
TECHNICAL GUIDE
VERSION 2.0v5

Katana™ Technical Guide. Copyright © 2015 The Foundry Visionmongers Ltd. All Rights Reserved. Use of this Technical Guide and the
Katana software is subject to an End User License Agreement (the "EULA"), the terms of which are incorporated herein by reference. This
Technical Guide and the Katana software may be used or copied only in accordance with the terms of the EULA. This Technical Guide,
the Katana software and all intellectual property rights relating thereto are and shall remain the sole property of The Foundry
Visionmongers Ltd. ("The Foundry") and/or The Foundry's licensors.

The EULA can be read in the Katana User Guide.

The Foundry assumes no responsibility or liability for any errors or inaccuracies that may appear in this Technical Guide and this
Technical Guide is subject to change without notice. The content of this Technical Guide is furnished for informational use only.

Except as permitted by the EULA, no part of this Technical Guide may be reproduced, stored in a retrieval system or transmitted, in any
form or by any means, electronic, mechanical, recording or otherwise, without the prior written permission of The Foundry. To the extent
that the EULA authorizes the making of copies of this Technical Guide, such copies shall be reproduced with all copyright, trademark
and other proprietary rights notices included herein. The EULA expressly prohibits any action that could adversely affect the property
rights of The Foundry and/or The Foundry's licensors, including, but not limited to, the removal of the following (or any other copyright,
trademark or other proprietary rights notice included herein):

Katana™ software © 2015 The Foundry Visionmongers Ltd. All Rights Reserved. Katana™ is a trademark of The Foundry Visionmongers
Ltd.

Sony Pictures Imageworks is a trademark of Sony Pictures Imageworks.

Mudbox™ is a trademark of Autodesk, Inc.

RenderMan ® is a registered trademark of Pixar.

In addition to those names set forth on this page, the names of other actual companies and products mentioned in this Technical Guide
(including, but not limited to, those set forth below) may be the trademarks or service marks, or registered trademarks or service marks,
of their respective owners in the United States and/or other countries. No association with any company or product is intended or
inferred by the mention of its name in this document.

Linux ® is a registered trademark of Linus Torvalds.

The Foundry

5 Golden Square,

London,

W1F 9HT

Rev: 18 September 2015

Contents
Preface
Terminology 12

Katana For The Impatient
What Is Katana? 14

A Short History of Katana 15

Scene Graph Iterators 16

The Katana User Interface 16

Katana in Look Development and Lighting 17

Technical Docs and Examples 18

Scene Attributes and Hierarchy
Common Attributes 20

Generating Scene Graph Data 21

Locations and Attributes
Inheritance Rules for Attributes 24

Setting Group Inheritance using the API 24
Light Linking 24

Katana Launch Modes
Launching Katana 26

Interactive Mode 26
Batch Mode 27
Script Mode 34
Shell Mode 34
Querying Launch Mode 35

Nodegraph API
Nodegraph API Basics 37

Creating a New Node 37
Referencing a Node 38

Referencing a Parameter 38
Node Position 38
Node Naming 39
Getting the Parameters of a Node 39
Setting the Parameters of a Node 40
Input and Output Ports 40

Dynamic Parameters 41

Duplicating Nodes 45
Serialize to XML 45
Deserialize 45
Printing An XML Tree 45

Group Nodes 46
A Group Node Example 47
Send and Return Ports 48
Return Port Example 48
Send Port Example 49

Physical and Logical Connections 50
Physical and Logical Source 52

User Parameters 54
Top Level User Parameters 55
Nested User Parameters 55
Parameter Hints 55

Parameter Expressions 56
Python 56

CEL 57

Enableable Parameter Groups 57

Dynamic Arrays for PRMan Shader Parameters 58

Shelf Item Scripts
Running Shelf Item Scripts from the UI 60

Types of Shelves 61
Built-in Shelves 62
User-defined Shelves 62
Additional Shelves 62

Directory Structure for Shelf Item Scripts 62

Node-Specific Shelf Item Scripts 63
Pre-Defined Variables in Node-Specific Shelf Item Scripts 63
Targeting Node-Specific Shelf Item Scripts to Specific Types of Nodes 64

Docstrings of Shelf Item Scripts 64

Op API
Op API Basics 65

The OpTree 66

Core Concepts with Geolib3 67
Geolib3: Into the Details 67
Differences Between Geolib2 and Geolib3 67
The Runtime 67
Ops 68
Clients 70

The Op API Explained 71
The Cook Interface 71
Op Arguments 72
Scene Graph Creation 74
Reading Scene Graph Input 77
CEL and Utilities 80

Integrating Custom Ops 81
Building Ops 81
GenericOp 81
The NodeTypeBuilder Class 82
Op Toolchain 83

Client Configuration 83

Advanced Topics 84
Caching 84

ScenegraphAttr Porting Guide 86
Introduction 86
Overview of Changes 86
Porting from 1.x ScenegraphAttr to 2.0 ScenegraphAttr 87
Porting from 1.x ScenegraphAttr to 2.0 FnAttribute 88

Op Best Practices Cheat Sheet 89

NodeTypeBuilder
Introduction 91

Creating a New Node 91
The buildOpChain Function in Detail 91

Examples of NodeTypeBuilder 92
RegisterMesserNode.py 92
SubdividedSpaceOp.py 92
RegisterSphereMakerSGGNode.py 92

How to Install Scripts that Use the NodeTypeBuilder 93

Super Tools
Registering and Initialization 95
Node 95
Editor 96
Examples 98

Scene Graph Generator Plug-Ins
Running an SGG Plug-in 101

ScenegraphGeneratorSetup 101
ScenegraphGeneratorResolve 102
Generated Scene Graph Structure 103

SGG Plug-in API Classes 104
ScenegraphGenerator 105
Registering an SGG Plug-in 109
ScenegraphContext 110
Providing Error Feedback 115

Porting Plug-ins
Introduction 119

Implications for Existing Plug-ins 119

Ops Versus Scene Graph Generators 119

Ops Versus Attribute Modifiers 120

Defining the getAttr and getOutputAttr Functions 120

Recompiling Existing SGG and AMP Plug-ins 121
Source Locations 121
Additional Build-ins 121
Behavioral Differences for SGGs 121
Behavioral Differences for AMPs 122

FAQ for Plug-in Porting 122

Message Logging
Message Levels 125

Loggers 125
Root Logger 125
Custom Logger 126

Logging Exceptions 127

Asset Management System Plug-in API

Concepts 128
Asset ID 128
Asset Fields 129
Asset Attributes 129
Asset Publishing 129
Transactions 129

Creating an Asset Plug-in 130
Core Methods 130

Publishing an Asset 131
createAssetAndPath() 131
postCreateAsset() 132
Examples 132

Asset Types and Contexts 133

Accessing an Asset 134

Additional Methods 134
reset() 135
resolveAllAssets() 135
resolvePath() 135
resolveAssetVersion() 135
createTransaction() 136
containsAssetId() 136
getAssetDisplayName() 136
getAssetVersions() 136
getUniqueScenegraphLocationFromAssetId() 136
getRelatedAssetId() 137
getAssetIdForScope() 137
setAssetAttributes() 137
getAssetAttributes() 137

Top Level Asset API Functions 138

LiveGroup Asset Functions 138

Extending the User Interface with Asset Widget Delegate 139
Configuring the Asset Browser 140

The Asset Control Widget 141
Implementing A Custom Asset Control Widget 141
Asset Render Widget 142
Additional Asset Widget Delegate Methods 142
addAssetFromWidgetMenuItems() 142
shouldAddStandardMenuItem() 143
shouldAddFileTabToAssetBrowser() 143
getQuickLinkPathsForContext() 143

Locking Asset Versions Prior to Rendering 143

Setting the Default Asset Management Plug-in 143

The C++ API 144

Python Processes and Geolib3

Render Farm API
What scripts work with the Farm API? 147

Farm XML Example 147

The onStartup Callback 147

Farm Menu Options 148
The Util Menu 148
Render Farm Pop-Up Menu Option 148
Farm Node Parameters 149
Get Sorted Dependency List 150
Get Sorted Dependency List Keys 150

Render Dependencies 151

Render Passes and Outputs 152

File Browser Example 153
Custom Dialog 154

Errors, Warnings and Scene Validation 154
Additional Utils 155

Custom Node Graph Menus
LayeredMenuAPI Overview 156

Creating a Custom Node Graph Menu Plug-in 157

Example of Layered Menu Plug-in 159
CustomLayeredMenuExample 159

Typed Connection Checking
Shader Outputs 160

Shader Inputs 161
Logical Inputs 161

Args Files in Shaders
Edit Shader Interface Interactively in the UI 164

Enabling Editing the User Interface 164
Edit Main Shader Description 165

Export Args File 165
Widget Types 165
Widget Options 169
Conditional Visibility Options 169
Conditional Locking Options 170
Editing Help Text 170
Grouping Parameters into Pages 170
Co-Shaders 171
Co-Shader Pairing 171
Example Args File 172
Args Files for Render Procedurals 173

presetsGroup 175
Defining presetsGroup Values 175

UI Hints for Plug-ins Using Argument Templates 177
Usage in Python Nodes 177
Usage in C++ Nodes 177

Customizing the GafferThree
Creating a Custom GafferThree Package Class 180

Package Class 180
Edit Package Class (Optional) 181
UI Delegate Class 181
Package Initialization File 181
Example of Implementing a Custom GafferThree Package Class: Sky Dome 182

Registering Callbacks 189

Creating New Importomatic Modules
Importomatic Core Files 190

Where to Place New Modules 190

Minimum Implementation 190
Importomatic Camera Asset Example 191

Custom Hierarchy Structures and Extensions 193
Creating a Tree Structure 194
Updating the Node Graph 195
Additional Context Menu Actions 195
Registering the GUI 196
Adding Importomatic Items Using a Script 196

Custom Render Resolutions
Using the UI 198

Modifying the Resolutions XML 198

Using a Custom Resolutions XML 199

Using the Python API 199

Managing Keyboard Shortcuts and the
shortcuts.xml File
Example of a shortcuts.xml File 201

Custom Node Colors
Flavors and Rules 202

Editing Rules 203
Editing Flavors 203
Updating Node Colors 204
Making Updates Persist 205

Flavor API 206

Appendix A: Custom Katana Filters
Scene Graph Generators 210

Attribute Modifiers 211

Appendix B: Other APIs
File Sequence Plug-in API 212

Attributes API 212

Attribute History 212

LiveRenderAPI 212

Render Farm API 213

Importomatic API 213

Gaffer Profiles API 213

Viewer Manipulator API 213

Viewer Modifier API 213

Viewer Proxy Loader API 213

Renderer API 214

Appendix C: Glossary

Glossary 215
Node 215
Asset Fields 215
Asset ID 215
Asset Widget Delegate 215
Widget 215
Hint 216
Katana Scene Graph 216
Katana Node Graph 216
Look File 216
Node Parameter 216
Scene Graph Attribute 216
Scene Graph Location 216

Appendix D: Standard Attributes
Key Locations 217

Location Type Conventions 221

Appendix E: PRMan Technical Notes
Use of the "id" Identifier Attribute 245

Appendix F: AttributeScript Differences Between
Katana 1 and Katana 2

APIs 249
Viewer Proxies 250
Attribute History 251
Handling of Font Preferences 251
Documentation 251
Changes in Third-Party Library Dependencies 251

TECHNICAL GUIDE

Preface
The aim of this guide is to provide an understanding of what Katana is, how it works, and how it can
be used to solve real-world production problems. It is aimed at users who are familiar with technical
content, such as plug-in writers, R&D TDs, pipeline engineers, and effects uber-artists.

Terminology
To avoid confusion certain terminology conventions are used in this document. These naming conventions are also
those used in Katana itself.

A recipe in Katana is an arrangement of instructions - in the form of connected nodes - to read, process, and
manipulate a 3D scene or image data. A Katana project can be made up of any number of recipes, and development
of these recipes revolves around two tabs: the Node Graph and Scene Graph tabs.

Other keys terms include:

• Nodes - these are the units used in the Katana interface to build the 'recipe' for a Katana project.

• Parameters - these are the values on each node in Katana's node graph. The parameter values on any node can be
set interactively in the graphical user interface, or can be set using animation curves or expressions

• Scene Graph - this is a hierarchical set of data that can be presented to a renderer or any output process.
Examples of data that can be held in the scene graph can include geometry, particle data, lights, instances of
shaders and global option settings for renderers.

12

TECHNICAL GUIDE 13

• Locations - the units that make up the scene graph hierarchy. Many other 3D applications refer to these as nodes,
but we refer to them as locations to avoid confusion with the nodes used in the node graph.

PREFACE |

TECHNICAL GUIDE

Katana For The Impatient
This guide starts at the point Katana is installed, and licensed. For more information on installation
and licensing, see the Installation and Licensing chapter in the Katana User Guide.

What Is Katana?
Essentially Katana is a system that allows you to define what to render by using filters that can create and modify 3D
scene data. If you're familiar with concepts such as RenderMan's Procedurals and riFilters, think of Katana as being
like Procedurals and riFilters on steroids, with a node based interface to define which filters to use, and interactively
inspect their results.

Using filters you can arbitrarily create and modify scene data. You can, for example:

• Bring 3D scene data in from disk, such as from an Alembic geometry cache or camera animation data.

• Create a new instance of a material, such as a RenderMan or Arnold shader.

• Create cameras and lights.

• Manipulate transforms on cameras, lights and other objects.

• Use rule based expressions to set what materials are assigned to which objects.

• Isolate parts of the scene for different render passes.

• Merge scene components from a number of partial scenes.

• Specify which outputs - such as RenderMan AOVs - you want to use to render multiple- passes in a single renderer.

• Use Python scripting to specify arbitrary manipulation of attributes at any location in the scene hierarchy.

14

TECHNICAL GUIDE 15

The scene data to be delivered to the renderer is described by a tree of filters, and the filters are evaluated on
demand in an iterative manner. Katana is designed to work well with renderers that are capable of deferred recursive
procedurals, such as RenderMan and Arnold. Using recursive procedurals, the tree of filters is handed directly to the
renderer, with scene data calculated on demand, as the renderer requests it (lazy-evaluation). This is typically done
by a procedural inside the renderer that uses Katana libraries, during render, to generate scene data from the filter
tree.

