the
results, and add a user match to improve the solve data.

Step by Step
1. Start Nuke and press S on the Node Graph to open the Project Settings. Go to the Views tab and click

the Set up views for stereo button.
2. Select Image > Read to import Dance_Group.exr. The .exr format allows both views to exist in a single

file, so Nuke reads in both the left and the right view using the same Read node.
3. Insert an O_Solver node after the stereo image by choosing Ocula > Ocula 4.0 > O_Solver from the

Toolbar.
The purpose of this node is to define the geometrical relationship between the two views in the input
image (that is, the camera relationship or solve). The solve information can then be fed to an O_
DisparityGenerator, if you want to use the alignment information to create a disparity map, or to an O_
VerticalAligner to correct vertical offset between views.
For now, we’ll concentrate on creating an accurate solve using O_Solver.

4. Attach a Viewer to the O_Solver node.
5. In the O_Solver controls, click Key Frame to set a keyframe for O_Solver to analyze.

Our example here consists of just one frame, but if you were using a sequence, click Key Sequence to
automatically analyze the sequence and add keyframes when the camera setup changes. If the setup
doesn’t change, you can get away with using just one or two keyframes. Remember that keyframes
should be placed on frames that are easy to match between views - ideally, with enough picture detail,
but no motion blur, occluding fog, or dust.
Every time you add a keyframe, O_Solver analyzes the footage and calculates the solve.

6. O_Solver displays Keyframe Matches by default, but you can change modes using the right-click menu
in the Viewer or the Display dropdown on the Viewer toolbar.

Note: Matches are only displayed when the playhead is on a keyframe, marked with a blue chip.

The calculated feature matches are displayed in a Viewer overlay, and you can switch between views to
compare them.

| O_Solver Example

78

Display set to Keyframe Matches.

7. Now, set Display to Preview Alignment. This allows you to check the quality of your solve by previewing
the alignment of the calculated feature matches in the Viewer.
Ideally, the lines should all be horizontal. If they have a vertical error greater than the Error Threshold,
they are considered poor matches and displayed in yellow.

8. To help guide the solve, we can add feature matches manually. It’s a good idea to do this if you have a
particularly tricky part of a shot where the automatic feature matching has produced a few yellow
matches.
There's an area in the top-right of the frame containing bad matches, so zoom in on it.

9. Locate a feature in either view that is easily recognizable in both views (for example, edges or areas of
high contrast).

10. Hold Ctrl/Cmd+Alt and then click in the Viewer to place the user match.

Tip: You can also click the Add User Match button above the Viewer to enable add mode.

A cross is placed in the Viewer, representing the user match in that view, and then O_Solver
automatically adds a corresponding match in the other view.

11. You can align views by dragging a user match in one view to its corresponding position in the other view.
By default, the two views are overlaid using a difference merge, in a 256px texture at x2 magnification.
You can change the size of the overlay and magnification using the texture size (in pixels) and
magnification dropdowns above the Viewer.

Tip: Holding Ctrl/Cmd displays the left view and Ctrl/Cmd+Shift the right view, allowing you to
ping-pong between views. Holding Shift displays a left/right mix, using an over merge, to help you
locate bad matches.

You can add as many manual feature matches as you like, so if you see any other areas that might
benefit from them, feel free to add more.
O_Solver considers any feature matches you’ve added yourself superior to the ones it detects
automatically and pays them more attention. This can also influence the automatic matches displayed in

| O_Solver Example

79

the Preview Alignment mode. Any automatic matches that don't agree with the alignment defined by
your user matches are highlighted in yellow and should be deleted.

Poor auto-match alignments are
highlighted yellow in the Viewer.

Adding user matches allows you delete
poor matches by pressing Backspace.

12. Next, decrease the Match Offset value gradually until some matches have no horizontal offset. This sets
the disparity of those matches to zero, which means accurate feature matches should sit on top of each
other. You may need to zoom in to see if they do.
The matches in the top-left of the Viewer display vertical offset between the feature matches, and are
highlighted in yellow. Place a user match on the corner of the building to correct them.

13. Fine-tune matches by dragging the user match in one view to its corresponding position in the other view.
By default, the two views are overlaid using a difference merge, in a 256px texture at x2 magnification.
You can change the size of the overlay and magnification using the texture size (in pixels) and
magnification dropdowns above the Viewer.

Tip: Holding Shift when lining up the user match displays a left/right mix of the views, using an
over merge, holding Ctrl/Cmd shows the left view, and Ctrl/Cmd+Shift shows the right view in the
overlay.

14. The yellow matches can be deleted by pressing Backspace to improve the solve. We recommend
adding at least five user matches, one toward each corner of the image to correct the overall alignment,
and one at the center on the subject to focus alignment where it is important.

| O_Solver Example

VerticalAligner
Description
If the cameras used to shoot stereoscopic images are poorly positioned or converge (point inwards), some
features in the resulting two views may be vertically misaligned. In the case of converging cameras, the
misalignment may be due to keystoning. Unlike converging cameras, parallel cameras do not produce

keystoning.

Parallel cameras do
not cause keystoning.

Converging cameras
do cause keystoning.

Keystoning is when an image is distorted because the angle created by converging cameras affects the
perspective in the two views. As a result, corresponding points in the two views are vertically misaligned.

The left image. The right image.

Whether the vertical misalignment was caused by poorly positioned or converging cameras, it can result in
an unpleasant 3D stereo viewing experience. When a vertically misaligned stereo image is viewed with 3D
glasses, the viewer’s brain attempts to line up the corresponding points in the images, often causing eye
strain and headaches. To avoid this, stereo images should only contain horizontal disparity, not vertical.

O_VerticalAligner allows you to warp views vertically so that their corresponding features align horizontally.
The Vertical Skew and Local Alignment options allow you to warp the views, while keeping the horizontal
position of each pixel the same so that there is no change in convergence.

80

81

Before O_VerticalAligner. Notice that the curved line
at the bottom of the image and the controls on the left

are misaligned.

After O_VerticalAligner. Notice that the curved line at
the bottom of the image and the controls on the left

have now been aligned.

There are several modes: Global Alignment, Local Alignment, Fix Scale and Fix Offset. If the none of the
method checkboxes are selected in the Local, Fix Scale, or Fix Offset sections of the O_VerticalAligner
controls, the Global Alignment mode is on by default.

Global Alignment Mode

In the Global Alignment mode, O_VerticalAligner performs a global transform to align the views. You can
choose between several alignment types. All methods concatenate. This means that if you select several
alignment types from the Global section in the O_VerticalAligner controls, their functions are combined. See
O_VerticalAligner Controls for information about each alignment type.

If you have a pre-tracked Nuke stereo camera that describes the camera setup used to shoot the Source
images, you can attach it to the O_Solver node and use O_VerticalAligner in the Global Alignment mode to
analyze the sequence and output a vertically-aligned camera pair. This works with all global methods except
Vertical Skew (which can't be represented by a camera transform). For more information, see Using O_
VerticalAligner.

Local Alignment Mode

In the Local Alignment mode, O_VerticalAligner rebuilds the image per-pixel to account for any local
distortions in the mirror or lens, and changes in alignment with depth using O_Solver data.

The Local Alignment mode always requires a disparity map upstream. You can create one using an O_
DisparityGenerator node upstream of the O_VerticalAligner node.

Note: You can create disparity once and it is aligned to match the aligned plate. There is no need
to recalculate disparity.

| Description

82

Fix Scale Mode

The Fix Scale method allows you to zoom the plate if the original footage was not over-scanned, and the
alignment pulls black into the format.

You can scale the image to prevent pulling pixels from outside the input image. To minimize the scale
change, align Both Views.

Warning: The scale has to be applied to both images, even when aligning Left to Right or Right to
Left.

Fix Offset Mode

The Fix Offset method allows you to correct any convergence change that has happened on the subject to
preserve the original subject parallax and hence depth.

You can shift the image to preserve the parallax at the fix-point.

Note: The Fix Offset mode requires upstream disparity vectors. If they do not already exist in the
image sequence, insert an O_DisparityGenerator node to calculate them.

Inputs
O_VerticalAligner has the following inputs:

Source A stereo pair of images. Global Alignment mode is on by default. In all modes
the images should be followed by an O_Solver node. If you are using the
Local Alignment, or Fix Offset mode, you also need an O_
DisparityGenerator node (if disparity vectors do not already exist) upstream of
O_VerticalAligner.

To see a table listing the nodes or channels each Ocula node requires in its inputs, see Appendix A: Node
Dependencies.

Using O_VerticalAligner
To vertically align a pair of stereo images, you can several modes: Global Alignment, Local Alignment, Fix
Scale, and Fix Offset. You can choose to use a mixture of these modes, for example, you can perform a

| Inputs

83

global alignment and a local alignment which are concatenated into a single filter operation.

You can apply a global image transform to align the feature matches generated by an upstream O_Solver
node, or you can rebuild the view(s) to remove vertical disparity calculated by an upstream O_
DisparityGenerator using the Local Alignment mode.

Note: The Global Alignment mode is on by default.

To use the O_VerticalAligner, complete the following steps:
1. Select Ocula > Ocula 4.0 > O_Solver to insert an O_Solver node after your stereo clip. For more

information on how to use O_Solver, see Solver.
2. Select Ocula > Ocula 4.0 > O_VerticalAligner to insert an O_VerticalAligner node after either O_Solver.
3. Connect a Viewer to the O_VerticalAligner node. Your node tree should now look something like this:

4. Open the O_VerticalAligner controls. Under Views to Use, you can see all the views that exist in your
project settings. Select the two views you want to use for the left and right eye when correcting the
alignment. The two views you select are mapped for the left and right eye.

5. From the Align menu, select how to move the images to align the views: Both Views, Left to Right, or
Right to Left. See O_VerticalAligner Controls for information about the Align options.

6. Select the filter to handle the vertical alignment transform, or use the default Lanczos6, which is a good
sharpening and scaling down filter. For more information on the available filters, see Filter under O_
VerticalAligner Controls or Choosing a Filtering Algorithm in the Nuke User Guide.

7. Enable Output STMap to include the Global or Local correction as a uv coordinate map along with
alignment information.

8. From the Global section, select types of alignment you want to use. You can select preset options
including Transform, Match Camera, Keystone Only, and Full. You can also select Custom and
manually select the types of alignment you want to include. See O_VerticalAligner Controls for more
information about the types of alignment.

9. If you want to perform a local alignment, insert an O_DisparityGenerator node after O_Solver, and select
the Local Alignment checkbox in the Local section of the O_VerticalAligner controls. You can now adjust
the Local controls. See O_VerticalAligner Controls for more details.

10. To view the effect of O_VerticalAligner more accurately, you can:
• Insert an Anaglyph node between the O_VerticalAligner node and the Viewer,

OR
• Add a StereoReviewGizmo to view alignment. See StereoReviewGizmo for more information.

| Using O_VerticalAligner

84

11. Adjust the required settings to get the best possible result. See O_VerticalAligner Controls for
information about the settings.

Analysing and Using Output Data

In all global methods except Vertical Skew, you can use the Analyse Sequence control to create output data
and use the data for the following:
• Vertically align a pre-tracked Nuke stereo camera. This allows you to continue using pre-tracked cameras
after your footage has been vertically aligned. Note that you can only create a vertically aligned stereo
camera when a pre-tracked camera is connected to the Camera input of O_Solver.

• Create a Nuke CornerPin2D node that produces the same result as O_VerticalAligner.

The output data is also stored on the Output tab of the node controls, where you can see the transform
represented as a four-corner pin and a transform matrix per view.

To analyze and use the output data, complete the following steps:
1. After performing a vertical alignment, click Analyse Sequence under the Analysis section in the O_

VerticalAlignet controls.

Note: You cannot use Analyse Sequence with the Local Alignment checkbox selected.

2. When prompted, enter a frame range to analyze. O_VerticalAligner analyzes the sequence.

3. You can now use the output data in the following ways:

| Using O_VerticalAligner

85

• To output a vertically aligned camera pair, click either Create Camera or Create Rig. Create Camera
produces a single Camera node with split controls to hold the left and right view parameters. Create
Rig produces two Camera nodes and a JoinViews node that combines them.

• To create a Nuke CornerPin2D node that represents the result of O_VerticalAligner, click Create
Corner Pin. A CornerPin2D node that produces the same result as O_VerticalAligner appears in the
Node Graph.

Scripting Analysis and CornerPin Creation

Given a standard Node Graph containing your footage, an O_Solver, and an O_VerticalAligner, Ocula allows
you to automate the setup of a CornerPin for a range of frames without having to manually create the
required analysis frames.

The following Python script examines feature matches in the entire sequence, analyzes the vertical
alignment for a given frame range for both views, and then creates a CornerPin node containing to data for
the four pinned points in the Viewer.

Tip: If you don't want the analysis to continue on failure, remove the 1 after the frame range in the
second Python call.

Run the analysis pass on the Solver

nuke.toNode('O_Solver1')['analyseSequence'].execute()

Run the analysis pass on the VerticalAligner between frames 1001 and 1085

nuke.execute("O_VerticalAligner1", 1001, 1085, 1, ['left','right'])

Create the cornerPin

nuke.toNode('O_VerticalAligner1')['createPin'].execute()

O_VerticalAligner also has a Python tab in the Properties panel, allowing you to call Python functions
automatically when various events happen in Nuke. See Help > Documentation > Python Developers
Guide for more information.

O_VerticalAligner Controls

O_VerticalAligner Tab

Views to Use

From the views that exist in your project settings, select the two views you want to use to generate an
occlusion mask. These views are mapped for the left and right eye.

| O_VerticalAligner Controls

86

Align

Select how to move the views to align the images.

Both Views Move both the left and right views so that they are aligned.

Left to Right Move the left view only to line up with the right.

Right to Left Move the right view only to line up with the left.

Filter

Select the filtering algorithm you want to use when remapping pixels from their original positions to new
positions. This helps avoid problems with image quality, particularly in high contrast areas of the frame
(where highly aliased, or jaggy, edges may appear if pixels are not filtered and retain their original values).

Impulse This option means no filtering is done. Each output pixel equals an input pixel.

Cubic Remapped pixels receive some smoothing.

Keys Remapped pixels receive some smoothing and minor sharpening.

Simon Remapped pixels receive some smoothing and medium sharpening.

Rifman Remapped pixels receive some smoothing and significant sharpening.

Mitchell Remapped pixels receive some smoothing and blurring to hide pixelation.

Parzen Remapped pixels receive the greatest smoothing of all filters. Use this option
to prevent ringing on sharp edges.

Notch Remapped pixels receive flat smoothing (which tends to hide Moiré patterns).

Lanczos4 This filter is good for scaling down.

Lanczos6 Remapped pixels receive some sharpening. This filter is good for scaling
down and image warping.

Note: Note that this option is not ideal for vertical alignment; instead
Cubic or Parzen are recommended for this.

Sinc4 Remapped pixels receive a lot of sharpening. This filter is good for scaling
down.

| O_VerticalAligner Controls

87

Output STMap

When enabled, this allows you to output an STMap along with an aligned image and disparity vectors.

Global

Select the types of alignment you want to use to vertically align the images. You can select preset options, or
you can select Custom and manually define the types of alignment you want to include. See the table below
for the types of alignment each preset option includes.

Preset
Option

Description Camera
Correction

Focal
Length

Vertical
Shift

2D
Rotation

Perspective
Warp

Vertical
Skew

Transform Use this
option to
perform a 2D
correction
without any
change in
pixel aspect
or skew.

Match
Camera

Use this
option to
correct using
a match
move
camera
connected to
the upstream
O_Solver.

Keystone
Only

Use this
option to
correct
vertical
alignment
without
changing the
parallax.

Full Use Full to
include all
the
alignment

| O_VerticalAligner Controls

88

options
except
Vertical
skew.

All alignment methods concatenate. This means that if you select several alignment types, their functions are
combined. You can also analyze the data to create corner pin and camera information in all methods except
Vertical Skew. See the table below for a description of what each alignment type does. The alignment types
are applied in the following order.

Camera correction Correct the vertical alignment for a match-move camera connected to an
upstream O_Solver. If there is no camera connected, this uses the internal
camera calculated by O_Solver. The correction is refined by other alignment
options that are selected.

Focal length Align the features by calculating a 2D scale to correct focal length differences.

Vertical shift Align the features vertically by moving the entire image up or down. Calculate
a 2D vertical shift to correct a global offset.

2D rotation Align the features vertically by rotating the entire image around a point. The
center of the rotation is determined by the algorithm. This helps correct in-
plane camera roll.

Perspective warp Do a four-corner warp on the images to align them on the y axis. This may
move the features slightly along the x axis. Perspective warp can help correct
camera tilt as well as roll.

Note: A perspective change can alter pixel aspect ratio and
introduce pixel skew.

Vertical skew Align the features along the y axis using a skew. This does not move the
features along the x axis. Vertical skew allows you to correct keystoning
without changing horizontal disparity. This varies the vertical shift across the
image without changing the horizontal position of pixels. However, this may
also introduce pixel skew.

Note: If you select or deselect an alignment type after selecting a preset option, the preset Type
dropdown, automatically updates to Custom.

| O_VerticalAligner Controls

89

Local Options

There are two modes you can use for vertical alignment. The Global Alignment method is on by default.
Select the Local Alignment checkbox to perform a local alignment in addition to the global alignment.

Global Alignment This applies a global image transform to align the feature matches generated
by an upstream O_Solver node.

Local Alignment This rebuilds the view(s) to remove vertical disparity calculated by an
upstream O_DisparityGenerator. Use this mode to create a per-pixel
correction if there are any local distortions in the mirror or lens and changes in
alignment with depth.

Pre-blur

The Pre-blur control allows you to set the size of the blur applied to the disparity before performing a local
alignment. To smooth out the correction across depth boundaries, increase the blur size.

Correction

The Correction control allows you to set the amount of local correction to apply between the global transform
at 0 and the full correction at 1. This would be useful, for example, if you want to tone down the local
distortion that is applied.

Fix Scale Options

Zoom to Prevent Black in the Frame

Select the Zoom to prevent black in frame checkbox to scale the image in order to prevent pulling pixels
from outside the input image. To minimise the scale, change the Align dropdown to Both Views.

Warning: The scale has to be applied to both images, even when aligning Left to Right or Right to
Left.

Calculate Scale

The Calculate scale control allows you to calculate the scale at the current frame. If the alignment options
change, the scale needs to be recalculated. You can lock the scale correction to prevent any changes by
selecting the Lock scale checkbox.

| O_VerticalAligner Controls

90

Scale

The Scale control allows you to set the global scale that is applied to prevent black in the frame. You can set
a key to interpolate the scale calculated at different frames.

Warning: Animating the Scale control creates a dynamic zoom on the shot, which may not be the
stereographer's original intent. In this case, it is recommended to use a static zoom from a single
frame, to preserve the original intent of the shot.

Fix Offset Options

Preserve Subject Parallax

Select the Preserve subject parallax checkbox to shift the image in a way that preserves the parallax at the
specified Fix Point. This requires the input to have disparity vectors. If disparity vectors do not already exists,
you need to add an O_DisparityGenerator node upstream of O_VerticalAligner.

Fix Point

You can move the Fix Point to sample the input disparity and update the applied offset to preserve the
parallax. View the output of O_VerticalAligner to set the Fix Point when the Output is set to Image. You can
lock this to prevent any changes by selecting the Lock offset checkbox.

To change the Fix Point, drag the fixPoint widget from the bottom-left corner of the Viewer and drop it in the
new position. Disparity is then recalculated according to the new Fix Point. You can also use the user
matches determined by O_Solver to set the Fix Point.

Offset

You can use the Offset control to set the correction in pixels, that is applied to prevent parallax changes at
the Fix Point. To interpolate the offset calculated at different frames, set a key.

Note: Note that you can re-converge the views after you have aligned the plates to preserve depth.

Analyze Sequence

Analyze the sequence to create a corner pin or an aligned camera output. Use Analyse Sequence to create
the output data in all global methods except Vertical Skew (the default). Then, you can apply the data to the
Create Corner Pin, Create Camera, or Create Rig controls.

| O_VerticalAligner Controls

91

Note: You cannot use Analyse Sequence with the Local alignment checkbox selected.

Create Corner Pin Click this to create a corner pin representing the result of O_VerticalAligner
after you have clicked Analyse Sequence. This works in all global methods
except Vertical Skew.

Create Camera If you have a pre-tracked Nuke stereo camera connected to the Camera input
of the O_Solver up the tree and you click Analyse Sequence, you can then
click Create Camera to create a vertically aligned camera from the analysis.
This gives you a single Camera node with split controls to hold the left and
right view parameters. This works in all global methods except Vertical Skew.

Create Rig If you have a pre-tracked Nuke stereo camera connected to the Camera input
of the O_Solver up the tree and you click Analyse Sequence, you can then
click Create Rig to create a vertically aligned camera rig from the analysis.
This gives you two Camera nodes and a JoinViews node that combines them.
This works in all global methods except Vertical Skew.

Output Tab

Four Corner Pin This represents the 2D corner pin that can be applied to the input image to
create the same result as O_VerticalAligner (in all global methods except
Vertical Skew). This allows you to do the analysis in Nuke, but take the matrix
to a third-party application – such as Baselight – and align the image or camera
there.

Transform Matrix This provides the concatenated 2D transform for the vertical alignment. The
matrix is calculated when you click Analyse Sequence on the O_
VerticalAligner tab. There is one matrix for each view in the source.

Python Tab

These controls are for Python callbacks and can be used to have Python functions automatically called when
various events happen in Nuke.

before render These functions run prior to starting rendering in execute(). If they throw an
exception, the render aborts.

before each frame These functions run prior to starting rendering of each individual frame. If they
throw an exception, the render aborts.

| O_VerticalAligner Controls

92

after each frame These functions run after each frame is finished rendering. They are not
called if the render aborts. If they throw an exception, the render aborts.

after render These functions run after rendering of all frames is finished. If they throw an
error, the render aborts.

render progress These functions run during rendering to determine progress or failure.

O_VerticalAligner Example
In this example, we correct the vertical alignment of a stereo image using the Global Alignment mode. The
image used here can be downloaded from our website. For more information, please see Example Images.

Step by Step
1. Launch Nuke. Open the project settings (press S on the Node Graph), select the Views tab, and click the

Set up views for stereo button.
2. Import the steep_hill.exr image and connect it to a Viewer. The image includes both the left and the right

view.
3. Select Ocula > Ocula 4.0 > O_Solver to insert an O_Solver node after the stereo clip. See Solver for

more information.
4. Click Key Frame to set at least one keyframe.
5. Insert an O_VerticalAligner (Ocula > Ocula 4.0 > O_VerticalAligner), followed by an Anaglyph node

(Views > Stereo > Anaglyph) after O_Solver.

Note: The Anaglyph node is for illustrative purposes in this example. You could just as easily use
the DisparityReviewGizmo to view the alignment.

6. By default, O_VerticalAligner is in Global alignment mode with the Local alignment checkbox disabled.
In this mode, O_VerticalAligner applies a global image transform to align the feature matches generated
by the upstream O_Solver node. In Global alignment mode, O_VerticalAligner does not need disparity
vectors upstream.

7. To see the effect more accurately, select the O_VerticalAligner node and press D repeatedly to disable
and enable the node. With the node disabled, the views remain vertically misaligned. However, when
you enable the O_VerticalAligner node, the views align nicely.

| O_VerticalAligner Example

93

The zoomed in image with the O_VerticalAligner
node disabled.

The zoomed in image with O_VerticalAligner
enabled.

| O_VerticalAligner Example

VectorGenerator
Description
O_VectorGenerator generates motion vector fields for each view in a stereo image. Motion vectors map the
location of a pixel on one frame to the location of the corresponding pixel in a neighboring frame. It has the

same dimensions as the image, but contains an (x,y) offset per pixel. These offsets show how to warp a
neighboring image onto the current image.

Clearly, as most of the images in a sequence have two neighbors, each can have two vector fields. These
are called the forward motion vectors where they represent the warp of the next frame on to current frame,
and backward motion vectors where they represent the warp of the previous frame on to current frame.

Disparity vectors map pixels between views, whereas
motion vectors map them between frames.

O_VectorGenerator stores the motion vectors in the backward and forward motion channels. To view these
in Nuke, select motion, forward, or backward from the channel set menu in the top left corner of the Viewer.

Source frame. The motion channel generated by Ocula.

94

95

Forward motion vectors. Backward motion vectors.

If you want to use pre-calculated motion vectors rather than generate vector fields each time you need them,
you can use a Write node to render them into the channels of your stereo .exr file along with the color and
disparity channels. Later, whenever you use the same image sequence, the motion vectors are loaded into
Nuke together with the sequence.

Ocula’s Retimer node relies on motion vectors to produce its output, but you may also want to use O_
VectorGenerator for other purposes (for example, for generating motion blur).

Inputs
O_VectorGenerator has the following inputs:

Source A stereo pair of images.

Mask An optional mask that specifies areas to exclude from the motion calculation.
You can use this input to prevent distortions at occlusions or to calculate
motion for a background layer by ignoring all foreground elements.

Note that masks should exist in both views, and O_VectorGenerator treats
the alpha values of 1 as foreground and blurs to the 0 value using nearby
vectors to recreate object boundaries, rather than image data. When you
create a mask using Roto or RotoPaint, you can use the feather control to
extend the calculation. For example, the vector map may have a sharper
transition at edges with a binary mask, but applying feather on the mask can
help smooth the resulting image.

The left view. A mask to select the dancers in the
left view.

| Inputs

96

To see a table listing the nodes or channels each Ocula node requires in its inputs, see Appendix A: Node
Dependencies.