Katana can also be used with renders that don't support procedurals or deferred evaluation, by running a process
that evaluates the scene graph and writes out a scene description file for the renderer. This approach is without the
benefits of deferred evaluation at render time, and the scene description file may be very large.

NOTE: Since Katana's filters deliver per-frame scene data in an iterable form, Katana can also be used to
provide 3D scene data for processes other than renderers.

At its core, Katana is a system for the arbitrary creation, filtering and processing of 3D scene data, with a user
interface primarily designed for the needs of look development and lighting. Katana is also designed for the needs of
power users, who want to create custom pipelines and manipulate 3D scene data in advanced ways.

A Short History of Katana
The problems Katana was originally designed to solve were of scalability and flexibility. How to carry out look
development and lighting in a way that could deal with potentially unlimited amounts of scene data, and be flexible
enough to deal with the requirements of modern CG Feature and VFX production for customized work-flows, and
capability to edit or override anything.

KATANA FOR THE IMPATIENT | A SHORT HISTORYOF KATANA

TECHNICAL GUIDE 16

Katana's initial focus was on RenderMan, particularly how to harness the power of RenderMan's recursive
procedurals. In a RenderMan procedural it is possible to perform arbitrary creation of scene data on demand, but
their full capabilities are rarely exploited.

The Katana approach is to have a single procedural powerful enough to handle arbitrary generation and filtering.
Essentially a procedural given a custom program in the form of a tree based description of filters. At render time,
Katana's libraries are called from within this procedural to calculate scene data as the renderer demands it.

Scene Graph Iterators
The key to the way Katana executes, filters, and delivers scene data on demand, is that scene data is only ever
accessed through iterators. These iterators allow a calling process (such as a renderer) to walk the scene graph and
examine any part of the data on request. Since that data can be generated as needed, a large scene graph state
doesn't have to be held in memory.

In computer science terms, it is the responsibility of the calling process to maintain its own state. Katana provides a
functional representation of how the scene graph should be generated, that can be statelessly lazily-evaluated.

At any location in the scene hierarchy Katana provides an iterator that can be asked:

• What named attributes there are at that location?

• What are the values for any named attribute (values are considered to be vectors of time sampled data)?

• What are the child and sibling locations (if any)?

An understanding of Katana iterators is key to writing new Katana plug-ins to generate and modify scene data.
Understanding how scene data is calculated on-demand is important for understanding how to make good, efficient
use of Katana. In particular, how input file formats, such as Alembic - which can supply data efficiently, on demand -
are potentially much better to use with Katana than formats that have to load all data in one pass.

The Katana User Interface
Katana allows users to create recipes for filters, using a familiar node based user interface (UI). In the UI the user can
also interactively examine the scene at any point in the node tree, using the same filters that the renderer runs at
render time (but executed in the interface).

When running through the UI, filters are only run on the currently exposed locations in the scene graph hierarchy.
This means the user can inspect the results of filters on a controlled subset of the scene.

The way users can view the scene generated at any node is similar to the way users of 2D node-based compositing
packages can view composited frames at any node. For users accustomed to conventional 3D packages that have a
single 3D scene state it can be a surprise that there is essentially a different 3D scene viewable at each node. Instead
of the scene graph being expanded as rays hit bounding boxes it is iterated as the user opens up the scene graph

KATANA FOR THE IMPATIENT | SCENEGRAPH ITERATORS

TECHNICAL GUIDE 17

hierarchy in the UI. Complexity is controlled by only executing filters on locations in the scene graph that the user
has expanded.

A scene does not need to be entirely loaded in order to be lit. In Katana, you create recipes that allow scene data to
be generated, rather than directly authoring the scene data itself. It is only the renderer that needs the ability to see
all of the scene data, and then only when it needs it. Katana provides access to any part of the scene data if you need
to work on it. You can set an override deep in the hierarchy or, examine what attribute values are set when the filters
run, but you can work with just a subset of the whole scene data open at a time. This is key to how Katana deals with
scenes of potentially unlimited complexity.

NOTE: As Katana uses procedurally defined iterators, it's possible to define an infinitely sized scene graph,
such as a scene graph defining a fractal structure. An infinite scene graph can never be fully expanded, but
you can still work with it in Katana, opening it to different depths, and using rule based nodes to set up
edits and overrides.

NOTE: Katana 2.0 uses an application-wide Qt style sheet to apply font preferences to Qt widgets. Custom
widgets that use font metrics before widgets are shown need to be modified to add
QWidget.ensurePolished() calls before working with QtGui.QFontMetrics instances.

Katana in Look Development and Lighting
Katana's scene generation and filtering are presented as a primary artist facing tool for look development and
lighting by having filter functions that allow you to perform all of the classic operations carried out in look
development and lighting, such as:

• Creating instances of shaders, or materials, out of networks of components

• Assigning shaders to objects

• Creating lights

• Moving lights

• Changing visibility flags on objects

• Defining different render passes

Katana's node-based interface provides a natural way to create recipes of which filters to use. Higher level operations
that may require a number of atomic level filters working together can be wrapped up in a single node so that the
final user doesn't have to be concerned with every individual fine-grain operation. Multiple nodes can also be
packaged together into single higher level compound nodes (Groups, Macros and Super Tools).

KATANA FOR THE IMPATIENT | KATANA IN LOOK DEVELOPMENT AND LIGHTING

TECHNICAL GUIDE 18

Technical Docs and Examples
Technical documents and reference examples of specific parts of Katana can be found in the Katana installation in
${KATANA_ROOT}/docs/

KATANA FOR THE IMPATIENT | TECHNICALDOCS AND EXAMPLES

TECHNICAL GUIDE

Scene Attributes and Hierarchy
A key principle to working with Katana is that it doesn't matter where scene graph data comes from,
all that matters is what the attribute values are. For example geometry and transforms can come
from external files such as Alembic, but can also be created by internal nodes, or even
AttributeScripts that use Python to set attribute values directly.

In principle you could create any scene with just a combination of LocationCreate and AttributeScript nodes, though
you'd probably have to be a bit crazy to set your scenes up that way!

The only data handed down the tree from one filter to the next is the scene graph data provided by iterators, such
as:

• 3D transforms, such as translate, rotate, scale, or 4x4 homogeneous transformation matrices.

• Camera data, such as projection type, field of view, and screen projection window.

• Geometry data, such as vertex lists.

• Parameter values to be passed to shaders.

• Nodes and connections for a material specified using a network.

As all data is represented by attributes in the scene graph, any additional data needed by the renderer, or any data
needed by other, downstream, Katana nodes, must also be stored as attributes. Examples include:

• Lists of available lights and cameras.

• Render global settings such as which camera to use, which renderer to use, image resolution, and the shutter open
and close times.

• Per object settings such as visibility flags.

• Definitions of what renderer outputs (AOVs) are available.

NOTE: When constructing attributes, nodes, or scene graph locations of your own, ensure that you adhere
to Katana's naming rules.

• For nodes, this includes using only alphanumeric characters and underscores, and beginning the name
with an alphabetic character or an underscore. This is enforced at the API level.

• For ports, this includes using only alphanumeric characters, underscores, and dots, and beginning the
name with an alphabetic character or an underscore. This is enforced at the API level.

• For scene graph locations, this includes using only alphanumeric characters, underscores, and dots, but
unlike with ports and nodes, you can begin the name of the scene graph location with any valid character.
This is not enforced at the API level.

These requirements are broadly similar to Python's naming rules. For more information, refer to
https://docs.python.org/2/reference/lexical_analysis.html#identifiers.

19

https://docs.python.org/2/reference/lexical_analysis.html#identifiers

TECHNICAL GUIDE 20

Common Attributes
Attributes in the hierarchy can make use of inheritance rules. If an attribute isn't set at a location, it can inherit the
value for that attribute set at a parent location.

The /root location holds settings needed by the renderer, such as flags to be passed to the command that launches
the renderer, or global options. Common settings for any renderer include:

• renderSettings.renderer

Which renderer to use.

• renderSettings.resolution

The image resolution for rendering.

• renderSettings.shutterOpen and renderSettings.shutterClose

Shutter open and close times for motion blur (in frames relative to the current frame)

Depending which renderer plug-ins you have installed, you also see renderer-specific settings such as:

• prmanGlobalStatements

For Pixar's RenderMan specific global settings

• arnoldGlobalStatements

For Arnold specific global statements

Collections defined in the current project are also held as attributes at /root, in the collections attribute group.

By convention attributes set at /root are set to be non-inheriting. In Katana /root/world is used as the base location
of the object hierarchy, where you can set default values you want inherited by all objects in the scene.

Common attributes at any location in the world hierarchy include:

• xform: the transformations (rotation, scale, translate, or homogenous transformation matrices) to be applied at
this level in the hierarchy.

• materialAssign: the path to the location of any material to be assigned at this location in the hierarchy.

• Renderer specific, per-object, options such as tessellation settings, and trace visibility flags. These are held in render
specific attribute groups such as prmanStatements and arnoldStatements.

Common attributes at geometry, camera, and light locations include:

• Vertex-lists, UV co-ordinates, and topological data.

For geometric objects.

• FOV and projection type.

For cameras and lights.

• geometry.arbitrary is used to hold arbitrary data to be sent to the renderer together with geometry, such as
primvars in RenderMan or user data in Arnold.

SCENE ATTRIBUTES AND HIERARCHY | COMMON ATTRIBUTES

TECHNICAL GUIDE 21

Common attributes at material nodes include:

• Material.

For declarations of shaders and their parameters.

Location type, such as camera, light or polygon mesh, is held by an attribute called type. Common values for type
include:

• group for general group locations in the hierarchy.

• camera for cameras.

• light for lights.

• polymesh for a polygon mesh.

• subdmesh for a sub-division surface.

• nurbspatch for a NURBS surface.

• material for a location holding a material made of monolithic shaders.

• network material for a location holding a material defined by network nodes.

• renderer procedural for a location to run a renderer specific procedural such as a RenderMan procedural.

• scenegraph generator for a location to run a Katana Scene Graph Generator procedural.

NOTE: Attributes are also used to store data about procedural operations that need to be run
downstream, such as AttributeScripts deferred to run later in the node graph, or the set-ups for Scene
Graph Generators and Attribute Modifiers. For example, if you create an AttributeScript and ask for it to
be run during MaterialResolve, all the necessary data about the script is held in an attribute group called
scenegraphLocationModifiers.

Generating Scene Graph Data
The principle end-user interface in Katana is the Node Graph. Here you can create networks of nodes to - among
other things - import assets, create materials and cameras, set edits and overrides, and create multiple render
outputs in a single project. Node parameters can be animated, set using expressions, and manipulated in the Curve
Editor and Dope Sheet. The Node Graph can have multiple outputs, and even separate, disconnected parts, with
potentially different parameter settings at any time on the timeline.

When you evaluate scene data, the nodes are used to create a description of all necessary filters. The resulting filter
tree has a single root, and represents the recipe of filters needed to create the scene graph data for the current
frame, at your chosen output node.

It is this filter tree description that is handed to output processes such as RenderMan or Arnold. This is done by
handing a serialized description of the filter tree, as a parameter, to the output process. For example, as a string
parameter to a RenderMan or Arnold procedural.

SCENE ATTRIBUTES AND HIERARCHY | GENERATING SCENEGRAPH DATA

TECHNICAL GUIDE 22

The generation of scene graph data uses the serialized description of the filter tree to create scene graph iterators.
The iterators are used to walk the scene graph and access attribute values at any desired scene graph locations. This
approach - using iterators - is the key to Katana's scalability, and how scene graph data can be generated on demand.

Using the filter tree, the first base iterator at /root is created. This is interrogated to get:

• A list of the named attributes at that location.

• The value of any particular named attribute or group of attributes. For animated values there may be multiple time
samples, with any sample relevant to the shutter interval being returned.

• New iterators for child and sibling locations to walk the hierarchy.

This process is the same as used inside the UI to inspect scene graph data when using the Scene Graph, Attributes
and Viewer tabs. In the UI, the same filters and libraries that would be used while rendering are called. So when you
select and node, expand the scene graph, and inspect the results, you're looking at the scene graph data that would
be generated at that node, at the current frame. From a TD's perspective the UI is a visual programming IDE for
setting up filters, then running those filters to see how they affect the render-time scene graph data.

The main API to create and modify elements within the Node Graph is a Python API called NodegraphAPI, and the
main ones to create new filters are the C++ APIs Scene Graph Generator API, and Attribute Modifier Plug-in API.

SCENE ATTRIBUTES AND HIERARCHY | GENERATING SCENEGRAPH DATA

TECHNICAL GUIDE

Locations and Attributes
The Scene Graph tab in Katana consists of a hierarchy of scene graph Locations. Each location is of a
specific type depending on the data it represents. Renderer plug-ins have special behaviors when
these types are encountered during scene graph traversal. Furthermore, the Viewer uses this
information to determine how to display cameras, lights, or geometry, for example, as a polygonal
mesh or point cloud.

Scene graph locations have additional attributes attached to them. These attributes are organized in a hierarchy of
groups and store the information in various data structures. A location of type polymesh, for example, follows
certain attribute conventions to form such a mesh (how vertices, faces, and normals are defined).

Useful facts about behavior in Katana:

• When the renderer traverses the scene graph, all locations that have an unknown type are treated as a group.

• Scene graph locations in Katana are duck typed. "If it looks like a polymesh, and acts like a polymesh, it's a
polymesh".

The chapter Appendix D: Standard Attributes provides a list of Standard Location Types and Key Locations used in
Katana. Location Types in Bold are recognized by the Viewer tab.

Attribute Types

Attribute types can be interrogated by Ctrl+middle-mouse dragging an example of an attribute from the Attributes
tab to the Python tab, and printing the XML. For example:

1. In a Katana recipe with at least one material location in the Scene Graph tab, select a scene graph material
location.