Generating Motion Vectors
To generate motion vectors for a stereo pair of images, do the following:
1. Select Ocula > Ocula 4.0 > O_VectorGenerator to add an O_VectorGenerator node after either a stereo

clip or a JoinViews node.
2. Make sure you are viewing the output from O_VectorGenerator.
3. In the O_VectorGenerator controls, you can see all the views that exist in your project settings under

Views to Use. Select the two views you want to use to calculate the motion vectors. The two views you
selected are mapped for the left and right eye.

4. If there are areas in the image that you want to ignore when generating the motion vector field, supply a
mask either in the Mask input or the alpha of the Source input. In the O_VectorGenerator controls, set
Mask to the component you want to use as the mask.
If there are areas in the image that you want to ignore when generating vectors, supply a mask either in
the Mask input or the alpha of the Source input. In the O_VectorGenerator controls, set Mask to the
component you want to use as the mask.
The white areas of the image have their vectors calculated as normal, whereas black areas take their
vectors from nearby areas. When you create a mask using Roto or RotoPaint, you can use the feather
control to tune the calculation.

5. Set the Viewer’s channel set menu to motion, forward, or backward.
O_VectorGenerator calculates the motion vectors and displays them in the Viewer.

6. If necessary, adjust Vector Detail, Strength, Consistency, and Smoothness and view their effect on the
motion vector field. For more information on these parameters, see O_VectorGenerator Controls.

Writing Motion Vectors into a Clip

When you're happy with the motion vectors generated, you can save time down the line by writing the vectors
into a new clip combining the source and motion channels.
1. Select the O_VectorGenerator node in the Node Graph.

| Generating Motion Vectors

97

2. Select Image > Write (or press W on the keyboard) to insert a Write node after O_VectorGenerator.
3. In the Write node controls, select all from the channels dropdown and set file type to exr.
4. Enter a name for the clip in the file field (for example, my_clip.####.exr), and click Render.

The newly created motion channels are saved in the channels of your stereo clip. When you need to
manipulate the same clip again later, the motion vectors are loaded into Nuke together with the clip.

Rendering the output to combine the clip and the motion channels for future use.

O_VectorGenerator Controls

Use GPU

Open the O_VectorGenerator controls. O_VectorGenerator renders using the Local GPU specified, if
available, rather than the CPU. The GPUmay significantly improve processing performance.

If there is no suitable GPU, or the required NVIDIA CUDA drivers are unavailable, O_VectorGenerator
defaults to using the CPU. You can select a different GPU Device, if available, by opening Nuke's
Preferences and selecting an alternative card from the GPU Device dropdown.

Note: Selecting a different GPU requires you to restart Nuke before the change takes effect.

Views to Use

From the views that exist in your project settings, select the two views you want to use to calculate the motion
vectors. These views are mapped for the left and right eye.

Mask

An optional mask that specifies areas to exclude from the motion calculation. You can use this input to
prevent distortions at occlusions or to calculate motion for a background layer by ignoring all foreground
elements.

Note that masks should exist in both views, and O_VectorGenerator treats the alpha values of 1 as
foreground and blurs to the 0 value using nearby vectors to recreate object boundaries, rather than image

| O_VectorGenerator Controls

98

data. When you create a mask using Roto or RotoPaint, you can use the feather control to extend the
calculation. For example, the vector map may have a sharper transition at edges with a binary mask, but
applying feather on the mask can help smooth the resulting image.

None Use the entire image area.

Source Alpha Use the alpha channel of the Source clip as an ignore mask.

Source Inverted Alpha Use the inverted alpha channel of the Source clip as an ignore mask.

Mask Luminance Use the luminance of the Mask input as an ignore mask.

Mask Inverted
Luminance

Use the inverted luminance of the Mask input as an ignore mask.

Mask Alpha Use the alpha channel of the Mask input as an ignore mask.

Mask Inverted Alpha Use the inverted alpha channel of the Mask input as an ignore mask.

Vector Detail

Adjusts the detail of the calculated motion vectors. Higher detail picks up finer movement, but takes longer to
calculate.

Strength

Sets the strength in matching pixels between frames. Higher values allow you to accurately match similar
pixels in one image to another, concentrating on detail matching even if the resulting motion field is jagged.
Lower values may miss local detail, but are less likely to provide you with the odd spurious vector, producing
smoother results. Often, it is necessary to trade one of these qualities off against the other. You may want to
increase this value to force the images to match, for example, where fine details are missed, or decrease it to
smooth out the motion vectors.

Consistency

Sets how heavily the forward and backward vectors are forced to match. Increase the Consistency to make
the forward and backward vectors more similar to each other, but this may cause the vectors to match the
image less.

Smoothness

Applies extra smoothing to the motion vector field as a post-process, after image matching. The higher the
value, the smoother the result.

| O_VectorGenerator Controls

99

O_VectorGenerator Example
See O_Retimer Example for an example of how to use O_VectorGenerator and O_Retimer to calculate a
motion vector field for a stereo image and use it to retime the sequence.

| O_VectorGenerator Example

Retimer
Description
O_Retimer is designed to retime footage so that it plays back faster or in slow-motion. O_Retimer uses
upstream motion vectors generated by an O_VectorGenerator node to retime the footage. These motion
vectors describe how each pixel moves from frame to frame (see VectorGenerator). With accurate motion

vectors, it is possible to generate an output image at any point in sequence timeline by interpolating along
the direction of the motion.

Simple mix of two frames to
achieve an in-between frame.

O_Retimer vector interpolation
of the same two frames.

By default, O_Retimer is set to perform a half-speed slow down. This is achieved by generating new frames
at quarter and three-quarter positions (.25 and .75) between the original frames at 0 and 1. In this way, none
of the original frames are used in the retimed sequence, as shown in the following diagram:

Timing Methods

You can retime footage using two different methods; the Speed method and the Source Frame method. By
default, the Timing control is set to the Speed method.

The Speed method allows you to set a new speed at which to play the footage back. A speed value below 1
slows the clip down; and a speed value above 1, speeds it up. The default value is 0.5, which creates a half-
speed retime.

100

101

Note: When using the Speed method, we recommend adding a FrameRange node before the O_
Retimer to control the input frame range. This allows you to visualize the retime using the Curve
Editor more easily.

Alternatively, you can perform a retime using the Source Frame method. This retimes the footage in terms of
specifying source frames at different outputs on the timeline. For example, you can specify frame 1 in the
output clip to read frame 1 of the source clip, and specify frame 100 in the output clip to read frame 50 of the
source clip. This is the equivalent of doing a half-speed retime.

Inputs
O_Retimer has the following inputs:

Motion If a vectors are supplied here, O_Retimer uses them and does not require
motion in the Source input. This can be useful if, for example, your input
sequence is very noisy, as too much noise interferes with the motion
estimation. In that case, you should supply a smoothed version of the
sequence and an O_VectorGenerator node here.

Source A stereo pair of images. If motion vectors are not embedded in the images,
you need to insert an O_VectorGenerator node after the image sequence to
calculate them.

To see a table listing the nodes or channels each Ocula node requires in its inputs, see Appendix A: Node
Dependencies.

Using O_Retimer

Note: O_Retimer requires upstream motion vectors to operate correctly.

Retiming Stereo Footage Using Speed

To perform a linear retime using the Speed method, do the following:
1. If motion vectors don’t yet exist in the script, you can use the O_VectorGenerator node to calculate them.

See VectorGenerator for information on how to do this.
2. Select Ocula > Ocula 4.0 > O_Retimer to insert O_Retimer either after the O_VectorGenerator node if

you added one in the previous step, or after the stereo image sequence.
3. In the O_Retimer controls, select the two views you want to use for retiming under View to Use. The two

views you select are mapped for the left and right eye.

| Inputs

102

4. Connect a Viewer to the O_Retimer node. Your node tree should now look something like this:

5. Select a new speed value by either entering it the Speed box or dragging the Speed slider to the required
value.

6. Play through the clip to calculate the retiming for all the frames.

Note: Constant retimes produce a number of frames equal to last frame - first frame / speed. For
example, a 10 frame clip at half speed would produce 10-1/0.5 = 18 frames.

Retiming Stereo Footage Using Source Frame

Note: You need to set a minimum of two keyframes to retime footage using the Source Frame
method.

To perform a linear retime using the Source Frame method, do the following:
1. Repeat steps 1 to 4 in the Retiming Stereo Footage Using Speed section.
2. Select Source Frame from the Timing dropdown.
3. Move the playhead to the first frame you want to change the output for on the Viewer timeline.
4. Set the source frame number that you want to appear at the selected output position by either entering it

in the Frame box, or dragging the Frame slider to the required frame.
5. Set a keyframe for this by selecting the animation menu next to the Frame parameter, and clicking Set

key. A keyframe is indicated by a blue marker.

6. Move the playhead on the Viewer timeline to the next frame you want to change the output for.

| Using O_Retimer

103

7. Set the source frame number that you want to appear at the selected output position by either entering it
in the Frame box, or dragging the Frame slider to the required frame. A keyframe is set automatically,
identified with a blue marker.

8. Play through the clip to calculate the retiming for all the frames.

Note: Constant retimes produce a number of frames equal to last frame - first frame / speed. For
example, a 10 frame clip at half speed would produce 10-1/0.5 = 18 frames.

Varying the Retime Speed

To vary the speed in your sequence, you can use either of the Timing methods. As with the Source Frames
method, you add keyframes at different points on the Viewer timeline and specify varying speeds. This
means, the speed changes at every keyframe, varying the speed throughout the clip.

Note: When you are retiming footage using the Speed method, ensure that you set the keyframes
on the input frames by using a FrameRange node, as setting keyframes on the input frames alters
the number of output frames.

Varying Retimes Using Speed

To vary the speed throughout the footage using the Speed method, do the following:
1. Repeat steps 1 to 4 in the Retiming Stereo Footage Using Speed section.
2. Add a FrameRange (Time > FrameRange) node between the O_VectorGenerator and O_Retimer.

3. Set the timeline range to Input using the dropdown under the Viewer.
4. In the FrameRange node's Properties, specify the first and last frames you want to retime. For example,

1021 - 1040. This sets the input frames and allows you to visualize the retime using the Curve Editor
more easily.

| Using O_Retimer

104

5. Set a keyframe on the first frame specified by the FrameRange node and then set the required
keyframes to retime the footage as required.

6. In the O_Retimer Properties, right-click the keyframed Speed control and select Curve editor.
The Curve Editor tab displays the keyframes you added to retime the footage.

7. If you move points on the curve, you can see the out point on the Viewer timeline updates to show you
how many frames of output are created from the input frames.

Tip: You can add points to a curve by holding Ctrl/Cmd+Alt and clicking on the curve. This also
adds a corresponding keyframe to the Viewer timeline.

The left-hand curve creates 1042 output frames, whereas the shallower retime curve on the right
produces fewer output frames - just 1035 frames. However, the input frames displayed on the x axis of
the Curve Editor remain constant between 1021 and 1040.

Frames 1021 to 1040 with a steep slowdown curve
produces 1042 frames output in the Viewer.

Frames 1021 to 1040 with a shallow slowdown curve
produces 1035 frames output in the Viewer.

Varying Retimes Using Source Frames

To vary the speed throughout the footage using the Source Frames method, do the following:
1. Repeat steps 1 to 4 in the Retiming Stereo Footage Using Speed section.
2. Select Source Frame from the Timing dropdown.
3. Move the playhead to the first frame you want to change the output for on the Viewer timeline.
4. Set the source frame number that you want to appear at the selected output position by either entering it

in the Frame box, or dragging the Frame slider to the required frame.
5. Set a keyframe for this by selecting the animation menu next to the Frame parameter, and clicking Set

key. A keyframe is indicated by a blue marker.

| Using O_Retimer

105

6. Move the playhead on the Viewer timeline to the next frame you want to change the output for.
7. Set the source frame number that you want to appear at the selected output position by either entering it

in the Frame box, or dragging the Frame slider to the required frame. A keyframe is set automatically,
identified with a blue marker.

8. Add as many keyframes as necessary to produce the required retime. For example, if you had a clip
consisting of 15 frames, you could:
• Set frame 1 to output frame 1, and frame 5 to output frame 2.5, resulting in a half-speed retime.
• Set frame 10 to output frame 15, resulting in a third speed up.
This creates a retime curve, which you can see if you right-click the Frame control and select Curve
editor or Dope sheet from the animation menu. The graph would look something like this:

The y axis shows the source frames, and the x axis shows the output frames. By using the Curve Editor
or Dope Sheet to adjust this curve, you can create an arbitrarily changing speed for the sequence.

Tip: You can add points to a curve by holding Ctrl/Cmd+Alt and clicking on the curve. This also
adds a corresponding keyframe to the Viewer timeline.

| Using O_Retimer

106

O_Retimer Controls

Use GPU

Open the O_Retimer controls. O_Retimer renders using the Local GPU specified, if available, rather than the
CPU. The GPUmay significantly improve processing performance.