2. In the material’s Attributes tab, expand material > SurfaceShader, then Ctrl+middle-drag the Kd_color
attribute onto the Python tab, and print the results of getXML(). You should see XML describing the type, and
tuple size of the Kd_color attribute. For example:
print(NodegraphAPI.GetNode('Material').\

23

TECHNICAL GUIDE 24

getParameter('shaders.\

prmanSurfaceParams.Kd_color.value').getXML())

Returns:
<numberarray_parameter name="value" size="3" tupleSize="3">

<number_parameter name="i0" value="1"/>

<number_parameter name="i1" value="1"/>

<number_parameter name="i2" value="1"/>

</numberarray_parameter

Observe that Kd_color is a tuple made up of 3 entries, which are all floats in the 0 to 1 range. You can construct an
attribute of this type using the following Python:
yourColor = PyScenegraphAttr.FloatAttr([1.0, 1.0, 1.0])

Inheritance Rules for Attributes
By default, attributes are inherited from parent locations. However, attributes can be overwritten at specified
locations where the values differ from ones defined higher up in the hierarchy, as used for Light Linking.

Some attributes are not inherited, for instance the globalStatements of a renderer defined at /root or the globals
defined at /root/world. Another example is the xform attribute, where it would not make sense to inherit a
transform defined for a group to all its children and thus perform the operation multiple times.

Setting Group Inheritance using the API
To prevent an attribute from being inherited, use the API function setGroupInherit() to disable group inheritance.
For example:
FnKat::GroupBuilder gb;

gb.setGroupInherit(false);

gb.build();

Light Linking

Light linking is a typical example of how a standard setting is defined high up in the hierarchy and then overridden at
a specified scene graph location where a different setting is needed. Shadow Linking works in the exact same way.

1. In an empty scene, create a sphere using a PrimitiveCreate Node.

Set the name to /root/world/geo/sphere.

2. Add a plane with a PrimitiveCreate node.

Set the name to /root/world/geo/plane.

3. Add a Merge node and connect both PrimitiveCreate nodes as inputs.

LOCATIONS AND ATTRIBUTES | INHERITANCE RULES FOR ATTRIBUTES

TECHNICAL GUIDE 25

4. Add a light with a GafferThree node.

5. Connect the output of the Merge node to the input of the GafferThree node.

6. Add a LightLink node.

7. Connect the output of the GafferThree node to the input of the LightLink node.

8. Select the LightLink node and press Alt+E to edit it.

9. Set the effect field to illumination, and the action field to off.

10. Add the primitive sphere to the objects field.

11. Add the light to the lights field.

Creating the light adds a lightList attribute group under /root/world with the enable attribute set to 1.

NOTE: With the default behavior of the light set to off - by changing the defaultLink dropdown to off -
the enable attribute is set to 0.

The primitive sphere’s lightList enable attribute is set to 0, as it is overridden locally by the LightLink node.
Attributes are inherited from parent scene graph locations. If needed, they can be locally overridden as shown above
where a specific light (/root/world/lgt/gaffer/light1) is disabled for a certain node (/root/world/geo/sphere).

NOTE: A G label next to an attribute signifies that its value has been inherited from a parent scene graph
location, whereas the label L means the attribute is stored locally at the selected location.

LOCATIONS AND ATTRIBUTES | SETTING GROUP INHERITANCE USING THE API

TECHNICAL GUIDE

Katana Launch Modes

Launching Katana
You can start Katana in a number of different modes, using command line arguments to start the application:

Interactive no flags Runs Katana with the standard GUI.

Batch --batch Runs Katana without a GUI to render the output of a specific
node in the Node Graph.

Script --script Runs Katana without a GUI, and executes the specified Python
script.

Shell --shell Runs Katana without a GUI, and allows Python commands to
be run interactively.

Interactive Mode

Interactive mode is the default mode, requiring no additional command line arguments. It also loads additional
modules, such as the ScenegraphManager. Interactive is the only mode that launches Katana with the GUI.

To start Katana in Interactive mode:

1. Open a terminal.

2. Navigate to the directory where you installed Katana.

3. Enter:

./katana

If a license is present, the interface displays. Otherwise, you need to license Katana. See the Licensing Katana
chapter in the Katana User Guide for more on this.

You can also specify a Katana scene to load. To start in Interactive mode, and open a specified Katana scene:

26

TECHNICAL GUIDE 27

1. Open a terminal.

2. Navigate to the directory where you installed Katana.

3. Enter:
./katana /yourDirectory/yourScene.katana

You can also specify an asset ID using the --asset flag, to resolve and open a file from your asset management
system. The --asset flag takes a single argument, which is the asset ID to resolve. For example:
./katana --asset-mock:///show/shot/name/version

NOTE: The format of the asset ID itself is dependent on your asset management system, and the file you
attempt to resolve must be a valid Katana scene.

NOTE: The --asset flag also applies to Katana's Batch mode.

For more on Katana's Asset API see the Asset Management System Plug-in API chapter.

Batch Mode

Batch mode is used to start render farm rendering. Batch mode requires the --batch flag, and at least three
arguments; --katana-file, --render-node, and -t flags. These arguments give - respectively - the Katana scene to render,
the Render node to render from, and the frame range to render.

For example, to start rendering a Katana scene called yourScene.katana, at Render node renderHere, from frame
1 to frame 1000:

1. Open a terminal.

2. Navigate to the directory where you installed Katana.

3. Enter:
./katana --batch --katana-file=/yourDirectory/yourScene.katana --render-node=renderHere
-t 1-1000

The following options apply to Batch mode:

KATANA LAUNCH MODES |

TECHNICAL GUIDE 28

Option Usage

--katana-file Specifies the Katana recipe to load.

Syntax:

--katana-file=<filename>

Example:

./katana --batch --katana-file=/tmp/test.katana --t=1

--render-node=beauty

--asset Specifies the asset ID to resolve.

Syntax:

--asset-<asset ID>

Example:

./katana --asset-mock:///show/shot/name/version

-t or --t Specifies the frame range to render.

Syntax:

-t <frame range>

OR

--t=<frame range>

Where <frame range> can take the form of a range (such as 1-5) or a
comma separated list (such as 1,2,3,4,5). These can be combined, for
instance: 1-3,5. The previous example would render frames 1, 2, 3,
and 5.

Example:

./katana --batch --katana-file=/tmp/test.katana

--t=1-5,8 --render-node=beauty

KATANA LAUNCH MODES |

TECHNICAL GUIDE 29

Option Usage

--threads2d Specifies the number of additional processors within the application.
An additional processor is also used for Katana's main thread.

This means that Katana uses 3 processors when
--threads2d=2.

Syntax:

--threads2d=<num threads>

Example:

./katana --batch --katana-file=/tmp/test.katana

--t=1 --threads2d=2 --render-node=beauty

--threads3d Specifies the number of simultaneous threads the renderer uses.

Syntax:

--threads3d=<num threads>

Example:

./katana --batch --katana-file=/tmp/test.katana

--t=1 --threads3d=8 --render-node=beauty

--render-node Specifies the Render node from which to render the recipe.

Syntax:

--render-node=<node name>

Example:

./katana --batch --katana-file=/tmp/test.katana

--t=1 --render-node=beauty

KATANA LAUNCH MODES |

TECHNICAL GUIDE 30

Option Usage

--render-internal-dependencies Allows any render nodes that don't produce asset outputs to be
rendered within a single katana --batch process. Asset outputs are
determined by asking the current asset plug-in if the output location
is an assetId, using isAssetId(). The default file asset plug-in that
ships with Katana classes everything as an asset. So at present it is not
possible to render any dependencies within one katana --batch
command without customizing the asset plug-in.

--crop-rect Specifies which part of an image to crop. The same cropping area is
used for all renders.

Syntax:

--crop-rect="(<left>,<bottom>,<width>,<height>)"

Example:

./katana --batch --katana-file=/tmp/test.katana --t=1

--render-node=beauty --crop-rect="(0,0,256,256)"

--setDisplayWindowToCropRect Sets the display image to the same size as the crop rectangle set by --
crop-rect.

KATANA LAUNCH MODES |

TECHNICAL GUIDE 31

Option Usage

--tile-render Used to render one tile of an image divided horizontally and vertically
into tiles. For instance, using
--tile-render=1,1,3,3 splits the image into 9 smaller images (or tiles) in
a 3x3 square and then renders the middle tile as the index for tile
renders starts at the bottom left corner with 0,0. In the case of 3x3
tiles, the indicies are:

0,2 1,2 2,2

0,1 1,1 2,1

0,0 1,0 2,0

The results are saved in the same location as specified by the
RenderOutputDefine node but with a tile suffix. For instance: tile_1_
1.beauty.001.exr

Syntax:

--tile-render=<left_tile_index>, <bottom_tile_index>, <total_tiles_
width>, <total_tiles_height>

Example:

./katana --batch --katana-file=/tmp/test.katana --t=1

--render-node=beauty --tile-render=0,0,2,2

./katana --batch --katana-file=/tmp/test.katana --t=1

--render-node=beauty --tile-render=0,1,2,2

./katana --batch --katana-file=/tmp/test.katana --t=1

--render-node=beauty --tile-render=1,0,2,2

./katana --batch --katana-file=/tmp/test.katana --t=1

--render-node=beauty --tile-render=1,1,2,2

KATANA LAUNCH MODES |

TECHNICAL GUIDE 32

Option Usage

--tile-stitch Used to assemble tiles rendered with the --tile-render flag into a
complete image.

When stitching, you must still pass the --tile-render argument, with
the number of x and y tiles, so that the stitch knows how many tiles
to expect, and their configuration.

Syntax:

--tile-render=<left_tile_index>, <bottom_tile_index>, <total_tiles_
width>, <total_tiles_height> --tile-stitch

Example:

./katana --batch --katana-file=/tmp/test.katana --t=1 --render-
node=beauty --tile-render=0,0,2,2 --tile-stitch

--tile-cleanup Used to clean up transient tile images. Can be used in conjunction
with --tile-stitch to assemble a complete image, and remove transient
tiles in a single operation.

When using --tile-cleanup you must still pass the --tile-render
argument with the number of x and y tiles, so that cleanup knows
how many tiles to remove.

Syntax:

--tile-render=0,0,<total_tiles_width>,<total_tiles_height> --tile-clean

Example:

./katana --batch --katana-file=/tmp/test.katana --t=1 --render-
node=beauty --tile-render=0,0,2,2 --tile-stitch --tile-clean

--prerender-publish Syntax:

Example:

KATANA LAUNCH MODES |

TECHNICAL GUIDE 33

Option Usage

--make-lookfilebake-scripts Used to write out a number of Python files that can be executed in
batch mode to write look files.

Syntax:

--make-lookfilebake-scripts=<script directory>

Example:

./katana --batch --katana-file=/tmp/bake.katana --t=1

--make-lookfilebake-scripts=/tmp/bake_scripts

./katana --script /tmp/bake_scripts/preprocess.py

./katana --script /tmp/bake_scripts/lf_bake_default.py

./katana --script /tmp/bake_scripts/postprocess.py

--postrender-publish Syntax:

Example:

--versionup Used to specify that you want to version up assets when publishing
to the asset management system.

Syntax:

--versionup

Example:

./katana --batch --katana-file=/tmp/test.katana

--t=1 --render-node=beauty --versionup

NOTE: Setting threads3d or threads2d through Batch mode launch arguments takes precedence over
the interactiveRenderThreads3D, and interactiveRenderThreads2D settings in Katana's Edit >
Preferences > application menu.

KATANA LAUNCH MODES |

TECHNICAL GUIDE 34

Script Mode

Script mode allows you to execute Python scripts in Katana's Python environment. Script mode requires the --script
flag, followed by a single argument specifying the script you want to run. This launch mode is most useful for testing.
You can import most Katana modules, and perform tasks such as loading Katana scenes, changing some parameters,
and rendering.

For example, to start Katana in Script mode using a script named yourScript.py:

1. Open a terminal.

2. Navigate to the directory where you installed Katana.

3. Enter:
./katana --script /yourDirectory/yourScript.py

To open a scene and start rendering from the scene's Render node, open the following Python script in Script mode:
import NodegraphAPI

from Katana import KatanaFile

from Katana import RenderManager

def messageHandler(sequenceID, message):

print message

yourKatanaScene = "/yourDirectory/yourFile.katana"

KatanaFile.Load(yourKatanaScene) # Loading scene /yourDirectory/yourFile.katana

RenderNode = NodegraphAPI.GetNode('Render') # Getting Render node

RenderManager.StartRender(

node=RenderNode, # Starting render

hotRender=True,

frame = 1,

asynch = False,

interactive = False,

asynch_renderMessageCB = messageHandler

)

Shell Mode

Shell mode exposes Katana's Python interpreter in the terminal shell. Shell mode requires the --shell flag, and no
arguments. All of the modules available in the Python tab in Katana are available in Shell mode.

To start Katana in Shell mode:

1. Open a terminal.

KATANA LAUNCH MODES |

TECHNICAL GUIDE 35

2. Navigate to the directory where you installed Katana.

3. Enter:
./katana --shell

Querying Launch Mode

To query the current Katana launch mode, call QtGui.qApp.type() while in Script or Interactive mode. This returns
an int, with value 1 if running in UI mode, and 0 if running in a headless mode.

The following script queries type() and prints the current launch mode:

from Katana import QtGui

if QtGui.qApp.type() == 1:
print("Running in UI mode")

elif QtGui.qApp.type() == 0:
print("Running in headless mode")

else:
print("Error")

To retrieve this from AttributeScripts, use the getEnv() syntax.

There are a couple of environment or configuration variables that you can check to determine the launch mode that
Katana was started in:

• KATANA_UI_MODE

• KATANA_BATCH_MODE

• KATANA_SHELL_MODE

• KATANA_SCRIPT_MODE

The respective variable, depending on launch mode, is set to 1.

The following Python expression should work for a string parameter to determine whether something is in batch
more or not, for example:

'in batch mode' if getenv("KATANA_BATCH_MODE", 0) else 'not in batch mode'

In other Python contexts, for example startup scripts, shelf item scripts, or the Python tab, you can use the
Configuration.get() function to determine the launch mode. Note that the Configuration.get() function does not
take a default value in case a configuration variable is not set, and that it returns an empty string in that case.