If there is no suitable GPU, or the required NVIDIA CUDA drivers are unavailable, O_Retimer defaults to
using the CPU. You can select a different GPU Device, if available, by opening Nuke's Preferences and
selecting an alternative card from the GPU Device dropdown.

Note: Selecting a different GPU requires you to restart Nuke before the change takes effect.

Views to Use

From the views that exist in your project settings, select the two views you want to use to perform the retime.
These views are mapped for the left and right eye.

Timing

Use the Timing control to set the retiming method.

Speed Select this method if you want to define the retiming in terms of speed of
playback and total duration: double-speed halves the duration of the clip and
half-speed doubles the duration of the clip.

Note: When you are retiming footage using the Speed method,
ensure that you set the keyframes on the input frames, as setting
keyframes on the input frames alters the number of output frames.

Source Frame Select this method if you want to define the retiming in terms of specifying
source frames at different output points in the Viewer timeline. You need to
set a minimum of two keyframes to use the Source Frame method.

| O_Retimer Controls

107

Speed

The Speed control is only available when the Timing method is set to Speed. Use this to alter the playback
speed. Values below 1 slow down the clip. Values above 1 speed up movement. For example, to slow down
the clip by a factor of two (half speed), set this value to 0.5. Quarter speed would be 0.25.

Frame

The Frame control is only available when the Timing method is set to Source Frame. Use this to specify the
source frame at the currently selected output frame on the Viewer timeline. For example, to slow down a 50
frame clip by half, set the Source Frame to 1 at frame 1 and the Source Frame to 50 at frame 100. The
default expression results in a half-speed retime.

Edges

Output edges to alpha

You can use the Output edges to alpha checkbox to output the edges to the alpha channel. Use the alpha
channel as an overlay to determine where the edge correction is applied.

Adjust Edges

Use the Adjust Edges slider to change the size of the edge mask. To dilate the mask, use a positive value.
You can use a negative value to erode the mask.

Feather

You can use the Feather slider to specify how much feathering to apply to the edges. Increasing the Feather
value softens the edges; decreasing the value, sharpens the edges.

O_Retimer Example
In this example, we generate motion vectors using O_VectorGenerator and feed them to O_Retimer in order
to vary the speed throughout the clip.

You can download the image used here from our website. For more information, please see Example
Images.

| O_Retimer Example

108

Step by Step

Generating Motion Vectors
1. Launch Nuke and open the project settings by pressing S on the Node Graph. Go to the Views tab and

click the Set up views for stereo button.
2. Import dance_group.##.exr. This image already includes both the left and the right views.
3. Add a Viewer to the image.
4. Select Ocula > Ocula 4.0 > O_VectorGenerator to insert an O_VectorGenerator node after the image

sequence.

The purpose of O_VectorGenerator is to calculate the motion vectors required later for retiming the
sequence.

5. In the Viewer, select motion from the channel dropdown. The calculated forward and backward motion
vectors are displayed in the Viewer.

6. You can render out the motion vectors with the image by selecting Image > Write to insert a Write node
after O_VectorGenerator. In the Write node controls, select all from the channels dropdown menu.
Choose exr as the file type. Select a location for the clip in the file field and enter dance_group_
motion.##.exr as the name. Click Render. The newly created motion vectors are saved in the channels
of the clip.

7. Continue to the next section to retime the sequence using these motion vectors.

| O_Retimer Example

109

Retiming the Sequence
1. Import the dance_group_motion.##.exr clip you rendered in the previous step and connect a Viewer to

it.

2. Play through the clip in the Viewer to get a sense of the motion.
3. Insert an O_Retimer node after the clip.

By default, this node is set to perform a half speed slow down. However, in this example, we want to
speed up the sequence.

4. Instead of changing the clip’s playback speed in terms of overall duration, we are going to define the
retiming by specifying source frames at selected output frames in the Viewer timeline. In order to do this,
set Timing to Source Frame in the O_Retimer controls.
Notice that the Speed control is not available and the Frame control is activated. The default Frame
setting is 1, which sets the first frame on the timeline to frame 1 of the input image.

Note: You need to set a minimum of two keyframes to use the Source Frame method.

5. Click the animation menu next to Frame and select Set key in order to set a keyframe at the first frame
on the timeline.

A keyframe is indicated by a blue chip.

| O_Retimer Example

110

6. Move the playhead to frame 8 and set the Frame value to 4. A keyframe is set automatically. O_Retimer
sets frame 8 on the timeline to frame 4 of the source image, effectively reducing the playback speed by
half leading up to frame 8.

7. Move the playhead to frame 15 and set the Frame value to 15. O_Retimer sets frame 15 on the timeline
to the last frame of the input clip, effectively returning the playback speed to normal at frame 15.

8. Press Play in the Viewer to process and review the results. After the process is complete, you are able to
see the result of the retime. You may have to reduce the fps control to see the result clearly.

9. Return to the beginning of the clip and play through each frame with the Next Frame arrow in the Viewer.
You should notice that the Frame value changes over time – slowly up to frame 8 and more quickly
towards the final frame.

| O_Retimer Example

InteraxialShifter
Description
The O_InteraxialShifter node allows you to adjust the interaxial distance of stereo images. Interaxial distance
is the distance between the left and right cameras. Using this O_InteraxialShifter node, you can generate two
new views at specified positions between the left and right images.

Changing interaxial distance is the equivalent of moving the cameras closer together or further apart. The
greater the interaxial distance, the greater the depth perception. This is illustrated below, where the gray
rectangles represent elements depicted in a stereo image.

When the 3D image was shot with the cameras far
apart, objects on the screen seem further apart from
each other; the foreground objects look closer to you,

and the background objects look further away.

When the 3D image was shot with cameras closer
together, objects on the screen seem close to each
other; the foreground objects don't look much closer

to you than the background objects.

You may want to change interaxial distance during post-production for a variety of reasons. For example, it
can be useful when trying to match the depths between scenes in order to make transitions more
comfortable for the viewer, or simply because the desired depth of a shot has been reconsidered as the final
film evolves. It might also help in the process known as depth grading, where the depth of field is adjusted in
order to ensure the stereo effect can be comfortably viewed on the intended screen size. The apparent depth
of the scene depends upon a combination of the screen size and the distance from the screen to the viewer.

To generate new views with a different interaxial distance, the O_InteraxialShifter node requires upstream
disparity vectors that relate the two views. You can use the O_DisparityGenerator node to calculate these
vectors. See DisparityGenerator for how to do this.

111

112

Note: This node does not pass through any disparity channels fed into it. This is because, after
warping the input images, the original disparity map is no longer valid. If you need disparity
channels further down the tree, add another O_DisparityGenerator node after O_InteraxialShifter.

Tip: Changing interaxial distance is different to changing convergence (the inward rotation of the
cameras). You can change convergence using Nuke’s ReConverge node. This way, you can have
any selected point in the image appear at screen depth when viewed with 3D glasses.

Inputs
O_InteraxialShifter has the following inputs:

Source A stereo pair of images. If disparity channels and occlusion masks are not
embedded in the images, you need to insert an O_DisparityGenerator and an
O_OcclusionDetector node after the image sequence.

To see a table listing the nodes or channels each Ocula node requires in its inputs, see Appendix A: Node
Dependencies.

Using O_InteraxialShifter

Note: O_InteraxialShifter requires disparity vectors and an occlusion mask to operate correctly.

To change the interaxial distance, do the following:
1. If disparity vectors don’t yet exist in the script, insert an O_DisparityGenerator node after your image

sequence to calculate the disparity vectors. See DisparityGenerator for how to do this.
2. O_InteraxialShifter requires an occlusion mask. Insert an O_OcclusionDetector node after either the O_

DisparityGenerator node (if you added one in the previous step) or the stereo image sequence.
3. From the toolbar, select Ocula > Ocula 4.0 > O_InteraxialShifter to insert an O_InteraxialShifter node

after the O_OcclusionDetector node.
4. In the O_InteraxialShifter controls, select the two views you want to use for creating the new views under

View to Use. The two views you select are mapped for the left and right eye.
5. Use the Left Position and Right Position sliders to indicate where you want to build the new left and right

views. The values are expressed as a fraction of the distance between the two views. For example, if the
Left Position is set to 0.25, it is at a quarter of the total distance between the cameras.

6. Attach a Viewer to the O_InteraxialShifter node. Your node tree should now look something like this:

| Inputs

113

7. Adjust the Edges settings to get the best possible result. See O_InteraxialShifter Controls for more
information.

O_InteraxialShifter Controls

Use GPU

Open the O_InteraxialShifter controls. O_InteraxialShifter renders using the Local GPU specified, if
available, rather than the CPU. The GPUmay significantly improve processing performance.

If there is no suitable GPU, or the required NVIDIA CUDA drivers are unavailable, O_InteraxialShifter
defaults to using the CPU. You can select a different GPU Device, if available, by opening Nuke's
Preferences and selecting an alternative card from the GPU Device dropdown.

Note: Selecting a different GPU requires you to restart Nuke before the change takes effect.

Views to Use

From the views that exist in your project settings, select the two views you want to use to create the new
views. These views are mapped for the left and right eye.

Left Position

Select a position between the views where you want to generate the new left view. The position is expressed
as a fraction of the distance between the views.

Right Position

Select a position between the views where you want to generate the new right view. The position is
expressed as a fraction of the distance between the views.

| O_InteraxialShifter Controls

114

Edges

Output edges to alpha

You can use the Output edges to alpha checkbox to output the edges to the alpha channel. Use the alpha
channel as an overlay to determine where the edge correction is applied.

Adjust Edges

Use the Adjust Edges slider to change the size of the edge mask. To dilate the mask, use a positive value.
You can use a negative value to erode the mask.

Feather

You can use the Feather slider to specify how much feathering to apply to the edges. Increasing the Feather
value, softens the edges; decreasing the value, sharpens the edges.

| O_InteraxialShifter Controls

DepthToDisparity
Description
Many Ocula nodes rely on disparity maps to produce their output. Usually, disparity maps are created using
a combination of the O_Solver (see Solver) and O_DisparityGenerator (see DisparityGenerator) nodes.

However, if you have a CG scene with stereo camera information and a z-depth map available, you can also
use the O_DepthToDisparity node to generate the disparity map. Provided that the camera information and
z-depth map are correct, this is both faster and more accurate than using the O_Solver and O_
DisparityGenerator nodes.

Using one of the camera transforms and the corresponding depth map, O_DepthToDisparity does a back
projection from one view to find the position of each image point in 3D space. It then projects this point with
the other camera transform to find the position of the point in the other view. The difference between the two
positions gives the disparity in one direction.

As with the O_DisparityGenerator node, the final disparity vectors are stored in disparity channels, so you
might not see any image data appear when you first calculate the disparity map. To see the output inside
Nuke, select the disparity channels from the channel set and channel controls in the top left corner of the
Viewer. Examples of what a disparity map might look like using the RGB and R channels are shown below.
As you can see, the RGB layers on the left are harder to read than the single R channel.

Once you have generated a disparity map that describes the relation between the views of a particular clip
well, it is suitable for use in most of the Ocula nodes. We recommend that you insert a Write node after O_
DepthToDisparity to render the original images and the disparity channels as a stereo .exr file. This format
allows for the storage of an image with multiple views and channel sets embedded in it. Whenever you use
the same image sequence, the disparity map is loaded into Nuke together with the sequence and is readily
available for the Ocula nodes. For information on how to generate a disparity map using O_DepthToDisparity
and render it as an .exr file, see Generating a Disparity Map from Depth.

Note: To use O_DepthToDisparity, you need the positions of the stereo camera rig for the two
views.

115

116

Inputs
O_DepthToDisparity has the following inputs:

Camera A Nuke stereo Camera node. This is the camera the scene was rendered
with. In most cases, you would import this into Nuke from a third-party 3D
application. For information on how to do this, see the Nuke User Guide.

In Nuke, a stereo camera can be either:
• a single Camera node in which some or all of the controls are split, or
• two Camera nodes (one for each view) followed by a JoinViews node (Views
> JoinViews). The JoinViews node combines the two cameras into a single
output.

A single Camera node with split
controls.

Two cameras combined using Nuke’s
JoinViews node.

Depth This is a stereo pair of images (usually, a scene you’ve rendered from a 3D
application). In the depth channel, there should be a z-depth map for each
view.

Note: If this input is an .exr file, the z-depth map may already be
embedded in the clip.

If you’re using another file format and have saved the depth map as a
separate image, you can use a Nuke Shuffle node (Channel > Shuffle) to get
the z-depth map in the depth channel of the Depth image. For information on
how to do this, see the Nuke User Guide.

To see a table listing the nodes or channels each Ocula node requires in its inputs, see Appendix A: Node
Dependencies.

| Inputs

117

Generating a Disparity Map from Depth
To generate a disparity map from a depth channel, do the following:
1. Start Nuke and press S on the Node Graph to open the Project Settings. Go to the Views tab and click

the Set up views for stereo button.
2. From the Toolbar, select Image > Read to load your stereo clip (usually, a rendered 3D scene) into

Nuke. If you don’t have both views in the same file, select Views > JoinViews to combine them, or use a
variable in the Read node’s file field to replace the name of the view (use the variable %V to replace an
entire view name, such as left or right, and %v to replace an initial letter, such as l or r). For more
information, refer to the Nuke User Guide.
Make sure the stereo clip contains a z-depth map for each view in the depth channels. If this is not the
case and you have saved the depth maps as separate images, you can use a Nuke Shuffle node
(Channel > Shuffle) to shuffle them into the depth channels.

3. Select Ocula > Ocula 4.0 > O_DepthToDisparity to insert an O_DepthToDisparity node after either the
stereo clip or the JoinViews node (if you inserted one in the previous step).

4. Connect the camera that the scene was rendered with to the Camera input of O_DepthToDisparity. It is
important the camera information is correct for the scene.

5. Open the O_DepthToDisparity controls. From the Views to Use menu or buttons, select which views you
want to use for the left and right eye when creating the disparity map.

6. Attach a Viewer to the O_DepthToDisparity node, and display one of the disparity channels in the
Viewer.
O_DepthToDisparity calculates the disparity map and stores it in the disparity channels.

7. Select Image > Write to insert a Write node after O_DepthToDisparity. In the Write node controls, select
all from the channels dropdown menu. Choose exr as the file type. Render the clip.
The newly created disparity channels are saved in the channels of your stereo clip. When you need to
manipulate the same clip again later, the disparity vectors are loaded into Nuke together with the clip.

Rendering the output to combine the clip and the disparity
channels for future use.

| Generating a Disparity Map from Depth

118

O_DepthToDisparity Controls

Views to Use

From the views that exist in your Project Settings, select the two views you want to use to create the disparity
map. These views are mapped for the left and right eye.

O_DepthToDisparity Example
This example shows you how to calculate a disparity map for a stereo pair of images using O_
DepthToDisparity.

You can download the script used here from our website. For more information, please see Example Images.

Step by Step
1. Start Nuke and select File > Open to import the gherkin.nk script.
2. This script has the left and the right view set up in the Project Settings. In the Node Graph, there is a

stereo camera node.
3. Select Image > Read to import gherkin.exr and attach a Viewer to the image.

The image is a render of a 3D scene. It already includes the left and the right view, and a depth channel
for both views.

4. Select Ocula > Ocula 4.0 > O_DepthToDisparity to insert an O_DepthToDisparity node between the
Read node and the Viewer. Make sure the Read node is connected to the Depth input of O_
DepthToDisparity.

5. Connect the Camera node to the Camera input of O_DepthToDisparity. This node is the camera the 3D
scene was rendered with. Your node tree should now look something like the one shown below.

6. Use the channel menus in the top left corner of the Viewer to display one of the disparity channels.
O_DepthToDisparity calculates the disparity map and stores it in the disparity channels.

7. Temporarily decrease the gain value in the Viewer to see detail in the disparity channels and then switch
back to viewing the rgba channels.

| O_DepthToDisparity Controls

119

8. To evaluate the quality of the disparity map, select Ocula > Ocula 4.0 > DisparityReviewGizmo.
The default settings show that the disparity map is pretty good, with clearly defined depth edges picked
out in red. See DisparityReviewGizmo for more information.

It is worth noting that the results achieved with O_DepthToDisparity are usually better than those achieved
with O_Solver and O_DisparityGenerator for rendered 3D scenes, though this is not the case with non-CG
footage.

| O_DepthToDisparity Example

DisparityToDepth
Description
The O_DisparityToDepth node produces a z-depth map for each view of a stereo clip, based on the clip’s
disparity map and stereo camera setup.

A z-depth map is an image that uses the brightness of each pixel to specify the distance between the 3D
scene point and the virtual camera used to capture the scene. For example, you may use a z-depth map if
you want to introduce fog and depth-of-field effects into a shot. In Nuke, the ZDefocus node (Filter >
ZDefocus) requires a depth map in its input.

O_DisparityToDepth stores the final z-depth map in the depth channel. Select depth from the channel
dropdown above the Viewer to display the z-depth map. You can then select the red only channel (R) and
adjust the gain and gamma sliders above the Viewer to display the depth map more clearly.

The left view of a stereo image. The associated depth map of the left view.

It's worth mentioning that depth is the distance along the Z axis for the camera, not the distance along the ray
from the camera center to the 3D surface point. This matches the depth output of the ScanlineRender node
in Nuke. In the figure below, each pixel forms a ray, and AB measures the physical distance from the camera
to the 3D point, whereas AC measures the distance along the Z axis for the camera.

120

121

Inputs
O_DisparityToDepth has the following inputs:

Camera A pre-tracked Nuke stereo camera that describes the camera setup that is
used to shoot the Source images. This can be a camera you have tracked
with the CameraTracker node or imported to Nuke from a third-party camera
tracking application.

In Nuke, a stereo camera can be either:
• a single Camera node in which some or all of the controls are split, or
• two Camera nodes (one for each view) followed by a JoinViews node (Views
> JoinViews). The JoinViews node combines the two cameras into a single
output.

A single Camera node with split
controls.

Two cameras combined using Nuke’s
JoinViews node.

Disparity A stereo pair of images. O_DisparityToDepth requires upstream disparity
vectors. If they do not already exist, insert an O_DisparityGenerator node
after the image sequence to calculate them. See DisparityGenerator for more
information.

To see a table listing the nodes or channels each Ocula node requires in its inputs, see Appendix A: Node
Dependencies.

Using O_DisparityToDepth

Note: O_DisparityToDepth requires upstream disparity vectors to operate correctly.

To generate a z-depth map for a stereo clip, do the following:
1. If disparity vectors do not yet exist in the script, you need to insert an O_DisparityGenerator node after

your image sequence to calculate the disparity vectors. See DisparityGenerator for how to do this.

| Inputs

122

Tip: O_DisparityGenerator's Alignment control can reduces noise on the vertical component of
disparity and produce smoother variations in depth, but requires solve data upstream. See Solver
for more information on calculating solve data.

2. Select Ocula > Ocula 4.0 > O_DisparityToDepth to insert an O_DisparityToDepth node either after the
O_DisparityGenerator node if you added one in the previous step, or after the image sequence.

3. Connect a pre-tracked Nuke stereo camera to the Camera input of O_DisparityToDepth.
4. Open the O_DisparityToDepth controls. From the Views to Use menu, select which views you want to

use for the left and right eye when creating the z-depth map.
5. Connect a Viewer to the O_DisparityToDepth node. Your node tree should now look something like this:

6. Select depth from the channel dropdown above the Viewer.
7. Select the red channel (R) from the RGB dropdown.
8. Adjust the gain and gamma controls to display the z-depth map more clearly.
9. To render out the stereo clip with the depth map stored in the depth channel, select Image > Write to

insert a Write node after O_DisparityToDepth. In the Write node controls, select all from the channels
dropdown menu. Choose exr as the file type. Render the clip.
When you need to use the same clip again later, the z-depth map is loaded into Nuke along with the clip.
To view it, select depth from the channel dropdown.

Using O_DisparityToDepth with DeepMerge

You can use choose to use DeepMerge with O_DisparityToDepth to insert objects at specific depth
positions. For example, if you have an image of dancers, you may want to add in smoke around them.

Note: The original image or image sequence you are using must contain an alpha channel for
DeepMerge to operate correctly.

To use O_DisparityToDepth with DeepMerge, you can do the following:

| Using O_DisparityToDepth

123

1. Ensure your footage has an alpha channel and repeat steps 1 to 5 from the previous section to calculate
the depth from disparity.

2. Insert a DeepFromImage node after the O_DisparityToDepth node by selecting Deep >
DeepFromImage.

3. Insert a DeepMerge node after the DeepfromImage node, and change the input from the DeepMerge
node so that the DeepFromImage node is connected using the B input.

4. Now, insert a separate DeepRead node by selecting Deep > DeepRead and navigate to the deep
footage that you want to insert into your original image. In this case, we are inserting smoke around
dancers in a stereo scene.

5. Attach the DeepRead node to the A input of DeepMerge. Your node tree should now look something like
this:

6. The smoke does not appear in the image. This must mean that the depth values of the image and the
deep smoke are vastly different; one is too far in front of the other to be visible.

7. You can visualise the different depth positions by using a point cloud. To do this, insert a DeepToPoints
node after the DeepMerge node.

8. Attach the camera input of the DeepToPoints node to the existing camera. This shows you a 3D view
with a camera detailing the xyz coordinates of the footage in space.

As you can see, the smoke footage is much too far back and also too large.
9. To change the position and scale of the smoke footage, insert a DeepTransform node after the smoke

footage DeepRead node and before the DeepMerge node. Your node tree should now look something
like this:

| Using O_DisparityToDepth

124

10. Open the DeepTransform controls. To move the position of the smoke footage forward, you need to
increase the z value in the translate control. To decrease the depth of the smoke footage, you need to
increase the zscale value. This is a divisor, so numbers above 1 decrease the depth.

The DeepToPoints view of the original stereo image
from the side .

The DeepToPoints view of the smoke footage and
the original stereo image

from the side .

The same DeepToPoints view of the original stereo
image from the front.

The same DeepToPoints view of the smoke footage
and the original stereo image

from the front.

11. Press D over the DeepToPoints node to disable it and display the result. Press Tab to revert back to 2D.

| Using O_DisparityToDepth

125

O_DisparityToDepth Controls

Views to Use

From the views that exist in your project settings, select the two views you want to use to generate the z-
depth map. These views are mapped for the left and right eye.

O_DisparityToDepth Example
In this example, we first generate a depth map for a stereo pair of images using O_DisparityToDepth. Then,
we blur the image according to the depth map.

Step by Step
1. Launch Nuke and select File > Open to import the depth.nk script. This script has the left and the right

view set up in the Project Settings. In the Node Graph, there is a stereo Camera node.
2. Select Image > Read to import Dance_Group.exr into Nuke.
3. To calculate disparity vectors, insert an O_DisparityGenerator node after the image. See

DisparityGenerator for more information.
4. Select Ocula > Ocula 4.0 > O_DisparityToDepth to insert an O_DisparityToDepth node after the O_

DisparityGenerator node. Ensure the O_DisparityGenerator node is connected to the Disparity input of
O_DisparityToDepth.

5. Connect the Camera node to the Camera input of O_DisparityToDepth. Your node tree should now look
something like this:

| O_DisparityToDepth Controls

126

6. Select depth from the channel dropdown above the Viewer to display the z-depth map.
7. Select the red channel (R) from the RGB dropdown, and adjust the gain and gamma sliders above the

Viewer to see the depth map more clearly.

The left view of a stereo image. The red channel of the depth map
(with adjusted gain and gamma).

8. To use O_DisparityToDepth with ZDefocus, continue to the next section.

An Example of Using O_DisparityToDepth with ZDefocus

The ZDefocus node blurs the image background according to the depth channels we’ve just created in the
previous section.
1. Continue with the node tree you created in the previous section.
2. If you inserted a DisparityReviewGizmo node, either disable or delete it.
3. Select Filter > ZDefocus to add a ZDefocus node between O_DisparityToDepth and the Viewer. Your

node tree should now look something like this:

| O_DisparityToDepth Example

127

4. Open the ZDefocus controls. A focal_point widget is displayed in the Viewer. Click and drag the focal_
point widget to the area on the image you want to be in focus. In this case, we want the dancer at the
front to be the focus point.

5. Then set the ZDefocus controls as follows:
• channels to rgba
• math to far=0
• size to 63

6. View the output. To see the effect of the ZDefocus node more accurately, select the node in the node tree
and press D once to disable and again to enable it.

The left view when the ZDefocus
node is disabled.

The left view when the ZDefocus
node is enabled.

7. You can save the depth in the channels of the input clip for later use. To do this, select Image > Write to
insert a Write node between O_DisparityToDepth and ZDefocus. In the Write node controls, select all
from the channels dropdown menu. Use the file control to give the file a location and a new name.
Choose exr as the file type and click Render to render the image.

| O_DisparityToDepth Example

MultiSample
Description
The O_MultiSample node allows you to use a Sample input to sample a selected area for one of the
following uses:

• Fill the whole image with a smooth interpolation of the data from the sample area. Any channels can be
used including depth, color, disparity, and so on. For example, if you like the disparity vectors in a certain
area, you can expand them to fill the rest of the image by selecting the area you like in the Sample input
and choosing disparity from the Channels dropdown.

• Fill the area defined in the Sample input with the surrounding channel data. This allows you to fill holes or
replace unwanted areas. Any channels can be used including depth, color, disparity, and so on. For
example, if you had an irregular area in a depth map, you can select the irregular area and input it as a
sampled area. You can then invert the sampled area to fill it with the surrounding depth data.

The original left view of
the depth map with an irregularity

in the
top-right area.

A bezier is drawn around the
irregular area so that it can be input

as a sampled area.

O_MultiSample fills the selected
area by expanding the surrounding

pixels.