KATANA LAUNCH MODES |

TECHNICAL GUIDE 36

from Katana import Configuration

if Configuration.get('KATANA_UI_MODE'):
print('In UI mode.')

elif Configuration.get('KATANA_BATCH_MODE'):
print('In BATCH mode.')

elif Configuration.get('KATANA_SHELL_MODE'):
print('In SHELL mode.')

elif Configuration.get('KATANA_SCRIPT_MODE'):
print('In SCRIPT mode.')

KATANA LAUNCH MODES |

TECHNICAL GUIDE

Nodegraph API
The Nodegraph API is a Python interface for creating Katana recipes by adding and connecting nodes,
and setting Parameters. The Nodegraph API cannot access the scene graph. In order to understand
the limitations of the node graph it’s important to have a clear understanding of the difference
between the Node Graph and the Scene Graph tabs. See Katana For The Impatient for more on this.

The Nodegraph API can be accessed by Python scripts in the Python tab, Super Tools, plug-ins, shelves and other
custom UI. It is available to scripts used running in script and shell modes, but is hidden from, and so should not be
used by Attribute Scripts or Parameter expressions. Attempting to access the Nodegraph API from Attribute Scripts
or Parameter expressions could result in topological changes to the Node Graph whilst it is being evaluated. The
Nodegraph API can only be used inside a running Katana session, it is not a standalone Python module.

Nodegraph API Basics
When Katana iterates over the scene graph it performs what is effectively a depth-first graph search. Starting at a
single top-level node, it asks for any nodes adjacent to that location, then interrogates each of those nodes on their
adjacent nodes, and so on. For this reason, a Katana scene graph is always nested under a single root location.

Creating a New Node

Nodes must be created under the root node, or under a node that accepts child nodes, such as a Group node, or
SuperTool, nested under the root node. To create nodes directly under the root node, you must pass the Node
Graph root location as an argument. To create nodes under a Group node, enter the group location as an argument.
For example, to add a Primitive Create node under the root node enter the following in the Python tab:
Get the root node

root = NodegraphAPI.GetRootNode()

Create a new node under the root node

node = NodegraphAPI.CreateNode('PrimitiveCreate', root)

This creates a new PrimitiveCreate node, which - in turn - generates a scene graph location containing a single
primitive. By default the PrimitiveCreate node is set to type sphere.

The new node is an instance of a Python class that represents that node type, and may contain additional methods
specifically for working with that type. For example, a GafferThree node has addLight() and getLightPaths()
methods that do not exist for other node types.

NOTE: You can use the Python help function to get information about a particular function call. For

37

TECHNICAL GUIDE 38

example:

 help(NodegraphAPI.CreateNode)

Referencing a Node

You can reference a node using the function GetNode(). For example, to reference a node called PrimitiveCreate
to the name node use:
node = NodegraphAPI.GetNode('PrimitiveCreate')

Referencing a Parameter

Parameters are referenced in a similar way to nodes, using the function getParameter(). For example, to reference
the type parameter of a node called PrimitiveCreate, to the name nodeType use:
nodeType = NodegraphAPI.GetNode('PrimitiveCreate').getParameter('type')

NOTE: Shift+middle-drag to the Python tab from a node in the Node Graph tab, or a parameter in the
Parameters tab to automatically create the path to that node or parameter. For example, dragging from
a node PrimitiveCreate in the Node Graph produces:

 NodegraphAPI.GetNode('PrimitiveCreate')

Node Position

The function SetNodePosition() sets the position of a node in the Node Graph UI. For example, to create then
position a PrimitiveCreate node:
Get the root node

root = NodegraphAPI.GetRootNode()

Create a new node at root level

node = NodegraphAPI.CreateNode('PrimitiveCreate', root)

Define X & Y values

x = 0

y = 100

position = (x, y)

Set node position

NodegraphAPI.SetNodePosition(node, position)

NODEGRAPH API |

TECHNICAL GUIDE 39

Node Naming

Each node has a name, which is unique within the bounds of a Katana recipe. Name-spacing does not exist for node
names, which means that a call to:
node = NodegraphAPI.GetNode('PrimitiveCreate')

node.setName(name="Teapot")

print (node.getName())

It may not behave as expected if the chosen name is already in use by another node in the scene. In that case
setName() finds a similar - but unique - name, uses that, and returns the new unique node name.

It’s possible to store a string user attribute on a node that utilities can search for in order to reference a node in a
smaller context. This is a simple pattern that can provide a more localized pseudo node name. See User Parameters
for more on adding User Parameters.

Getting the Parameters of a Node

The parameters of a node are organized in a tree inside the node. The tree allows better organization of nodes with
many parameters, avoids parameter name collisions, and makes it simple to construct more complex re-usable
parameter definitions.

The function getParameters() returns the root parameter of a node. The children of that root parameter are the
top level entries you see in the Parameters tab. For example, to get the children of the root parameter on a node
enter:
for p in node.getParameters().getChildren():

print(p)

Which - assuming node is a reference to a PrimitiveCreate node - prints the following:

<Parameter 'name'>

<Parameter 'type'>

<Parameter 'fileName'>

<Parameter 'previewTexture'>

<Parameter 'previewAlpha'>

<Parameter 'enableClippingPlane'>

<Parameter 'reverseClippingDirection'>

<Parameter 'transform'>

<Parameter 'makeInteractive'>

<Parameter 'includeBounds'>

<Parameter 'viewerPickable'>

You can get a complete text dump of all parameters on a node using getXML(). For example, to see the XML
structure of all the parameters on a node referenced by node enter the following:

NODEGRAPH API |

TECHNICAL GUIDE 40

print (node.getParameters().getXML())

Which displays the XML of the selected node:

<group_parameter name="PrimitiveCreate">

<string_parameter name="name" value="/root/world/geo/primitive"/>

<string_parameter name="type" value="sphere"/>

...

</group_parameter name>

Getting Parameter Values

To return the value of a parameter, use getParameter().getValue(). For example, to return the value of the name
parameter at time 0, enter the following:
node.getParameter('name').getValue(0)

Setting the Parameters of a Node

Values on a node are set using getParameter().setValue(). As node behavior is set by parameters who’s values can
change over time, you must specify a value and a time, when setting a parameter.

For example, to change the type Parameter of a PrimitiveCreate node to teapot, when time is 10, enter the following:
Get the root node

root = NodegraphAPI.GetRootNode()

Create a new node at root level

node = NodegraphAPI.CreateNode('PrimitiveCreate', root)

Set the type parameter at time 10

node.getParameter('type').setValue("teapot", 10)

Input and Output Ports

Creating Ports

Katana recipes are created by adding and connecting nodes in the Node Graph. Nodes are connected through their
input and output ports. Some node types have a fixed number of ports, while others allow for an arbitrary number.
The Merge node, for example, takes any number of inputs and combines them into a single output. To create a
Merge node referenced as merge at root level, and add two input ports enter the following:
merge = NodegraphAPI.CreateNode('Merge', root)

firstPort = merge.addInputPort("First")

secondPort = merge.addInputPort("Second")

NODEGRAPH API |

TECHNICAL GUIDE 41

Ports can be added by index as well as by name which allows direct control of their ordering. For example, to add an
input port to the merge node created above, add the following:
betweenFirstAndSecondPort =\

merge.addInputPortAtIndex("BetweenFirstAndSecond", 1)

Connecting Ports

The connect() method links ports. For example, to take an output port on a PrimitiveCreate node - referenced as
node - and connect it to an input port on a Merge node - referenced as merge - enter the following:
primitiveOut = node.getOutputPort("out")

mergeInput = merge.getInputPort("i0")

primitiveOut.connect(mergeInput)

Connecting ports works in either direction:
mergeInput.connect(primitiveOut)

Disconnecting Ports

The disconnect() method unlinks two ports. For example, to unlink the two ports connected in Connecting Ports
enter the following:
mergeInput.disconnect(primitiveOut)

or
primitiveOut.disconnect(mergeInput)

Renaming Ports

The renameInputPort() and renameOutputPort() methods rename ports. For example, to rename the input port
at index position 0 on the node referenced by merge, enter the following:
merge.renameInputPort("i0", "input")

To rename the output port on the same node, enter:
merge.renameOutputPort("out", "output")

Dynamic Parameters
A sub-set of nodes in Katana feature "dynamic" parameters; dynamic in that their existence on a node is not fixed at
node creation time, but rather is dependent on attributes from the incoming scene or some other asynchronous
process.

NODEGRAPH API | DYNAMIC PARAMETERS

TECHNICAL GUIDE 42

For example, upon adding a shader to a Material node, Katana must query the renderer for the set of parameters the
shader exposes, as well as their default values. Until these queries complete and the Parameters tab is updated, the
parameters representing the various shader configuration options do not yet exist.

Should you then wish to edit this material in another Material node downstream, this downstream node must query
the incoming scene in order to display the existing material's values in the Parameters tab. This effectively means
the parameters on the downstream node must update dynamically based on our upstream node.

RenderSettings is another node that makes use of dynamic parameters. This node depends on the attributes under
the renderSettings group attribute at /root and is used for the configuration of render settings such as output
resolution.

Nodes with dynamic parameters include the following:

• AttributeModifierDefine

• Material

• NetworkMaterialParameterEdit

• RendererProceduralArgs

• RenderOutputDefine

• TransformEdit

• ScenegraphGeneratorSetup

• Shading nodes such as ArnoldShadingNode and PrmanShadingNode

When creating such nodes in script mode using NodegraphAPI.CreateNode(), or getting a new reference to an
existing node using calls, such as NodegraphAPI.GetNode(), Katana does not immediately create the dynamic
parameters on the node, but only those set locally. While this behavior might go unnoticed when running Katana in
UI mode (the Parameters tab is updated with any dynamic parameters in the normal course of UI event processing)
it has very real implications if you are running Katana in script mode. In this context, your Python script executes
synchronously and there is no UI event loop to take care of updating a node with the result of, say, querying the
incoming scene graph or querying the renderer as to which parameters a shader exposes.

Instead, before you attempt to access these dependent parameters, you must first call checkDynamicParameters
() on the node. This call blocks until the node's dynamic parameters have been populated. Failing to call this method
results in a getParameter() call returning None (because the parameter does not yet exist) or returning a
parameter whose value is out-of-date (because changes from other parameters would cause its value to be
different).

As an example, suppose you have an existing scene myKatanaProject.katana that contains a Material node with a
PRMan surface shader, with locally-set values for Ks, but with a default value for Kd.

query_parameters.py

from Katana import KatanaFile, NodegraphAPI

NODEGRAPH API | DYNAMIC PARAMETERS

TECHNICAL GUIDE 43

KatanaFile.Load('myKatanaProject.katana')

materialNode = NodegraphAPI.GetNode('Material')

This call is necessary to populate the node with its "dynamic" parameters, if
any.
materialNode.checkDynamicParameters()

Access the Ks and Kd parameter on the material node.
specularParam = materialNode.getParameter('shaders.prmanSurfaceParams.Ks.value')
diffuseParam = materialNode.getParameter('shaders.prmanSurfaceParams.Kd.value')

Sanity checks.
assert specularParam, "No value for the Ks parameter!"
assert diffuseParam, "No value for the Kd parameter!"

print("specular=%r, diffuse=%r" % (specularParam.getValue(0.0),
diffuseParam.getValue(0.0)))

Running this script using katana --script query_parameters.py prints both the locally-set value for Ks and the
default value for Kd. Failing to make the call to checkDynamicParameters() causes the second assertion to be
tripped.

Below is a more complex example that demonstrates the creation of an Arnold Network Material:

from Katana import NodegraphAPI

###
imageNode1 = NodegraphAPI.CreateNode('ArnoldShadingNode')
NodegraphAPI.SetNodePosition(imageNode1, (-75, 200))

imageNode1.getParameter('name').setValue('diff_image', 0.0)
imageNode1.getParameter('nodeType').setValue('image', 0.0)

Call checkDynamicParameters() to ensure parameters dependent on "nodeType"
are made available.
imageNode1.checkDynamicParameters()
imageNode1.getParameter('parameters.filename').createChildString(

'hints', repr({
'widget': 'filename',
'dstPage': 'basics',
'dstName': 'diff_texture'}))

imageNode2 = NodegraphAPI.CreateNode('ArnoldShadingNode')
NodegraphAPI.SetNodePosition(imageNode2, (75, 200))

imageNode2.getParameter('name').setValue('spec_image', 0.0)

NODEGRAPH API | DYNAMIC PARAMETERS

TECHNICAL GUIDE 44

imageNode2.getParameter('nodeType').setValue('image', 0.0)

Call checkDynamicParameters() to ensure parameters dependent on "nodeType"
are made available.
imageNode2.checkDynamicParameters()
imageNode2.getParameter('parameters.filename').createChildString(

'hints', repr({
'widget': 'filename',
'dstPage': 'basics',
'dstName': 'spec_texture'}))

###
standardNode = NodegraphAPI.CreateNode('ArnoldShadingNode')
NodegraphAPI.SetNodePosition(standardNode, (0, 0))

standardNode.getParameter('name').setValue('standard_node', 0.0)
standardNode.getParameter('nodeType').setValue('standard', 0.0)

Call checkDynamicParameters() to ensure parameters dependent on "nodeType"
are made available.
standardNode.checkDynamicParameters()
standardNode.getParameter('parameters.Ks.enable').setValue(1, 0.0)
standardNode.getParameter('parameters.Ks.value').setValue(0.7, 0.0)
standardNode.getParameter('parameters.Ks_color.enable').setValue(1, 0.0)
standardNode.getParameter('parameters.Ks_color.value.i0').setValue(0.2, 0.0)
standardNode.getParameter('parameters.Ks_color.value.i1').setValue(0.7, 0.0)
standardNode.getParameter('parameters.Ks_color.value.i2').setValue(1.0, 0.0)

standardNode.getInputPort('Kd_color').connect(imageNode1.getOutputPort('out'))
standardNode.getInputPort('Ks_color').connect(imageNode2.getOutputPort('out'))

Create "hints" parameters that describes how these parameters should be
exposed in the material's public interface.
standardNode.getParameter('parameters.Kd').createChildString(

'hints', repr({'dstPage': 'basics', 'dstName': 'Kd'}))
standardNode.getParameter('parameters.Ks').createChildString(

'hints', repr({'dstPage': 'basics', 'dstName': 'Ks'}))

###
networkMaterialNode = NodegraphAPI.CreateNode('NetworkMaterial')
NodegraphAPI.SetNodePosition(networkMaterialNode, (100, -100))

networkMaterialNode.addInputPort('arnoldSurface')
networkMaterialNode.getInputPort('arnoldSurface').connect(

standardNode.getOutputPort('out'))

A sub-set of Katana's nodes make use of Dynamic Parameters. These are parameters dependent on attributes from
the incoming scene or some other process that happens asynchronously. Dynamic Parameters are generated

NODEGRAPH API | DYNAMIC PARAMETERS

TECHNICAL GUIDE 45

automatically by the Katana UI, however, when using the NodegraphAPI in script mode you have to explicitly call
checkDynamicParameters() to ensure you can access these values.