• Fill a different area specified in the Mask input, with the channel data from the area specified in the Sample
input. This allows you to correct areas that have not been rebuilt correctly, or replace any irregular areas.
Any channels can be used including depth, color, disparity, and so on. For example, if you had an area that
has not been rebuilt correctly when using O_NewView, you can correct it using O_MultiSample. See Using
O_MultiSample with the Sample and Mask Inputs for more information.

Inputs
O_MultiSample has the following inputs:

Sample An input that defines an area to sample channel data from. This can be used
for filling the whole image with a smooth interpolation of the data from the
sample area, inverting the sampled area and therefore filling the it with the
surrounding channel data, or using the sample channel data to fill another
area specified in the optional Mask input.

128

129

Source An image or a stereo pair of images.

Mask An optional mask to define an area that you want to fill or replace using the
channel data from the area defined by Sample input.

To see a table listing the nodes or channels each Ocula node requires in its inputs, see Appendix A: Node
Dependencies.

Using O_MultiSample
You can use O_MultiSample with only the Sample input to fill in holes or replace data, or you can use O_
MultiSample with the Mask and Sample input, to apply the sample data to a different area specified in the
Mask input.

Using O_MultiSample with the Sample Input

You can use O_MultiSample to replace an area of channel data that is not accurate. For example, if you have
generated a disparity map and there is a section that you are not happy with, you can use O_MultiSample to
fill the specified shape with the surrounding disparity vector data from the whole image. This means that the
disparity vectors in the selected area are replaced.

To use O_MultiSample to remove an area of disparity, you can do the following:
1. If disparity vectors do not already exist in the image sequence, insert an O_DisparityGenerator node

after your image sequence to calculate the disparity vectors. See DisparityGenerator for more
information.

2. Select Ocula > Ocula 4.0 > O_MultiSample to insert an O_MultiSample node, either after the O_
DisparityGenerator node if you added one in the previous step, or after the image sequence.

3. Create a Roto node and connect it to the Sample input of the O_MultiSample node.
4. Connect a Viewer to the O_MultiSample node. Your node tree should now look something like this:

5. Open the Roto controls. Draw a bezier around the area of disparity you want to remove.

| Using O_MultiSample

130

6. Select disparity from the channel dropdown. Select Luminance from the RGB dropdown.
7. Adjust the gain and gamma controls to display the disparity map more clearly.
8. Open the O_DisparityGenerator controls. You can set the Strength control to 2, and the Smoothness

control to 3.
9. Open the O_MultiSample controls and set the Channels control to disparity.
10. Set the Sample control to Sample Inverted Alpha. This removes the disparity from the selected area by

filling it using the surrounding disparity vector data.

The original left view disparity map. The left view with the selected area of
disparity removed.

Using O_MultiSample with the Sample and Mask Inputs

You can use O_MultiSample to correct a specific area with data from the defined sample area. For example,
if you use O_NewView to create a new left view and an area of it doesn't build correctly, you can use O_
MultiSample to correct it.

In this case, you first create a new view:
1. O_NewView requires disparity vectors to operate correctly. If disparity vectors do not exist already, insert

an O_DisparityGenerator to calculate them either after the image sequence, or – if you added one – the
JoinViews node.

2. O_NewView also requires an O_OcclusionDetector node. Insert this after the O_DisparityGenerator
node.

| Using O_MultiSample

131

3. Select Ocula > Ocula 4.0 > O_NewView to insert an O_NewView node and attach a Viewer to the O_
NewView node. Your node tree should now look something like this:

4. In the O_NewView controls, select Left from Right from the View to Build dropdown to rebuild the left
view using the pixels from the right.

The rebuilt left view from the right.
Notice the shoulder has not been

reconstructed correctly.

The original right view.

In this case, the left view has not been reconstructed correctly as a result of an irregular area in the
disparity. This can be corrected by using O_MultiSample:

5. Insert an O_MultiSample node before the O_NewView node.
6. Create a Roto node and attach it to the Sample input of O_MultiSample. Draw a bezier around an area of

disparity that you want to sample. In most cases, sampling the disparity from an area that is close
produces the best results (see screenshot below). In this case, we need to sample the disparity from a
close area at the same depth / or surface to get the best result.

| Using O_MultiSample

132

7. Create a RotoPaint node and attach it to the Mask input of O_MultiSample. Your node tree should now
look something like this:

8. From the RotoPaint node, use a paint brush to paint a stroke over the area of disparity that you want to
correct. To view the stroke on the image, connect the bg input of the RotoPaint node to the O_
DisparityGenerator node and then attach the RotoPaint to Viewer. Choose to display Viewer input 2.
Your node tree should now look something like this:

| Using O_MultiSample

133

In this case, when you have the node tree set up like this and you display Viewer input 2, this is what you
see:

9. Choose to display Viewer input 1.
10. Open the O_MultiSample controls, set the Channels control to disparity.
11. Set the Sample control to Sample Alpha, and the Mask control to Mask Alpha. This now fills the area

specified area in the Mask input, with the data sampled from the specified area in the Sample input. In
the image, the painted area is now rebuilt correctly. To compare the result to the original, press D several
times with the O_MultiSample node selected, to disable and re-enable it.

| Using O_MultiSample

134

The image with the O_MultiSample node disabled,
showing the incorrectly built shoulder.

The image with the O_MultiSample node enabled,
showing the correctly rebuilt view.

O_MultiSample Controls

Use GPU

Open the O_MultiSample controls. O_MultiSample renders using the Local GPU specified, if available,
rather than the CPU. The GPUmay significantly improve processing performance.

If there is no suitable GPU, or the required NVIDIA CUDA drivers are unavailable, O_MultiSample defaults to
using the CPU. You can select a different GPU Device, if available, by opening Nuke's Preferences and
selecting an alternative card from the GPU Device dropdown.

Note: Selecting a different GPU requires you to restart Nuke before the change takes effect.

Channels

You can use the Channels control to select the channels you want to sample from the Source input. For
example, you can select disparity to sample the disparity vector data only in the selected area. The sample
data can then be applied to the whole image, or the selected area can be filled (replaced) using the
surrounding channel data. When you select a channel set, the individual channels within that set are
displayed to the right as checkboxes. You can toggle these on and off to view selected channels.

When you select an additional channel from the second channel dropdown, the checkbox beside it is
automatically enabled. You can then toggle this on and off to use the additional channel.

| O_MultiSample Controls

135

Sample

The Sample control defines the area to sample. You can connect a RotoPaint or Roto node to define an
area, and connect it to the Sample input, or you can use the source alpha channel.

Note: Areas with non-zero values in the Sample input are sampled. Pixels with higher values are
given more weight when they are expanded.

Select one of the following options:

None Use the entire image area.

Source Alpha Use the alpha channel of the Source input to define the area of the Source
input that is sampled and expanded. The selected area is embedded in the
image sequence.

The left view. A matte overlay of the Source alpha.
White pixels define where the Source

input is sampled.

Source Inverted Alpha Use the inverted alpha channel of the Source input to define the area of the
Source input that is sampled and expanded. The selected area is embedded
in the image sequence.

The left view. A inverted matte overlay of the
inverted Source alpha. White pixels

| O_MultiSample Controls

136

determine where the Source input is
sampled.

Sample Luminance Use the luminance of the Sample input to define the area of the Source input
that is sampled and expanded.

Sample Inverted
Luminance

Use the inverted luminance of the Sample input to define the area of the
Source input that is sampled and expanded.

Sample Alpha Use the alpha channel of the Sample input to define the area of the Source
input that is sampled and expanded.

Sample Inverted Alpha Use the inverted alpha channel of the Sample input to define the area of the
Source input that is sampled and expanded.

Mask

The Mask control defines the area in which to expand the sample data. You can connect a RotoPaint or Roto
node to define an area, and connect it to the Mask input, or you can use the source alpha channel.

Note: The Mask input is used to perform a keymix between the Source input and the expanded
result.

Select one of the following options:

None The Mask input is not used, and therefore the sample data is expanded to fill
the whole image.

Source Alpha Use the alpha channel of the Source input to define the area that is replaced
by the expanded data. The selected area is embedded in the image
sequence.

The left view. A matte overlay of the Source alpha.
White pixels define the area to be

| O_MultiSample Controls

137

replaced by the expanded data.

Source Inverted Alpha Use the inverted alpha channel of the Source input to define the area that is
replaced by the expanded data. The selected area is embedded in the image
sequence.

The left view. A matte overlay of the Source alpha.
White pixels define the area to be
replaced by the expanded data.

Mask Luminance Use the luminance of the Mask input to define the area that is replaced by the
expanded data.

Mask Inverted
Luminance

Use the inverted luminance of the Mask input to define the area that is
replaced by the expanded data.

Mask Alpha Use the alpha channel of the Mask input to define the area that is replaced by
the expanded data.

Mask Inverted Alpha Use the inverted alpha channel of the Mask input to define the area that is
replaced by the expanded data.

O_MultiSample Example
In this example, we first generate a disparity map for a stereo pair of images using O_DisparityGenerator.
Then, we use O_MultiSample to remove an area of the disparity and fill it using the surrounding disparity
vector data.

Step by Step
1. Launch Nuke. Open the Project Settings (press S on the Node Graph), select the Views tab, and click

the Set up views for stereo button.
2. Select Image > Read to import Dance_Group.exr.
3. To calculate disparity vectors, insert an O_DisparityGenerator node after the image sequence. See

DisparityGenerator for more information.
4. Select Ocula > Ocula 4.0 > O_MultiSample to insert an O_MultiSample node after the O_

DisparityGenerator node.

| O_MultiSample Example

138

5. Insert a Roto node and connect it to the Sample input of the O_MultiSample node.
6. Attach a Viewer to the O_MultiSample node. Your node tree should now look something like this:

7. Select disparity from the channel dropdown above the Viewer to display the disparity map.
8. Select the red channel (R) from the RGB dropdown, and set the gain control to -1/45.
9. Adjust the gamma slider above the Viewer to display the disparity map more clearly.
10. Open the Roto controls and select Bezier to the left of the Viewer. Draw a bezier around the dancer on

the right.
11. Open the O_MultiSample controls. Select disparity from the Channels control.
12. Set the Sample control to Sample Inverted Alpha. The selected area of disparity is now filled using the

surrounding disparity vector data, replacing the disparity in the selected area.

The original left view of the disparity map with a
bezier marking the selected area.

The left of view of the disparity with the selected area
removed.

| O_MultiSample Example

Quality Control Tools
Description
There are several tools in Ocula that you can use to check the quality of stereo footage and disparity in an
image sequence. These tools include O_DisparityViewer, DisparityReviewGizmo and StereoReviewGizmo.

DisparityViewer

Description

The O_DisparityViewer node allows you to visualize the disparity vectors in your node tree, display a
histogram detailing positive and negative parallax, or overlay the Viewer with parallax violations.

Note: All three O_DisparityViewer modes are baked into your render if the node is enabled when
you write your sequence out. This allows you to render the output alongside disparity for review.

You can add O_DisparityViewer after any node in the Node Graph. As long as there is a disparity channel at
that point in the tree, O_DisparityViewer produces a Viewer overlay with arrows showing the disparity
vectors at regular intervals, a histogram, or parallax violations depending on the Display control.

O_DisparityViewer allows you to view diagnostic tools to help you determine where your stereo footage
needs work:
• DisparityViewer - the disparity vectors at any given point in your node tree for a selected view or both views.
• Displaying Parallax Histograms - a histogram showing the parallax, in pixels, on the x axis, the number of
image pixels on the y axis, and the negative and positive parallax violation areas in red and green,
respectively.

• Displaying Parallax Violation Overlays - highlights the areas of negative and positive parallax violation - that
is, areas outside the limits specified in the Negative Limit and Positive Limit controls.

Displaying Disparity Vectors

To visualize the disparity vectors at any given point of your node tree, do the following:
1. Select a node at any point in the node tree where there is a disparity channel.

If you don’t have a disparity channel in the data stream, you can add one using an O_DisparityGenerator
node. See DisparityGenerator for more information.

2. Choose Ocula > Ocula 4.0 > O_DisparityViewer from the Toolbar.
This inserts an O_DisparityViewer node in your node tree.

139

140

3. Under Views to Use, select the views you want to use to visualize the disparity vectors. These views are
mapped for the left and right eye.

4. Using the Display menu, select DisparityVectors.
5. If you want to display the vectors for both views rather than just the current view, check Show Both

Directions.

Vectors for the left view. Vectors for both views.

6. Zoom in to better see the disparity vectors in the overlay.
7. If the Viewer seems too cluttered or the arrows overlap, increase the Vector Spacing value.
8. If necessary, use the disparityR and disparityL parameters to change the color of the arrows. You may

want to do this, for example, if the default color is very close to the colors in your input image, or if you
want to compare disparity methods and have more than one O_DisparityViewer overlay displayed at
once. See O_DisparityViewer Controls for more information.

Note: Disparity vectors are baked into your render if the node is enabled when you write your
sequence out.