Duplicating Nodes

Serialize to XML

Katana uses a copy and paste pattern to duplicate node graph nodes, which means that to copy a node you must
serialize it to XML using BuildNodesXmlIO(), then deserialize. For example, to create then serialize a PrimitiveCreate
node referenced by node enter the following:
Get the root node

root = NodegraphAPI.GetRootNode()

Create a new node at root level

node = NodegraphAPI.CreateNode('PrimitiveCreate', root)

nodesToSerialize = [node]

xmlTree = NodegraphAPI.BuildNodesXmlIO(nodesToSerialize)

NOTE: BuildNodesXmlIO() accepts a sequence of nodes, so a network of nodes can be serialized in a
single operation.

Deserialize

Use Paste() in the KatanaFile module to deserialize an xmlTree. The xmlTree can contain an arbitrary number of
nodes, and the contents are pasted under a given location (which can be either /root or a Group node).

For example, to paste the XML created in Serialize to XML under /root enter the following:
root = NodegraphAPI.GetRootNode()

KatanaFile.Paste(xmlTree, root)

Printing An XML Tree

It can be useful to print the serialized XML tree of a node to see what it contains. For example, to view the XML of the
merge in the example above node enter the following:
print(xmlTree.writeString())

Which - depending on your Katana version - prints:
<katana release="1.5" version="1.5.1.000001">

<node name="__SAVE_exportedNodes" type="Group">

<node baseType="Merge" name="Merge" type="Merge"

NODEGRAPH API | DUPLICATING NODES

TECHNICAL GUIDE 46

x="228.000000" y="-311.000000">

<port name="input" type="in"/>

<port name="Second" type="in"/>

<port name="output" type="out"/>

<group_parameter name="Merge">

 <string_parameter name="showAdvancedOptions"

value="No"/>

<group_parameter name="advanced">

 <string_parameter name="sumBounds" value="No"/>

 <string_parameter name="preserveWorldSpaceXform"

 value="No"/>

 <stringarray_parameter

name="preserveInheritedAttributes"

size="0" tupleSize="1"/>

<group_parameter name="preferredInputAttributes">

<stringarray_parameter name="name" size="0"

tupleSize="1"/>

<numberarray_parameter name="index" size="0"

tupleSize="1"/>

</group_parameter>

</group_parameter>

</group_parameter>

</node>

</node>

</katana>

Group Nodes
A Group node acts as a container for a sub-network of nodes. To add a Group node to a recipe under the root
location, then create a PrimitiveCreate node inside that group enter the following:
Create a Group node at root, referenced as group

group = NodegraphAPI.CreateNode('Group', root)

Then, create a PrimitiveCreate, as in Creating a New Node but give the Group node as the level to create at, rather
than root as in the previous example:
groupChildNode = NodegraphAPI.CreateNode\

('PrimitiveCreate', group)

Alternatively, create a Group node and a PrimitiveCreate node at the root level, then parent the PrimitiveCreate node
under the Group node:
Get the root node

NODEGRAPH API | GROUP NODES

TECHNICAL GUIDE 47

root = NodegraphAPI.GetRootNode()

Create the Group node at root level

group = NodegraphAPI.CreateNode('Group', root)

Create the PrimitiveCreate node at root level

node = NodegraphAPI.CreateNode('PrimitiveCreate', root)

Set the Group node as parent of the PrimitiveCreate node

node.setParent(group)

NOTE: Groups can be nested arbitrarily to form a Node Graph tree.

A Group Node Example

The following stand-alone example produces a group node containing a network that produces a scene graph with
sphere and cube locations. It uses only Nodegraph API calls covered by this chapter. There is no access to the
generated scene graph from outside of the group node.
Constants

TIME = 0

HALF_DISTANCE_APART = 1.0

Create the group at root level

root = NodegraphAPI.GetRootNode()

group = NodegraphAPI.CreateNode('Group', root)

Create the sphere at group level

sphere = NodegraphAPI.CreateNode('PrimitiveCreate', group)

sphere.setName('Sphere')

sphere.getParameter('name')\

.setValue("/root/world/geo/sphere", TIME)

Set the type to sphere

sphere.getParameter('type').setValue('sphere', TIME)

sphere.getParameter('transform.translate.x').\

setValue(HALF_DISTANCE_APART, TIME)

NodegraphAPI.SetNodePosition(sphere, (-100, 100))

Create the cube

cube = NodegraphAPI.CreateNode('PrimitiveCreate', group)

cube.setName('Cube')

cube.getParameter('name').\

setValue("/root/world/geo/cube", TIME)

Set the type to cube

cube.getParameter('type').setValue('cube', TIME)

cube.getParameter('transform.translate.x').\

setValue(- HALF_DISTANCE_APART, TIME)

NodegraphAPI.SetNodePosition(cube, (100, 100))

NODEGRAPH API | GROUP NODES

TECHNICAL GUIDE 48

Create a Merge node at group level

merge = NodegraphAPI.CreateNode('Merge', group)

Connect the two PrimitiveCreate nodes to a Merge node

mergeSphere = merge.addInputPort('sphere')

mergecube = merge.addInputPort('cube')

mergeSphere.connect(sphere.getOutputPort('out'))

mergecube.connect(cube.getOutputPort('out'))

Rename our merge node to 'Result' to make it clear that

this is the final result.

merge.setName('Result')

NOTE: Ctrl+middle-click on the Group node to see its contents, and observe the PrimitiveCreate nodes
named Sphere and Cube, with their outputs connected to the input of a Merge node.
View the Merge node, and expand the scene graph to see the two scene graph locations created by the two
Primitive Create nodes.

Send and Return Ports

The example created in A Group Node Example has no connections to or from the Group node. For Group nodes to
be of any significant use, you need to be able to connect their internal structure to the ports of external nodes. The
quickest - in the short term - way of doing this is to directly connect a port on a node inside the group to a port on a
node outside the group. To do this however, you need to know the internal structure of the Group node and be
aware of the maintenance burden on the Python code that does the connecting. Any change to the internal
structure of the group can mean the port connecting code needs updating.

A more encapsulated approach is to connect the internal ports to corresponding Send or Return ports on the
Group node. If a Group node were a function in Python, the Send ports would be the arguments and the Return
ports would the return values.

NOTE: The Send and Return ports on a Group node only exist if the group has inputs and outputs
created. Creating an input or output port on a group automatically creates a Send or Return port with the
same name.
See Input and Output Ports for more on creating, and connecting inputs and outputs.

Return Port Example

The advantage of Send and Return ports is that you can connect to them without any knowledge of the group’s
internal structure. For example, create a Group containing a PrimitiveCreate node and a Merge node. Connect the
output of the PrimitiveCreate node to the input of the Merge node, and connect the output of the Merge node to
the Return port of the Group node:
Create the group at root level

NODEGRAPH API | GROUP NODES

TECHNICAL GUIDE 49

root = NodegraphAPI.GetRootNode()

group = NodegraphAPI.CreateNode('Group', root)

group.addOutputPort("out")

Create the PrimitiveCreate node at group level

primitive = NodegraphAPI.CreateNode('PrimitiveCreate',\

group)

Create a Merge nodes at group level

mergeOne = NodegraphAPI.CreateNode('Merge', group)

Connect PrimitiveCreate output to Merge input

Get the out port of the PrimitiveCreate node

primitiveOut = primitive.getOutputPort("out")

mergeSphereIn = mergeOne.addInputPort('sphere')

primitiveOut.connect(mergeSphereIn)

Get the groups Return port

First create an output port on the group

groupOut = group.addOutputPort("goingOut")

groupReturn = group.getReturnPort("goingOut")

Get the output port on the Merge node

mergeOut = mergeOne.getOutputPort("out")

Connect the Merge node's out to the Group node's Return

mergeOut.connect(groupReturn)

Now you can connect the output of the Group node to external nodes without accessing its internal structure. For
example, take the example above, and connect the output of the Group node to a new Merge node:
Create a Merge node at root level

mergeTwo = NodegraphAPI.CreateNode('Merge', root)

Get the input port of the Merge node

mergeTwoInput = mergeTwo.getInputPort('input')

Connect the Group’s output to the Merge node's input

mergeTwoInput.connect(groupReturn)

Send Port Example

The Group node created in Return Port Example does not take any inputs. For a group to accept inputs, it must have
an input port linked to its Send port. For example, create a group that merges geometry from a PrimitiveCreate node
inside the group, with geometry from a PrimitiveCreate node outside the group:
Create the group at root level

root = NodegraphAPI.GetRootNode()

group = NodegraphAPI.CreateNode('Group', root)

Create input and output on the group

group.addInputPort("in")

group.addOutputPort("out")

NODEGRAPH API | GROUP NODES

TECHNICAL GUIDE 50

Get the corresponding Send and Return ports

groupOut = group.getReturnPort("out")

groupIn = group.getSendPort("in")

Create a PrimitiveCreate node at group level

primitiveGroup = NodegraphAPI.\

CreateNode('PrimitiveCreate', group)

primitivePosition = (0, 100)

NodegraphAPI.SetNodePosition(primitiveGroup,\

primitivePosition)

Get the output port on the PrimitiveCreate

primitiveGroupOut = primitiveGroup.getOutputPort("out")

Create a merge node at group level

mergeOne = NodegraphAPI.CreateNode('Merge', group)

Add two inputs and get the output ports

mergeOneIn0 = mergeOne.addInputPort("in0")

mergeOneIn1 = mergeOne.addInputPort("in1")

mergeOneOut = mergeOne.getOutputPort("out")

Connect the PrimitiveCreate out to Merge in0

mergeOneIn0.connect(primitiveGroupOut)

Connect the Merge node to the Group inputs and outputs

mergeOneIn1.connect(groupIn)

mergeOneOut.connect(groupOut)

Anything connected to the input of the Group node is now merged with the output of the PrimitiveCreate node
contained in the group.

EXPERIMENT: Try creating another PrimitiveCreate node, of a different primitive type, outside the Group.
Connect the output of the new node to the input of the group. View the result to see the outputs of both
PrimitiveCreate nodes together.

Physical and Logical Connections
Conceptually, a port has two forms of connection, Physical and Logical.

NODEGRAPH API | PHYSICALAND LOGICALCONNECTIONS

TECHNICAL GUIDE 51

Physical Connection

A physical connection is determined directly by what output ports any given input port is connected to in the user
interface. The physical connections are those you see represented by connection arrows in the Node Graph.

Logical Connection

Logical connections are those used to traverse up the Node Graph at render time. Conditional logic, parameter
values and time are used to determine the next relevant source of data, and this is represented by a logical
connection between the current node and the next.

The diagram below shows an example of physical and logical connections in the Node Graph. Nodes A and B have
physical connections to inputs on the Switch node, and node C has a physical connection to the output of the Switch
node.

The logical connection from node A or B to node C, depends on the setting of the switch. When the Switch node’s in
parameter is set to 0, there is a logical connection from node A, to node C, passing through the Switch node. When
the Switch node’s in parameter is set to 1, there is a logical connection from node B to node C, passing through the
Switch node.

NODEGRAPH API | PHYSICALAND LOGICALCONNECTIONS

TECHNICAL GUIDE 52

Physical and Logical Source

Physical Source

To find the physical source from a given port, use <yourPortName>.GetConnectedPorts(). For example, create a
PrimitiveCreate node and a Merge node, connect the output of the PrimitiveCreate node to an input on the Merge
node, then get the source of the connection into the Merge node:
Get the root node

root = NodegraphAPI.GetRootNode()

Create a PrimitiveCreate node at root level

primitive = NodegraphAPI.CreateNode\

('PrimitiveCreate', root)

Create a Merge node at root level

mergeOne = NodegraphAPI.CreateNode('Merge', root)

Add an output port to the PrimitiveCreate node

primOut = primitive.addOutputPort("newOutputPort")

Add an input to the Merge node

NODEGRAPH API | PHYSICALAND LOGICALCONNECTIONS

TECHNICAL GUIDE 53

mergeIn = mergeOne.addInputPort("fromPrim")

Connect PrimitiveCreate to Merge

primOut.connect(mergeIn)

Use getConnectedPorts to find connections on mergeIn

mergeInConnected = mergeIn.getConnectedPorts()

Print the connected port

print(mergeInConnected)

This returns:
[< Port Producer 'yourPortName' >]

Logical Source

To find the logical source of an input node use <yourNodeName>.getInputSource(), which takes the name of the
port and a time as arguments, and returns a tuple containing the source port and the time. If no port is found, it
returns None.

For example, recreate the scene shown in Physical and Logical Connections with two nodes connected to the inputs
of a switch node, and one node connected to the output, then find the input source at the output:
root = NodegraphAPI.GetRootNode()

Create TheInputSourceNode at root level

primitive1 = NodegraphAPI.CreateNode('PrimitiveCreate',\

root)

primitive2 = NodegraphAPI.CreateNode('PrimitiveCreate',\

root)

primitive1.setName("A")

primitive2.setName("B")

primitive1Out = primitive1.getOutputPort("out")

primitive2Out = primitive2.getOutputPort("out")

Create the Switch node at root level

switch = NodegraphAPI.CreateNode('Switch', root)

switchInput1 = switch.addInputPort("input1")

switchInput2 = switch.addInputPort("input2")

switchOutput = switch.getOutputPort("output")

Create a Render node at root level

render = NodegraphAPI.CreateNode('Render', root)

renderInput = render.getInputPort("input")

Connect the primitie to the switch, and switch to render

primitive1Out.connect(switchInput1)

NODEGRAPH API | PHYSICALAND LOGICALCONNECTIONS

TECHNICAL GUIDE 54

primitive2Out.connect(switchInput2)

switchOutput.connect(renderInput)

Get the logical input of the render.input port

TIME = 0.0

inputSource = render.getInputSource("input", TIME)

PORT_INDEX = 0

inputPort = inputSource[PORT_INDEX]

Get hold of the source node so that we can print its name.

inputNode = inputPort.getNode()

inputNodeName = inputNode.getName()

Print the name of the source node

print(inputNodeName)

User Parameters
You can add custom User Parameters to a node, allowing nodes to be tagged with additional information. This ability
to add User Parameters is particularly useful when creating Macros and Super Tools with a custom UI. For more
information on Super Tools, see Super Tools on page 94. For information on Macros, and for uses of User Variables,
please seeGroups, Macros, & Super Tools in the Katana User Guide. All available User Parameter types and widgets
can also be found in theUser Parameters and Widget Types chapter in the Katana User Guide.

User Parameters are defined from the following basic types, and their behavior is dictated by their assigned widget:

• Group

Containers for one or more other User Parameters, including other groups. Requires a name argument.

• Number

A single float. Requires a default value argument.

• Number Array

An array of floats. Requires name and size arguments.

• String

A single string object. Requires a default value argument.

• String Array

An array of string objects. Requires name and size arguments.

NODEGRAPH API | USER PARAMETERS

TECHNICAL GUIDE 55

Top Level User Parameters

As covered in Getting the Parameters of a Node the node parameters that you see at the top level in a node’s
Parameters tab are all children of the node’s root parameter. User Parameters on a node are also added as children
of the root parameter. For example, to create a new PrimitiveCreate node, and add a User Parameter of type
number, enter the following:
Get the root node

root = NodegraphAPI.GetRootNode()

Add a PrimitiveCreate node at root level

node = NodegraphAPI.CreateNode('PrimitiveCreate', root)

Get the PrimitiveCreate node's root parameter

rootParam = node.getParameters()

Add a User Parameter of type number

numberParam = rootParam.createChildNumber("Foo", 123.0)

Nested User Parameters

Complex hierachies of User Parameters are possible, by nesting User Parameters under Group User Parameters. For
example, create a new PrimitiveCreate node, and add a User Parameter of type number, nested under a User
Parameter of type Group:
Get the root node

root = NodegraphAPI.GetRootNode()

Add a PrimitiveCreate node at root level

node = NodegraphAPI.CreateNode('PrimitiveCreate', root)

Get the PrimitiveCreate node's root parameter

rootParam = node.getParameters()

Add a User Parameter of type Group under the root parameter

groupParam = rootParam.createChildGroup("yourGroup")

Add a User Parameter of type Number under the group

numberParam = groupParam.createChildNumber("yourNumber",\

123.00)

Parameter Hints

Parameter hints are arbitrary metadata, most commonly used to tell the user interface what a User Parameter
contains. For example, add a User Parameter of type String to represent a file path to an asset, and use a hint to tell
Katana to use the asset browser widget for that User Parameter:
Get root level

root = NodegraphAPI.GetRootNode()

NODEGRAPH API | USER PARAMETERS

TECHNICAL GUIDE 56

Create a PrimitiveCreate node at root level

prim = NodegraphAPI.CreateNode('PrimitiveCreate', root)

Get the root parameter of the PrimitiveCreate node

rootParam = prim.getParameters()

Add a new User Parameter of type string

stringParam = rootParam.createChildString("yourFilePath", "yourFile.txt")

Tell Katana to use the assetIdInput widget to represent this parameter

stringParam.setHintString("{'widget': 'assetIdInput'}")

Or, to add a User Parameter of type string, as a dropdown menu:
Get root level

root = NodegraphAPI.GetRootNode()

Create a PrimitiveCreate node at root level

prim = NodegraphAPI.CreateNode('PrimitiveCreate', root)

Get the root parameter of the PrimitiveCreate node

rootParam = prim.getParameters()

Add a new User Parameter of type string

stringParam = rootParam.createChildString("yourDropdown", "yourDefaultValue")

Tell Katana to use the pop-up widget

and fill out the menu values

stringParam.setHintString("{'widget':'popup',\

'options':['a', 'b', 'c']}")

See Widget Types in the Args Files in Shaders chapter for a table of the widget types seen in the UI.

Parameter Expressions

Python

A parameter can have its value computed dynamically using a Python expression. Expressions are set using
Parameter.setExpression(), which takes a Python string representing the expression as its first argument and an
optional enable parameter to specify whether to implicitly enable the expression.

A parameter expression must evaluate in the same way that a Python eval expression would (as a condition list). The
global and local scopes of a parameter expression are sand-boxed so that it is not possible to make topological
changes to the Node Graph whilst it is being resolved.

It is possible to write an expression that references a node by name and not break when the node name changes, see
Appendix B: Expressions In the Katana User Guide for more information and a list of what functions are available to
an expression.

NODEGRAPH API | PARAMETER EXPRESSIONS

TECHNICAL GUIDE 57

NOTE: you should avoid using the nodeName variable for parameter expressions that specify scene graph
locations, and must take care when using them anywhere that a scenegraph attribute is set. Node names
are not namespaced and can therefore change unpredictably.

The following example script sets the expression on a parameter:
Add a PrimitiveCreate node

root = NodegraphAPI.GetRootNode()

primitive = NodegraphAPI.CreateNode('PrimitiveCreate', root)

Add a User Parameter of type Number, called myNumber

rootParam = primitive.getParameters()

rootParam.createChildNumber("myNumber", 7.0)

Link myNumber to the node's scale x parameter by expression

scaleX = NodegraphAPI.GetNode('PrimitiveCreate')\

.getParameter('transform.scale.x')

scaleX.setExpression("getParam('PrimitiveCreate.myNumber')")

You can disable an expression with the setExpressionFlag() method.
yourExpression.setExpressionFlag(False) # Disable

yourExpression.setExpressionFlag(True) # Enable

CEL
Parameters that contain CEL expressions are set like any other string parameter only the value of the parameter is
evaluated to a CEL expression. For example create a CEL expression on a CollectionCreate node that sets to the
/root/geo location:
TIME = 0

root = NodegraphAPI.GetRootNode()

collection = NodegraphAPI.CreateNode('CollectionCreate',\

root)

c = collection.getParameter('CEL')

c.setValue("((/root/geo))", TIME)

For more on CEL, and collections using CEL, see the Collections & CEL chapter in the Katana User Guide.

Enableable Parameter Groups
An Enableable Parameter Group is a parameter that has a default value, but can also take on a locally set value. The
local value is used when the Enableable Parameter Group is enabled.

NODEGRAPH API | CEL

TECHNICAL GUIDE 58

In order to manipulate this type of parameter through a script it’s important to understand that the Enableable
Parameter Group is a group parameter with four children:

Name Value Type Description

__hints String Metadata telling the UI how to display this parameter group.

enable Number Defines whether the parameter is enabled or not. When
enabled, the parameter takes on value, and when disabled in
takes on default.

value String / StringArray /
Number / NumberArray

The value to be assigned to the corresponding attribute when
the parameter group is enabled. Updated with value entered
through the UI.

default String / StringArray /
Number / NumberArray

The default parameter value.

To modify an Enableable Parameter Group, access the individual child parameters. For example, create a
RenderSettings node, then edit the Enable Parameter Groups for camera name to set a local value, and enable it:
Get the root node

root = NodegraphAPI.GetRootNode()

Create a RenderSettings node

renderSettings = NodegraphAPI.\

CreateNode('RenderSettings', root)

Get the value and enable parameters from the cameraName group parameter

cameraNameValue = renderSettings.\

getParameter('args.renderSettings.cameraName.value')

cameraNameEnable = renderSettings.\

getParameter('args.renderSettings.cameraName.enable')

Change the name

cameraNameValue.\

setValue("/root/world/cam/myCamera", time = 0)

Enable the parameter

cameraNameEnable.setValue(float(True), time = 0)

Dynamic Arrays for PRMan Shader Parameters
Katana has a widget type dynamicArray, which was added to support PRMan shaders with dynamic array
parameters. Unlike the other array types listed in Widget Types in the Katana User Guide, dynamicArrays cannot be
created as User Parameters on nodes through the UI wrench menu.

NODEGRAPH API | DYNAMIC ARRAYS FOR PRMAN SHADER PARAMETERS

TECHNICAL GUIDE 59

NOTE: The Arnold plug-in for Katana currently only supports array parameters of type AI_TYPE_POINTER
(arbitrary pointer). Support for specific types of array parameter values will be added in a future release.

The following Nodegraph API functions apply to dynamic arrays, as well as groups:

reorderChild()

Moves an array child parameter. Takes two arguments, the child parameter to move, and the index position to move
to. For example:
arrayParameter.reorderChild(

arrayParameter.getChildByIndex(1), 0)

reorderChildren()

Moves a given number of child elements in an array, starting at a specified index, moving to a specified index. Takes
three arguments - all ints - giving the index to start at, the index to move to, and the number of elements to move.

removeArrayElement()

Removes a single element from an array. Takes a single argument - an int - giving the index position in the array to
remove.

removeArrayElements()

Removes a given number of elements from an array, starting at a given index. Takes two arguments - both ints -
giving the index to start at and the number of elements to remove.

NODEGRAPH API | DYNAMIC ARRAYS FOR PRMAN SHADER PARAMETERS

TECHNICAL GUIDE

Shelf Item Scripts
Shelf Item Scripts are Python scripts that you can run from Katana's UI in order to perform arbitrary
operations using Katana's APIs. Shelf item scripts implement Shelf Items, which are grouped into
Shelves.

Shelf Item Scripts can use Katana's APIs, like the NodegraphAPI, to access various parts of Katana that can be
queried or modified, for example a project's node graph, with its nodes, parameters, ports, and connections. This
chapter explains how they can be run from Katana's UI, what types of shelves there are, and where the folders and
script files that define shelves and shelf items are located.

Running Shelf Item Scripts from the UI
The shelf items that are available for you to run from Katana's UI are listed by shelves in the Shelf Actions pop-ups
that are shown when clicking the Shelf Actions toolbar buttons, which appear in different types of toolbars in
Katana's UI:

• The toolbar next to the main menu bar in Katana's main window.

• The widgets toolbar for a node that is edited in the Parameters tab.

60

TECHNICAL GUIDE 61

• The toolbar in the Scene Graph tab.

The shelves and shelf items listed in the Shelf Actions pop-up of the Parameters tab are considered to be specific
to the type of node that is edited, but this is not enforced: you are free to perform any operation available through
Katana APIs or provided by external libraries.

Likewise, the shelves and shelf items listed in the Shelf Actions pop-up of the Scene Graph tab are considered to
be dedicated to working with the scene graph.

Types of Shelves
There are three types of shelves:

SHELF ITEM SCRIPTS | TYPES OF SHELVES

TECHNICAL GUIDE 62

• Built-in shelves

• User-defined shelves

• Additional shelves

Built-in Shelves

Built-in shelves contain pre-defined shelf items that ship with Katana releases. In Shelf Actions pop-ups, their
names are shown with an (App) prefix. The shelf item scripts that correspond to shelf items in built-in shelves are
loaded from internal Katana resource directories.

You can view the source code of built-in shelf items through the UI, but you can't modify that source code or delete
the items or the shelves they are contained in. You can also not create new built-in shelves or shelf items. If you want
to create custom shelves and shelf items, use one of the following types of shelves: User-defined Shelves or
Additional Shelves.

User-defined Shelves

User-defined shelves are shelves that you can freely create, modify, and delete according to your needs. They are
specific to you as a user, so aren't normally available to other artists. They are shown with your username as a prefix,
for example (David), if your username is David.

Scripts that implement user-defined shelf items are loaded from the .katana directory of your $HOME folder. You
can create and delete shelves for user-defined shelf items, and inside of a shelf, create new shelf items, and edit their
source code right from within Shelf Actions pop-ups.

Additional Shelves

Additional shelves are shelves that are loaded from directories whose paths are listed in the KATANA_RESOURCES
environment variable. They can be used to share shelf item scripts between artists across a studio: you can simply
place the resource directory with a directory structure as described below in a network location, and add its path to
KATANA_RESOURCES.

The names of additional shelves are shown with an (other) prefix in Shelf Actions pop-ups. Just like built-in shelf
items, you can view the source code of additional shelf items through the UI, but you can't delete them or modify
their source code. You can also not add or remove additional shelves using the UI. They are defined exclusively
through script files in shelves folders on disk that are picked up through KATANA_RESOURCES.

Directory Structure for Shelf Item Scripts
Within a Katana resource directory, shelves and shelf items are loaded from sub-folders with the following names:

SHELF ITEM SCRIPTS | DIRECTORY STRUCTURE FOR SHELF ITEM SCRIPTS

TECHNICAL GUIDE 63

• Shelves - contains shelves that are shown in the Shelf Actions pop-up in the toolbar of Katana's main window.

• ShelvesNodeSpecific - contains shelves that are shown in Shelf Actions pop-ups of the Parameters tab.

• ShelvesScenegraph - contains shelves that are shown in the Shelf Actions pop-up of the Scene Graph tab.

Sub-folders of those folders represent the Shelves available in Shelf Actions pop-ups, and contain the shelf item
scripts that correspond to shelf items that are listed for a shelf that is selected in the UI.

Shelf item script files are ASCII text files that use the standard .py file extension of Python source files, and can be
edited in source code or regular text editor applications.

NOTE: There is a known issue with loading of shelves where shelf entries of the same name are shown
multiple times when multiple shelves of the same name are present in Katana resource directories. The
shelves' loading mechanism searches from left to right, and shelves in folders listed later win over shelves
in folders that are listed first. If multiple shelves with the same name are present in KATANA_RESOURCES
directories, all shelf items for that shelf are taken from the last shelf that was loaded with that same name.