Displaying Parallax Histograms

To view a parallax histogram for any given point of your node tree, do the following:
1. Select a node at any point in the node tree where there is a disparity channel.

If you don’t have a disparity channel in the data stream, you can add one using an O_DisparityGenerator
node. See DisparityGenerator for more information.

2. Choose Ocula > Ocula 4.0 > O_DisparityViewer from the Toolbar.
This inserts an O_DisparityViewer node in your node tree.

3. Under Views to Use, select the views you want to use to visualize as a histogram. These views are
mapped for the left and right eye.

4. Using the Display dropdown menu, select Parallax Histogram.

| Description

141

Parallax histogram.

The Viewer displays a histogram showing Parallax (in pixels) on the x axis, the number of image pixels
on the y axis, and the negative and positive parallax violation areas in red and green, respectively.
The screen is placed at zero on the x axis, so negative parallax refers to parts of the image that are in
front of the screen and positive parallax to the parts that are behind the screen.

5. Use the Histogram controls to define your histogram as necessary. See O_DisparityViewer Controls for
more information.

Note: Histograms are baked into your render if the node is enabled when you write your sequence
out.

Displaying Parallax Violation Overlays

To view a parallax violation overlay for any given point of your node tree, do the following:
1. Select a node at any point in the node tree where there is a disparity channel.

If you don’t have a disparity channel in the data stream, you can add one using an O_DisparityGenerator
node. See DisparityGenerator for more information.

2. Choose Ocula > Ocula 4.0 > O_DisparityViewer from the Toolbar.
This inserts an O_DisparityViewer node in your node tree.

3. Under Views to Use, select the views you want to use to visualize parallax violation. These views are
mapped for the left and right eye.

4. Using the Display dropdown menu, select Parallax Violation.

| Description

142

Parallax violation overlay.

The parallax violation overlay appears in the Viewer, highlighting the areas of negative and positive
parallax violation - that is, areas outside the limits specified in the Negative Limit and Positive Limit
controls.

5. Use the Parallax controls to define your overlay parameters as necessary. See O_DisparityViewer
Controls for more information.

Note: Parallax violation overlays are baked into your render if the node is enabled when you write
your sequence out.

Inputs

O_DisparityViewer has the following inputs:

Source This is any node in the node tree with a disparity map in the disparity
channels.

To see a table listing the nodes or channels each Ocula node requires in its inputs, see Appendix A: Node
Dependencies.

O_DisparityViewer Controls

Views to Use

From the views that exist in your project settings, select the two views you want to use when visualising the
disparity vectors. These views are mapped for the left and right eye.

| Description

143

Display

Select the display mode from the dropdown menu:

Disparity Vectors Overlays the disparity vectors at any given point in your node tree for a
selected view or both views.

Parallax Histogram Displays a histogram showing the parallax, in pixels, on the x axis, the
number of image pixels on the y axis, and the negative and positive parallax
violation areas in red and green, respectively.

Parallax Violation Highlights the areas of negative and positive parallax violation - that is, areas
outside the limits specified in the Negative Limit and Positive Limit controls.

Vectors

disparityR Color of the arrows used for displaying left-to-right disparity. You may want to
change this, for example, if the color of the arrows is very close to the colors in
your input image, or if you want to compare the vectors from multiple O_
DisparityViewers in the same Viewer.

disparityL Color of the arrows used for displaying right-to-left disparity. You may want to
change this, for example, if the color of the arrows is very close to the colors in
your input image, or if you want to compare the vectors from multiple O_
DisparityViewers in the same Viewer.

Show Both Directions Check this to show the disparity vectors for both views rather than just the
current view.

Vector Spacing How often a disparity vector is drawn. If necessary, you can increase this
value to make the display less cluttered. You may want to do so, for example,
if the disparities are large and you don’t want neighboring vectors to overlap
one another.

Histogram

Histogram Range Use this menu to select the histogram range:
• Automatic - the range is scaled to fit the range of disparity.
• User Defined - the range is defined using the Histogram Min and Max
controls as a percentage of screen width.

| Description

144

Histogram Min Controls the lower limits of the histogram as a percentage of screen width,
that is, the left-most points on the x axis.

Note: This control is only active when Histogram Range is set to
UserDefined.

Histogram Max Controls the upper limits of the histogram as a percentage of screen width,
that is, the right-most points on the x axis.

Note: This control is only active when Histogram Range is set to
UserDefined.

Parallax

Negative Limit Sets the amount of negative parallax allowed as a percentage of screen
width. Areas outside this negative limit are marked by the overlay in the color
specified in the Negative Violation control.

Pixels Displays the number of pixels allowed by negative parallax.

Positive Limit Sets the amount of positive parallax allowed as a percentage of screen width.
Areas outside this positive limit are marked by the overlay in the color
specified in the PositiveViolation control.

Pixels Displays the number of pixels allowed by positive parallax.

Negative Violation Sets the overlay color for pixels outside the specified Negative Limit value.

Positive Violation Sets the overlay color for pixels outside the specified Positive Limit value.

O_DisparityViewer Example

In this example, we use O_DisparityViewer to evaluate the disparity map produced by O_
DisparityGenerator. For information on where to get the sample footage, please see Example Images.

Step by Step
1. Start Nuke and press S on the Node Graph to open the Project Settings. Go to the Views tab and click

the Set up views for stereo button.

| Description

145

2. Select Image > Read and browse to where you saved the tutorial files. Go to the O_DisparityGenerator
directory, select Dance_Group.exr, and click Open.
A Read node is added to the Node Graph.

Tip: If you've already run through the O_DisparityGenerator Example to create a disparity map,
you can open the image you rendered earlier and skip to step 4.

3. Select Ocula > Ocula 4.0 > O_DisparityGenerator from the Toolbar.
This inserts an O_DisparityGenerator node.

4. Select the O_DisparityGenerator node (or the Read node pointing to your own pre-rendered image) and
choose Ocula > Ocula 4.0 > O_DisparityViewer from the Toolbar.
This inserts an O_DisparityViewer node and forces Ocula to calculate the disparity channel.

5. Connect a Viewer to the O_DisparityViewer node so we can see what’s happening. Your node tree
should look similar to the image shown.

6. Using the default O_DisparityViewer settings, the Viewer is a little crowded. To make the display less
cluttered, set Vector Spacing to 80.

7. To display vectors for both views, check Show Both Directions in the O_DisparityViewer controls. The
vectors for the left-to-right disparity are shown in red, and the vectors for the right-to-left disparity in
green.

The main purpose of this tutorial is to show you how to use the Parallax Histogram and Parallax
Violation display modes.

8. In the O_DisparityViewer controls, click on the Display dropdown menu and select Parallax Histogram.
The Viewer displays a histogram showing parallax (in pixels) on the x axis, the number of image pixels on
the y axis, and the negative and positive parallax violation areas in red and green, respectively.

| Description

146

Note: The screen is placed at zero on the x axis, so negative parallax refers to parts of the image
that are in front of the screen and positive parallax to the parts that are behind the screen.

HistogramRange defaults to UserDefined, so the graph produced may not contain all the pixels in the
image.

9. Click the Histogram Range menu and select Automatic.
The histogram is re-rendered to automatically fit the range of disparities in the image.

As you can see in this example, a small proportion of the image exceeds the positive violation threshold
(green) and none of the image exceeds the negative threshold (red).

10. In the O_DisparityViewer controls, click on the Display menu and select ParallaxViolation.
The parallax violation shown in the histogram is overlaid on the Viewer highlighting, in this case, the
areas of positive parallax violation.

| Description

147

11. If you adjust the Positive Limit slider down to 1.4 and up to 3, you can see the changing extent of the
positive violation limit. In the right-hand image, the violation has disappeared completely.

Low Positive Limit. High Positive Limit.

12. You can adjust the Negative Limit in the same way, though in this case you’ll need to input a figure
greater than 0 to see any violation.

| Description

148

DisparityReviewGizmo

Description

The DisparityReviewGizmo node allows you to check the quality of the disparity vectors. The
DisparityReviewGizmo node is inserted before the Viewer in the node tree. This displays the image with a
desaturated background by default, and highlights any depth changes, alignment changes, and occluded
regions.

Note: To detect the occluded regions, you need to insert an O_OcclusionDetector node upstream
in the node tree.

Inputs

O_DisparityReviewGizmo has the following inputs:

Source A stereo pair of images. DisparityReviewGizmo requires upstream disparity
vectors. If they do not already exist, insert an O_DisparityGenerator node
after the image sequence to calculate them. See DisparityGenerator

To see a table listing the nodes or channels each Ocula node requires in its inputs, see Appendix A: Node
Dependencies.

| DisparityReviewGizmo

149

Using DisparityReviewGizmo

Note: DisparityReviewGizmo requires upstream disparity vectors to operate correctly.

1. If disparity vectors do not yet exist in the script, you need to insert an O_DisparityGenerator node after
your image sequence to calculate the disparity vectors. See DisparityGenerator for how to do this.

2. Select Ocula > Ocula 4.0 > DisparityReviewGizmo to insert an DisparityReviewGizmo node either after
the O_DisparityGenerator node if you added one in the previous step, or after the image sequence.

3. Connect a Viewer to the O_DisparityReviewGizmo node. Your node tree should now look something like
this:

4. In the DisparityReviewGizmo controls, output is set to stereo by default. You can also change this to
disparityR (right), disparityL (left), or side-by-side. See the Controls section for more information.

5. You can choose different backgrounds to view including image, desaturated and disparity. By default,
the background control is set to desaturated. This displays the image with a desaturated background
and highlights the following:
• Depth changes are highlighted in red.
• Alignment changes are highlighted in green.
• Occluded pixels are highlighted in blue. To detect the occluded regions, you need to insert an O_
OcclusionDetector node upstream in the node tree.

The original left view of a stereo image. The left view with DisparityReviewGizmo node
highlighting any depth changes, alignment changes,

and occluded regions.

6. Adjust the DisparityReviewGizmo controls to get the required overlay. See the following Controls section
for more information.

| DisparityReviewGizmo

150

DisparityReviewGizmo Controls

Output

This is set to stereo by default. When you are using Ocula to update one view to match another, it is advised
to check the quality of the view that has been updated. Set the output to one of the following:

stereo Select stereo to check the quality of both views (left and right) at the same
time.

disparityR (left) Select this to check the quality of the right view and disparityR only.

So the R in disparityR means that it samples from the right view and the
vectors originate in the left view. They define how to match the right view and
rebuild the left just from the right pixels.

disparityL (right) Select this to check the quality of left view and disparityL only.

So the L in disparityL means that it samples from the left view and the vectors
originate in the right view. They define how to match the right view and rebuild
the left just from the right pixels.

side-by-side Select side-by-side to output both views beside each other.

| DisparityReviewGizmo

151

Background

Use the background control to set the image displayed in the background, which the highlights are then
displayed on top of. This is set to desaturated by default.

image Select image to display the original
image in the background.

desaturated Select desaturated to display a
grayscale version of the original
image. This makes the highlights
more visible.

disparity Select disparity to view the
disparity vectors for the selected
view. This is useful for when you
are tuning or editing upstream
disparity as it helps you understand
how the vectors change as well as
allowing you to quality check the
output. Set the disparity Limits
controls to grade the disparity
vectors.

| DisparityReviewGizmo

152

Intensity

Use the intensity control to set the intensity of the background image. To make the quality check highlights
more visible, reduce the intensity control.

xDisparity

You can use the xDisparity Intensity control to set the amount of horizontal disparity changes (depth
changes) displayed. These changes are highlighted in red. This is useful when you are tuning O_
DisparityGenerator to ensure depth changes are correct, or when checking a disparity precomp to determine
if there are any irregularities that need to be corrected.

yDisparity

Use the yDisparity Intensity control to set the amount of vertical disparity changes (alignment changes)
displayed. These changes are highlighted in green. This is useful to check the quality of vertical disparity
when performing a vertical alignment, or to check vertical alignment along with depth to see if there is a
misalignment in the camera rig.

Occlusion

Note: To detect the occluded regions, you need to insert an O_OcclusionDetector node upstream
in the node tree.

You can use the occlusion control to set the amount of occluded regions displayed. In
DisparityReviewGizmo, these changes are highlighted in blue. Occluded regions are pixels that are visible in
one view and not the other. This is useful to quality check occluded regions when rebuilding or updating one
view from another.

Limits

Note: These controls are only available when the background control is set to disparity.

xMinimum Set the minimum parallax used to grade horizontal disparity.

xMaximum Set the maximum parallax used to grade horizontal disparity.

yMinimum Set the minimum pixel offset used to grade the vertical disparity.

yMaximum Set the maximum pixel offset used to grade the vertical disparity.

| DisparityReviewGizmo

153

Set Limits

Click Set Limits to automatically set the minimum and maximum parallax and vertical offset, by sampling the
input disparity at the current frame. You can keyframe the limit settings at different frames in the sequence.

Reset Limits

Click this to reset the disparity limits to the default values.