Node-Specific Shelf Item Scripts
Node-specific shelf item scripts define shelf items that can be run from the Shelf Actions pop-up in the
Parameters tab for a node whose parameters are shown.

Pre-Defined Variables in Node-Specific Shelf Item Scripts

The following variable is pre-defined for use in node-specific shelf item scripts:

• node - The node whose parameters are shown in the Parameters tab.

NOTE: In addition to node, other variables may be present, which are set using node interaction
delegates. For more information on node interaction delegates, have a look at theNode Interaction
Delegates section in the Katana Technical Guide.

The following additional variables are defined for certain types of nodes using node interaction delegates:

Nodes Variables

Gaffer and
GafferThree

selectedItems - A list of paths of scene graph locations that are selected in the Gaffer
table in the parameter interface of those types of nodes.

GroupStack and
GroupMerge

selectedNodes - A list of nodes that are selected in the parameter interface of those types
of nodes.

SHELF ITEM SCRIPTS | NODE-SPECIFIC SHELF ITEM SCRIPTS

TECHNICAL GUIDE 64

Nodes Variables

MaterialStack selectedLocations - A list of paths of scene graph locations that are selected in the
parameter interface of MaterialStack nodes.

Targeting Node-Specific Shelf Item Scripts to Specific Types of Nodes

It is possible to add information to node-specific shelf item scripts so that their corresponding shelf items are shown
in Shelf Actions pop-ups of the Parameters tab only for specific types of nodes. A special SCOPE field in the
docstring of the shelf item script can be used to list names of node types to which the script applies. This information
is used in the UI to filter the list of shelf items shown for a selected shelf to only show those shelf items that are
compatible with the type of the node whose parameters are shown.

For example, the built-in node-specific shelf item script for updating OpScript nodes contains the following scope
information in its docstring:

"""
NAME: Upgrade OpScript Node To New API
SCOPE: OpScript

Migrates OpScript nodes from the legacy syntax to the modern syntax.

"""

Docstrings of Shelf Item Scripts
User-defined shelf item scripts that are created in the UI use the following module docstring at the top of the file:

"""
NAME: <the name of the script to show in the UI>
ICON: <the filename of icon to use in the UI>
DROP_TYPES: <currently unused>
SCOPE: <names of types of nodes to target by node-specific shelf items>
<description>

"""

The SCOPE field applies to node-specific shelf item scripts only (see section above).

SHELF ITEM SCRIPTS | DOCSTRINGS OF SHELF ITEM SCRIPTS

TECHNICAL GUIDE

Op API
The Op API supersedes the Scene Graph Generator (SGG) and the Attribute Modifier Plug-in (AMP)
APIs that were previously used in pre-2.0v1 versions of Katana. The Op API offers a unified interface
for manipulating the scene graph and modifying attributes, something that was previously only
possible through a combination of SGGs and AMPs. All of Katana's shipped Ops are written with the
Op API.

This more powerful Op API allows you to create plug-ins that can arbitrarily create and manipulate scene data. An Op
can be given any number of scene graph inputs, inspect the attribute data at any location from those inputs, and can
create, delete, and modify the attributes at the current location. Ops can also create and delete child locations, or
even delete themselves.

In other words, anything that you can do with any Katana node, you can do with an Op. Examples of the things you
can do with Ops include:

• Using context-aware generators and importers,

• Advanced custom merge operations,

• Instancing of hierarchies,

• Building network materials out of fragment parts, and

• Processing to generate geometry for crowds.

NOTE: Though the Op API is meant to take the place of the Scene Graph Generator and Attribute Modifier
Plug-in APIs, they can still be used in post-2.0v1 version of Katana.

Op API Basics
Geolib3 is a library for efficiently loading and processing scene graph data. The Geolib3 scene graph is defined as a
hierarchy of named scene graph locations, with each location having a set of named attributes. Scene graph
locations are generated and processed on demand to support large data sets.

Example scene graph locations:
/root

/root/world/geo/mesh

Example attributes:
StringAttr("hello world")

FloatAttr([1.0 2.0 3.0 …])

Operators (Ops) are the core processing unit of Geolib3, called upon to compute the scene graph’s locations and
attributes. Ops can both generate new scene graph locations - the equivalent to Scene Graph Generators - and can

65

TECHNICAL GUIDE 66

also process incoming attributes - the equivalent to Attribute Modifiers. In fact, Geolib3 Ops are a super-set of both
APIs and, in practice, no distinction is made between scene graph generation and modification. The code you need to
write for the Op API is also much simpler.

Example Op (Pseudocode):
attr = getAttribute("taco")

setAttribute("cheese", value)

createChild("world")

The OpTree

The tree of connected Operators (the OpTree), is both persistent and mutable. The persistent OpTree allows Katana
to inform Geolib3 of only the changes to the OpTree’s topology and arguments, rather than having to describe the
complete set of Ops again from scratch. This persistent OpTree is efficient by not only allowing simpler update
mechanisms when only a sub-set of Ops have changed, but is also more efficient from a computational standpoint,
as the underlying engine can potentially reuse previously computed (and cached) results.

Katana cannot directly query from arbitrary Ops in the OpTree. Instead, Clients are created and pointed at an Op.
Locations and attributes, which represent the cumulative result of the upstream OpTree, can then be computed
upon request.

The Runtime is the underlying computational engine responsible for maintaining the persistent representation of the
OpTree, scheduling Op execution, and delivering results to Clients. The runtime can be used either in a synchronous
or asynchronous manner. The synchronous interaction model is common at render time while the asynchronous
model is common during UI interaction.

OP API |

TECHNICAL GUIDE 67

Core Concepts with Geolib3
There are three core concepts in Geolib3 that pertains to the Op API: the Runtime, Ops, and Clients. In the sections
below, we'll address the host of the system - the Runtime - and the services it provides before looking closely at Ops
and the concept of the Client, and its use.

Geolib3: Into the Details

Geolib3 is Katana’s new deferred scene graph processing library. Geolib3 works at Katana’s core, processing and
generating scene graph locations on demand, to support large data sets. Geolib3 supports an asynchronous
processing model allowing the UI to remain responsive while scene graph data is being processed.

Operators (Ops) are the core processing unit of Geolib3. Ops can both generate new scene graph locations
(equivalent to Geolib2 Scene Graph Generators) and process incoming attributes (equivalent to Geolib2 Attribute
Modifiers).

Katana uses Clients to query attributes on specific locations when requested by the UI, for example to show
attribute values in the Attributes tab, or during rendering, when the scene graph is traversed and processed to
deliver data to the selected renderer.

Differences Between Geolib2 and Geolib3
• Geolib2 did not have a persistent scene graph data model. Conceptually, the entire scene graph is reconstructed on

every edit. Conversely, Geolib3’s OpTree is persistent, allowing for inter-cook scene data re-use.

• Geolib2’s scene graph was traversed using an implicit index mechanism, for example getFirstChild(),
getNextSibling(), with scene graph location names determined by the name attribute. In Geolib3, children are
natively indexed by name. Thus, in Geolib3 you can selectively cook a location, by name, without cooking any
peers. Consequently, the name attribute is meaningless. However, this also implies that locations cannot rename
themselves (you can rename children, however).

• Geolib2 was not amenable to either asynchronous or concurrent evaluation. Geolib3 supports both of these
features.

The Runtime

The Runtime is responsible for coordinating Op execution, and provides a few key services:

• A means of configuring and modifying the persistent OpTree. This includes creating instances of Ops, connecting
Ops to each other, and providing them with arguments to determine their behavior. Within Katana, artists interact
with nodes rather than the OpTree directly. There is roughly a 1:1 correspondence between nodes in the node
graph and Ops in the OpTree.

OP API | CORE CONCEPTS WITH GEOLIB3

TECHNICAL GUIDE 68

• The ability to register your interest in specific scene graph locations and their attributes that are produced as a
result of evaluating the OpTree.

Internally, the Runtime has a number of other responsibilities including:

• Managing the scheduling and evaluation of Ops.

• Observing dependencies between Ops to ensure correct scene graph generation.

• Caching of location and attribute data for retrieval.

• Distribution of location and attribute data to clients.

The Runtime is able to use all the information it gathers from your interactions with it to efficiently manage
resources. For example, if you don't attach any Clients to the OpTree then it does not need to evaluate any Ops or, if
no dependencies exist between two Ops, it can concurrently schedule their evaluation to make best use of multicore
systems.

From a technical perspective, you can interact with the Runtime through a C++ or Python interface, which provides a
great deal of flexibility in how you configure your OpTree and listen to scene graph updates.

Interface Languages Available

Ops C++ and Lua (with OpScript)

Client Configuration C++ and Python

OpTree Configuration C++ and Python

Ops

A Katana Geolib3 Op is the lowest level scene graph processing “unit”, responsible for building or processing scene
graph data on demand. All scene graph loading/processing functionality internal to Katana is implemented using the
same Op API available for your own custom development. Conceptually, Ops are a super-set of the old geometry
APIs in Katana, including Scene Graph Generators and Attribute Modifiers.

Examples of what Ops can do include:

• Setting attributes

• Creating child scene graph locations

• Deleting child scene graph locations

• Getting attributes from the incoming scene graph

• Getting the available Op arguments.

Rules for Ops include:

• The OpTree defines the connectivity for what an Op sees as its input.

OP API | CORE CONCEPTS WITH GEOLIB3

TECHNICAL GUIDE 69

• Each Op is responsible for registering a stateless function, which is called on demand at all locations on the input
scene graph. This function is also referred to, later on, as the Cook function.

• For Ops that do not have an input, the function is called at the root location giving them the opportunity to
construct a more complex scene graph.

• From the perspective of an Op implementer, the incoming scene is immutable. Only the output scene can be
modified.

• Although an Op can run on many different locations, it's called separately for each location. Each time an Op is
called, the result is a single scene graph location - the 'output location'.

• Ops are expected in their implementation to do the minimum amount of work necessary to produce the specified
scene graph location, in order to be a “good citizen” in a deferred processing system.

• Roughly speaking, when a downstream client is evaluated, all upstream Ops in the OpTree are run over all scene
graph locations that exist (and are expanded) in the incoming tree. While there are more sophisticated API calls to
change which Op runs at child locations, substituting out your OpArgs, the Optype, or even calling into another Op
entirely, these can be ignored during your initial exposure to Op writing.

• An Op is evaluated from a starting location. This is usually the familiar /root, however, Geolib3 provides
mechanisms that allow you to redefine an Op’s starting location. The ability to change an Op’s starting location is
extremely powerful and allows you to write Ops than can work either relative to your start location or in a more
absolute manner.

Ops have two types of input:

1. Op arguments - these are provided by the user to govern how the Op behaves when evaluated at a particular
scene graph location. When you instantiate an Op you provide a set of root location arguments, which are the
arguments the Op receives when run at its starting location. For instance, parameter values from nodes and
system args, such as the current frame time, are passed to Ops using Op Arguments.

2. Scene graph input(s) - locations and attributes that have been produced by other upstream Ops in the OpTree,
which are connected to the Op currently being evaluated, are available as input and query-able in a read-only
state.

OP API | CORE CONCEPTS WITH GEOLIB3

TECHNICAL GUIDE 70

The Runtime evaluates your Op at, potentially many, scene graph locations and it is up to you, the Op Writer, to
determine the action taken at any particular location. As an Op Writer, you have access to a rich API, whose
functionality can be broken down into three areas:

• Functions to interrogate the scene graph location the Op is currently being evaluated at.

• Functions to interrogate the state of the connected incoming scene graph.

• Functions to modify the output scene graph as a result of evaluating the Op at a given location. In addition to
changing the output scene graph, it is also possible for an Op to change, at evaluation time, what Op and
corresponding arguments are evaluated at child locations. It's also possible for an Op to arbitrarily execute other
Ops during its evaluation.

Clients

In order to view the scene graph locations and attributes generated as a result of evaluating Ops, such as to walk the
scene graph to declare data to a renderer, or to inspect the values in the Attributes tab, we use Clients. A Client is
connected to a specific Op in the OpTree and, in this context, we refer to it as a Terminal Op. We can control the
scene graph locations we are interested in receiving updates for using the Client API.

To ensure the Runtime re-computes scene graph locations for every commit, set these locations as active. To ensure
the Runtime re-computes a scene graph location’s children whenever it is cooked, set the location as open. As an
extension to the open state, you can set a location to recursive open, which also also sets the child locations
produced as a result of evaluating that location to open in a recursive manner. This provides behavior the same as
the existing forceExpand option. To conduct a one-shot computation of a scene graph location, you can instruct the
Runtime to ready it.

Once you have created a Client, connected to a specific Op, you can then declare locations in the scene graph that
you are interested in getting data from. The client then receives events from the Geolib3 Runtime when the
requested data is ready.

Examples of Clients include:

• The Attributes tab - sets a single location in the Scene Graph tab as active. When anything at that location is
changed the Attributes tab is notified of the updates.

• The Scene Graph tab - sets /root as active. As you open locations in the UI, these locations are set to open on the
Client. On subsequent updates to the OpTree, open portions of the scene graph are automatically recomputed.

• Renderers - typically make repeated calls to the Client to ready a location, read the required attributes, declare
them to the renderer’s API, then immediately discard the data.

For more information on how to attach a Client to a Terminal Op, how to maintain the active and open locations,
and how to ready locations, refer to Client Configuration on page 83.

OP API | CORE CONCEPTS WITH GEOLIB3

TECHNICAL GUIDE 71

The Op API Explained
This section covers the following elements of the Op API:

• The cook interface, what it is, and how it fits into Geolib3.

• Op arguments and modifying arguments that are passed down to children.

• Scene graph creation and hierarchy topology management, including how to create and delete scene graph
locations, and controlling where an Op is executed.

• Reading scene graph input from potentially many inputs, and the associated issues.

• CEL and other utility functions that are available to you, as an Op writer, to accomplish common tasks.

• Integrating your Op with the node graph.