StereoReviewGizmo

Description

You can use the StereoReviewGizmo node to perform a quick quality check on stereo footage.
StereoReviewGizmo requires upstream disparity vectors. If disparity vectors do not already exist in the
image sequence, the StereoReviewGizmo node calculates disparity.

The StereReviewGizmo can display a difference view to show the differences in the stereo sequence more
clearly. You can set the point of interest using the Parallax controls and you can set a sample subject to
focus on by dragging and dropping the sample widget in the Viewer.

The original left view of a stereo image. The difference view created by the
StereoReviewGizmo node.

You can use StereoReviewGizmo to quickly toggle between the difference view, the stereo view, and the left
and right views to do quick comparisons. Perform a short playback in any view to check temporal stability, or
animate the depth rack to display the difference between the specified near and far settings.

Inputs

O_StereoReviewGizmo has the following inputs:

| StereoReviewGizmo

154

Source A stereo pair of images. StereoReviewGizmo uses disparity vectors.
However, if there are no disparity vectors available, StereoReviewGizmo
calculates the disparity.

To see a table listing the nodes or channels each Ocula node requires in its inputs, see Appendix A: Node
Dependencies.

Using StereoReviewGizmo
1. Select Ocula > Ocula 4.0 > StereoReviewGizmo to insert an StereoReviewGizmo node either after the

O_DisparityGenerator node if you added one, or after the image sequence.
2. Connect a Viewer to the O_StereoReviewGizmo node. Your node tree should now look something like

this:

3. Adjust the Parallax controls to re-converge on points of interest. You can either set the Parallax controls
manually, or you can click Auto Near/Far to automatically set the parallax range. The output control is
automatically updated to far and a difference view is displayed in the Viewer, allowing you to adjust the
settings until the point is aligned. This makes it easier to line up the left and right view.

4. You can then use Toggle Left/Right to review the footage at this point with the left and right output.
5. Use Start Playback to play a 10 frame sequence for the current output. This allows you to review the

point of interest defined by the Parallax controls, for any temporal issues. This control now toggles to
STOP Playback. Click this to restore the timeline.

6. By default, subjectPt is enabled in the StereoReviewGizmo controls. With this enabled, you can drag
and drop the subjectPt widget in the Viewer to select a point of interest. To disable subjectPt, select the
hide checkbox to the right of the subjectPt controls.

7. Adjust the Parallax settings and toggle between different views using the output controls to examine the
differences.

8. Select Start Depth Rack to animate the through depth between the specified near and far settings. See
the following Controls section for more information.

StereoReviewGizmo Controls

Output

Use the output control to select the Viewer output. Select one of the following:

stereo The stereo output shows the input re-converged at the depth defined by

| StereoReviewGizmo

155

slider.

left The left output shows the re-converged left view only.

right The right output shows the re-converged right view only.

slider Select this to show a difference view, re-converged by the Parallax controls.
Adjust the controls until the image becomes aligned on the point of interest.

near Select this to show a difference view, re-converged by the Parallax controls.
Adjust the controls until the image becomes aligned on the point of interest.

subject Select this to show a difference view, re-converged by the Parallax controls.
Adjust the controls until the image becomes aligned on the point of interest.

far Select this to show a difference view, re-converged by the Parallax controls.
Adjust the controls until the image becomes aligned on the point of interest.

Align Input Checkbox

Select the Align input for colour match review checkbox to align the input using disparity to review color
differences only. You can toggle this option on and off to review the color match if the input has not been
aligned, and to detect where there is misalignment in the shot.

View Slider

Use View Slider to change the output to show the difference view, set by the Parallax – slider control.

Toggle Left/Right

Click Toggle Left/Right multiple times to toggle between the left and right views. You can use this to review
the footage at a particular point of interest, after re-converging using the Parallax – slider control.

Start Playback

Use Start Playback to play a 10 frame sequence of the current output. You can use this to review temporal
stability. After you click the Start Playback control, it toggles to STOP Playback; press this to restore the
timeline.

Note: You can use Ctrl/Cmd + click on the Viewer timeline to change the playback range.

| StereoReviewGizmo

156

Start Depth Rack

You can click Start Depth Rack to activate a FrameHold and animate through depth between the defined
near and far settings, showing the image difference. You can use this to check for alignment errors and color
differences across depth. After you have press the Start Depth Rack control, it toggles to STOP Depth
Rack; press this to restore the timeline and disable the FrameHold.

Note: You can manually scrub through the depth changes by dragging the Parallax – slider
control.

Parallax Controls

Use the slider, near, subject and far controls to zero disparity and re-converge at a point of interest. When
you adjust one of these controls, the output is automatically updated to reflect it. For example, when you
adjust the near control, the output control is updated to near and a difference view is displayed in the Viewer.

The difference view showing the automatically
specified near and far controls.

The difference view with the Parallax
controls greatly increased.

Adjust the Parallax controls until the image is aligned at the point of interest. You can then use the Toggle
Left/Right control to switch between the input views at this point to review the input footage. You can also
use the Start Playback control to review the input at this depth.

Setup

Auto Near/Far

You can use the Auto Near/Far control to automatically set the near and far parallax controls by sampling
the input disparity at the current frame. You can optionally key this at different frames in the shot.

subjectPt

By default, subjectPt is enabled. To disable it, select the hide checkbox to the right of the subjectPt controls.
Use this control to set the subject position at the current frame. Adjust the position to sample the input

| StereoReviewGizmo

157

disparity and automatically set the subject parallax. You can adjust the position by either entering the x and y
coordinates of the point, or by dragging and dropping the subjectPt widget in the Viewer.

Note: The subject point must be defined in the left view.

Bake Samples

Click Bake Samples to automatically sample the subject disparity at the animated sample position. You can
use this control when you are importing a track as the sample point in the left view. Use Bake Samples to
sample the subject disparity and parallax for a specific frame range.

Export Controls

Create Subject Transform

Use this control to export a Transform node to align left and right views, using sampled subject disparity. First
enable the sample subject checkbox to sample the subject disparity. You can then use Create Subject
Transform to create a separate transform node that aligns the left and right views to quality check the
subject.

You can create a transform for a tracked point by setting the track on the sample point and using Bake
Samples. The track has to be defined for the left view.

Views

Use the Views dropdown to set how the transform is applied, to line up the subject in the left and right view,

| StereoReviewGizmo

Appendix A: Node Dependencies
This table lists the data each Ocula node requires in its inputs (in addition to a stereo pair of images).

Node and Settings Required Input Data or Channels

Solve
Data

Disparity
Map

Occlusion
Mask

Vector
Generator

Depth
Channel

Stereo
Camera

O_Solver

All modes

O_DisparityGenerator

With Alignment = 0 (the
default setting)

With Alignment > 0

O_OcclusionDetector

All modes

O_ColourMatcher

All modes

O_FocusMatcher

All modes

O_VerticalAligner

Global mode

Local mode

O_NewView

158

159

Node and Settings Required Input Data or Channels

Solve
Data

Disparity
Map

Occlusion
Mask

Vector
Generator

Depth
Channel

Stereo
Camera

All modes

O_InteraxialShifter

All modes

O_VectorGenerator

All modes

O_Retimer

No Motion input

O_DepthToDisparity

All modes

O_DisparityToDepth

All modes

O_DisparityViewer

All modes

O_MultiSample

All modes

|

Appendix B: External Software
This table lists third-party libraries used in Ocula, along with their licenses.

Library Description License

Boost Source code
function / template
library

Boost Software License - Version 1.0 - August 17th, 2003

Permission is hereby granted, free of charge, to any person or
organization obtaining a copy of the software and accompanying
documentation covered by this license (the “Software”) to use,
reproduce, display, distribute, execute, and transmit the Software, and
to prepare derivative works of the Software, and to permit third-parties
to whom the Software is furnished to do so, all subject to the following:

The copyright notices in the Software and this entire statement,
including the above license grant, this restriction and the following
disclaimer, must be included in all copies of the Software, in whole or in
part, and all derivative works of the Software, unless such copies or
derivative works are solely in the form of machine-executable object
code generated by a source language processor.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUTWARRANTY OF
ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
TO THEWARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO
EVENT SHALL THE COPYRIGHT HOLDERS OR ANYONE
DISTRIBUTING THE SOFTWARE BE LIABLE FOR ANY DAMAGES
OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR
OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTIONWITH
THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Expat XML parser Copyright © 1998, 1999, 2000 Thai Open Source Software Center Ltd
and Clark Cooper

Copyright © 2001, 2002, 2003, 2004, 2005, 2006 Expat maintainers.

Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the

160

161

Library Description License

“Software”), to deal in the Software without restriction, including without
limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to
whom the Software is furnished to do so, subject to the following
conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUTWARRANTY OF
ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
TO THEWARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT
SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR
ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTIONWITH THE SOFTWARE OR THE USE
OR OTHER DEALINGS IN THE SOFTWARE.

FreeType Font support Portions of this software are copyright © 2008 The FreeType Project

(www.freetype.org). All rights reserved.

FTGL OpenGL support FTGL - OpenGL font library

Copyright © 2001-2004 Henry Maddocks ftgl@opengl.geek.nz

Copyright © 2008 Sam Hocevar sam@zoy.org

Copyright © 2008 Sean Morrison learner@brlcad.org

Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the
“Software”), to deal in the Software without restriction, including without
limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to
whom the Software is furnished to do so, subject to the following
conditions

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUTWARRANTY OF
ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
TO THEWARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT

|

162

Library Description License

SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR
ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTIONWITH THE SOFTWARE OR THE USE
OR OTHER DEALINGS IN THE SOFTWARE.

VXL Computer vision Copyright © 2000-2003 TargetJr Consortium

GE Corporate Research and Development (GE CRD)

1 Research Circle

Niskayuna, NY 12309

All Rights Reserved

Reproduction rights limited as described below.

Permission to use, copy, modify, distribute, and sell this software and its
documentation for any purpose is hereby granted without fee, provided
that (i) the above copyright notice and this permission notice appear in
all copies of the software and related documentation, (ii) the name
TargetJr Consortium (represented by GE CRD), may not be used in any
advertising or publicity relating to the software without the specific, prior
written permission of GE CRD, and (iii) any modifications are clearly
marked and summarized in a change history log.

THE SOFTWARE IS PROVIDED “AS IS” ANDWITHOUTWARRANTY
OF ANY KIND, EXPRESS, IMPLIED OR OTHERWISE, INCLUDING
WITHOUT LIMITATION, ANYWARRANTY OF MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL
THE TARGETJR CONSORTIUM BE LIABLE FOR ANY SPECIAL,
INCIDENTAL, INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY
KIND OR ANY DAMAGESWHATSOEVER RESULTING FROM LOSS
OF USE, DATA OR PROFITS, WHETHER OR NOT ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES, OR ON ANY THEORY OF
LIABILITY ARISING OUT OF OR IN CONNECTIONWITH THE USE
OR PERFORMANCE OF THIS SOFTWARE.

|

	Introduction
	Example Images
	Installation
	Installation on Windows
	Installation on Mac
	Installation on Linux
	Licensing
	Licensing on a Single Machine
	Licensing over a Network
	Other Foundry Products

	DisparityGenerator
	Description
	Inputs
	Generating Disparity Maps
	O_DisparityGenerator Controls
	O_DisparityGenerator Example

	OcclusionDetector
	Description
	Inputs
	Creating and Editing Occlusion Masks
	O_OcclusionDetector Controls
	O_OcclusionDetector Example

	NewView
	Description
	Inputs
	Creating a New View
	O_NewView Controls
	O_NewView Example

	ColourMatcher
	Description
	Inputs
	Performing a Color Match
	O_ColourMatcher Controls
	O_ColourMatcher Example

	FocusMatcher
	Description
	Inputs
	Performing a Focus Match
	O_FocusMatcher Controls
	O_FocusMatcher Example

	Solver
	Introduction
	Inputs
	Solving the Camera Relationship
	O_Solver Controls
	O_Solver Example

	VerticalAligner
	Description
	Inputs
	Using O_VerticalAligner
	O_VerticalAligner Controls
	O_VerticalAligner Example

	VectorGenerator
	Description
	Inputs
	Generating Motion Vectors
	O_VectorGenerator Controls
	O_VectorGenerator Example

	Retimer
	Description
	Inputs
	Using O_Retimer
	O_Retimer Controls
	O_Retimer Example

	InteraxialShifter
	Description
	Inputs
	Using O_InteraxialShifter
	O_InteraxialShifter Controls

	DepthToDisparity
	Description
	Inputs
	Generating a Disparity Map from Depth
	O_DepthToDisparity Controls
	O_DepthToDisparity Example

	DisparityToDepth
	Description
	Inputs
	Using O_DisparityToDepth
	O_DisparityToDepth Controls
	O_DisparityToDepth Example

	MultiSample
	Description
	Inputs
	Using O_MultiSample
	O_MultiSample Controls
	O_MultiSample Example

	Quality Control Tools
	Description
	DisparityViewer
	DisparityReviewGizmo
	StereoReviewGizmo

	Appendix A: Node Dependencies
	Appendix B: External Software