You can find concrete examples of the above concepts in the $KATANA_HOME/plugins/Src/Ops directory where
the source code for a number of core Ops is kept. Below is a brief overview of some of these Ops, and examples of
where they are currently used:

• AttributeCopy - provides the implementation for the AttributeCopy node, which copies attributes at locations from
one branch of a scene to another.

• AttributeSet - the back-end to the AttributeSet node, it allows you to set, change, and delete attributes at arbitrary
locations in the incoming scene graph.

• HierarchyCopy - like the AttributeSet Op, it's the back-end to the HierarchyCopy node, allowing you to copy
arbitrary portions of scene graph hierarchy to other parts of the scene graph.

• Prune - removes any locations that match the CEL expression you provide from the scene.

• StaticSceneCreate - produces a static hierarchy based on a set of arguments you provide. This Op is the core of
HierarchyCreate, and is used extensively by other Ops and nodes to produce the hierarchies of locations and
attributes that they need. For example, the CameraCreate node uses a StaticSceneCreate Op to produce the
required hierarchy for a camera location.

The Cook Interface

The cook interface is the interface Geolib3 provides to implement your Op’s functionality. You are passed a valid
instance of this interface when your Op’s cook() method is called. As discussed above, this interface provides
methods that allow you to interrogate arguments, create or modify scene graph topology, and read scene graph
input. You can find a full list of the available methods on the cook interface in $KATANA_HOME/plugin_
apis/include/FnGeolib/op/FnGeolibCookInterface.h.

OP API | THE OP API EXPLAINED

TECHNICAL GUIDE 72

Op Arguments

As discussed previously, Ops are provided with two forms of input: scene graph input created by upstream Ops and
Op arguments, which are passed to the Op to configure how it should run. Examples of user arguments include CEL
statements describing the locations where the Op should run, a file path pointing to a geometry cache that should be
loaded, or a list of child locations the Op should create.

We’ll first look at the simple case of interrogating arguments and then look at a common pattern of recursively
passing arguments down to child locations.

Reading Arguments

Arguments are passed to your Op as instances of the FnAttribute class. The cook interface has the following
function call to retrieve Op arguments:
FnAttribute::Attribute getOpArg(

 const std::string& specificArgName = std::string()) const;

For example, the StaticSceneCreate Op accepts a GroupAttribute called a that contains a list of attributes, which
contain values to set at a given location. This appears as:

StaticSceneCreate handles the a argument as follows:
FnAttribute::GroupAttribute a = interface.getOpArg("a");

if (a.isValid())

{

 for (int i = 0; i < a.getNumberOfChildren(); ++i)

{

 interface.setAttr(a.getChildName(i), a.getChildByIndex(i));

 }

}

OP API | THE OP API EXPLAINED

TECHNICAL GUIDE 73

NOTE: It's important to check the validity of an attribute after retrieving it using the isValid() call. You
should check an attribute’s validity every time you are returned an attribute from the cook interface.

Passing Arguments to Child Locations

There is a common recursive approach to passing arguments down to child locations on which an Op runs. The
StaticSceneCreate Op exemplifies this pattern quite nicely.

StaticSceneCreate sets attributes and creates a hierarchy of child locations based on the value of one of the
arguments passed to it. This argument is a GroupAttribute that for each location describes:

• a - attributes values

• c - the names of any child locations

• x - whether an additional Op needs to be evaluated at that location

To pass arguments to the children it creates, it peels off the lower layers of the c argument and passes them to its
children. Conceptually, you can consider it as follows (details of a and x are omitted for brevity):

The Op running at its current location reads a, c, and x. For each child GroupAttribute of c it creates a new child
location with the GroupAttribute’s name, for example, child1/child2, and pass the GroupAttribute as that location’s
arguments.

Creating a child in code makes use of the following key function call:
void createChild(const std::string& name,

 const std::string& optype = "",

 const FnAttribute::Attribute& args = FnAttribute::Attribute(),

 ResetRoot resetRoot = ResetRootAuto,

 void* privateData = 0x0,

 void (*deletePrivateData)(void* data) = 0x0);

The createChild() function creates a child of the location where the Op is being evaluated at. The function also
instructs the Runtime the type of Op that should run there (by default, the same type of Op as the Op that called
createChild()) and the arguments that should be passed to it. In StaticSceneCreate this looks as follows:

OP API | THE OP API EXPLAINED

TECHNICAL GUIDE 74

for (int childindex = 0; childindex < c.getNumberOfChildren(); ++childindex)

{

 std::string childName = c.getChildName(childindex);

 FnAttribute::GroupAttribute childArgs = c.getChildByIndex(childindex);

 interface.createChild(childName, "", childArgs);

}

Scene Graph Creation

One of the main tasks of an Op is to produce scene graph locations and attributes. The Op API offers a rich set of
functionality in order to do this. There are five key functions that can be used to modify scene graph topology and
control Op execution, which we'll explain below.

NOTE: It is important to remember the distinction between the set of functions described here and those
described in Reading Scene Graph Input on page 77. All functions described here operate on the output
of an Op at a given Scene Graph location. The functions described in Reading Scene Graph Input
relate only to reading the scene graph data on the input of an Op at a given scene graph location, which is
immutable.

The setAttr() Function
void setAttr(const std::string& attrName,

 const FnAttribute::Attribute& value,

 const bool groupInherit = true);

The setAttr() function allows you to set an attribute value at the location at which your Op is currently being
evaluated. For example, to set a StringAttribute at your Op’s root location you can do the following:
if (interface.atRoot())

{

 interface.setAttr("myAttr", FnAttribute::StringAttribute("Val"));

}

It is not possible to set attributes at locations other than those where your Op is currently being evaluated. If you call
setAttr() for a given attribute name multiple times on the same location, the last one called is the one that is used.
The groupInherit parameter is used to determine if the attribute should be inherited by its children.

NOTE: Since setAttr() sets values on the Op’s output, while getAttr() is reading immutable values on a
given input, if a call to setAttr() is followed immediately by getAttr(), the result is still just the value from
the relevant input, rather than returning the value set by the setAttr().

OP API | THE OP API EXPLAINED

TECHNICAL GUIDE 75

The createChild() Function
void createChild(const std::string& name,

 const std::string& optype = "",

 const FnAttribute::Attribute& args = FnAttribute::Attribute(),

 ResetRoot resetRoot = ResetRootAuto,

 void* privateData = 0x0,

 void (*deletePrivateData)(void* data) = 0x0);

The createChild() function allows you to create children under the scene graph location at which your Op is being
evaluated. In the simplest case it requires the name of the location to create, and arguments that should be passed
to the Op that is evaluated at that location. For example:
interface.createChild(childName, "", childArgs);

If you specify optype as an empty string, the same Op that called create child is evaluated at the child location.
However, you can specify any other optype and that is run instead.

NOTE: Multiple calls to createChild() for the same named child location causes the last specified optype
to be used, that is to say, successive calls to createChild() mask prior calls.

The resetRoot parameter takes one of three values:

• ResetRootTrue - the root location of the Op evaluated at the new location is reset to the new location path.

• ResetRootAuto (the default) - the root location is reset only if optype is different to the Op calling createChild().

• ResetRootFalse - the root location of the Op evaluated at the new location is inherited from the Op that called
createChild().

This parameter controls what is used as the rootLocation for the Op when it is run at the child location.

The execOp() Function
void execOp(const std::string& opType,

 const FnAttribute::GroupAttribute& args);

By the time the Geolib3 Runtime comes to evaluating the OpTree, it is static and fixed. The cook interface provides a
number of functions, which allow you to request that Ops which were not declared when the OpTree was
constructed, be executed during evaluation time of the OpTree.

We have already seen how createChild() allows you to do this by allowing you to specify which Op is run at the child
location. The execOp() function allows an Op to directly call the execution of another Op, providing another
mechanism to evaluate Ops, which are not directly declared in the original OpTree. This differs from the createChild
() behavior, where we declare a different Op to run at child locations in a number of ways, including that:

• It should be thought of as a one-shot execution of another Op, and

OP API | THE OP API EXPLAINED

TECHNICAL GUIDE 76

• The Op specified in the execOp() call is evaluated as if it were being run at the same location with the same root
location as the caller.

You can see execOp() in action in the StaticSceneCreate Op, where Op types are specified in the x argument:
// Exec some ops?

FnAttribute::GroupAttribute opGroups = interface.getOpArg("x");

if (opGroups.isValid())

{

 for (int childindex = 0; childindex < opGroups.getNumberOfChildren();

 ++childindex)

{

 ...

 if (!opType.isValid() || !opArgs.isValid())

{

 continue;

 }

 interface.execOp(opType.getValue("", false), opArgs);

 }

}

The deleteSelf() Function
void deleteSelf();

Thus far, we have only seen mechanisms to add data to the scene graph, but the deleteSelf() function and the
associated function deleteChild() allow you to remove locations from the scene graph. Their behavior is self-
explanatory but their side effects are less intuitive and are explained fully in Reading Scene Graph Input. For now,
however, an example for what a Prune Op may look like by using the deleteSelf() function call is shown below:
// Use CEL Utility function to evaluate CEL expression

FnAttribute::StringAttribute celAttr = interface.getOpArg("CEL");

if (!celAttr.isValid())

 return;

Foundry::Katana::MatchesCELInfo info;

Foundry::Katana::MatchesCEL(info, interface, celAttr);

if (!info.matches)

 return;

// Otherwise, delete myself

interface.deleteSelf();

return;

OP API | THE OP API EXPLAINED

TECHNICAL GUIDE 77

The stopChildTraversal() Function
void stopChildTraversal();

The stopChildTraversal() function is one of the functions that allows you to control on which locations your Op is
run. It stops the execution of this Op at any child of the current location being evaluated. It is best explained by way
of example.

Say we have an input scene:
/root

 /world

 /light

Say what we want is:
/root

 /world

 /geo

 /taco

 /light

So we use a StaticSceneCreate Op to create this additional hierarchy at the starting location /root/world:
/geo

 /taco

However, if we don’t call stopChildTraversal() when the StaticSceneCreate Op is at /root/world then this Op is run
at both /root/world and /root/world/light, resulting in:
/root

 /world

 /geo

 /taco

 /light

 /geo

 /taco

To summarize, stopChildTraversal() stops your Op from being automatically evaluated at any of the child locations
that exist on its input. The most common use of stopChildTraversal() is for efficiency. If we can determine, for
example, by looking at a CEL expression, that this Op has no effect at any locations deeper in the hierarchy than the
current one, it's good practice to call stopChildTraversal() so that we don’t even call this Op on any child locations.

Reading Scene Graph Input

There are a range of functions that read the input scene graph produced by upstream Ops. All these functions allow
only read functionality; the input scene is immutable.

OP API | THE OP API EXPLAINED

TECHNICAL GUIDE 78

The getNumInputs() function
int getNumInputs() const;

An Op can have the output from multiple other Ops as its input. Obvious use cases for this are instances where you
wish to merge multiple scene graphs produced by different OpTrees into a single scene graph, comparing attribute
values in two scene graph states, or copying one scene graph into another one. The getNumInputs() function
allows you to determine how many Ops you have as inputs, which is a precursor to interrogating different branches
of the OpTree for scene graph data.

WARNING: It is worth noting that, given the deferred processing model of Geolib3, the “get” functions,
such as getAttr(), getPotentialChildren(), doesInputExist(), may ask for scene graph information that
has not yet been computed.

In such this instance, your Op’s execution is aborted (using an exception) and re-scheduled when the
requested location is ready. Thus, Op writers should not attempt to blindly catch all exceptions with “(...)”
and, furthermore, should attempt to write exception-safe code.

If a user Op does accidentally catch one of these exceptions, the runtime detects this and considers the
results invalid, generating an error in the scene graph.

If your Op is only reading from its default input location (and index) or its parents, “recooks” are unlikely to
occur. However, for scattered access queries, either on the input location path or on the input index,
"recooks" are likely. If an Op needs to do scattered access queries from a multitude of locations, which
would otherwise have unfortunate performance characteristics, an API call - prefetch() - is available and is
discussed in further detail later on.

The getAttr() Function
FnAttribute::Attribute getAttr(

 const std::string& attrName,

 const std::string& inputLocationPath = std::string(),

 int inputIndex = kFnKatGeolibDefaultInput) const;

It is often necessary to perform some action or compute a value based on the result stored in another attribute. The
getAttr() function allows you to interrogate any part of the incoming scene graph by providing the attribute name
and a scene graph location path (either absolute or relative). Additionally, you can specify a particular input index to
obtain the attribute value from, which must be smaller than the result of getNumInputs(). It is important to note
that getAttr always returns the value as seen at the input to the Op. If you wish to consider any setAttrs already
made, either by yourself or another Op invoked with execOp, you must use getOutputAttr.

OP API | THE OP API EXPLAINED

TECHNICAL GUIDE 79

The following diagram illustrates some of the subtleties of this and, most importantly, that getAttr in an execOp Op,
only sees the results of the calling Op when the query location is the current location, otherwise you see the input to
the calling Op’s ‘slot’ in the Op graph.

The getPotentialChildren() Function
FnAttribute::StringAttribute getPotentialChildren(

 const std::string& inputLocationPath = std::string(),

 int inputIndex = kFnKatGeolibDefaultInput) const;

In Scene Graph Creation the function deleteSelf() was introduced, noting that the consequence of such a call is
more subtle than it may have first appeared. When an upstream Op is evaluated and creates children, if downstream
Ops have the ability to delete them, the upstream Op can only go so far as to state that the children it creates may
potentially exist after a downstream Op has been evaluated at those child locations. This is because the Op has no
knowledge of what a downstream Op may do when evaluated at such a location. To that extent,
getPotentialChildren() returns a list of all the children of a given location on the input of an Op.

The prefetch() Function
void prefetch(const std::string& inputLocationPath = std::string(),

 int inputIndex = kFnKatGeolibDefaultInput) const;

Given the concurrent nature of Geolib3, it's entirely possible that an attribute or location being requested on the
input may not yet have been computed, in which case your Op is rescheduled and re-evaluated at a later point. The
prefetch function can be called from within your Op’s cook() function to instruct the Runtime that you require a
given location soon. Essentially, you can think of it as an explicit statement to the Runtime of your dependency on
another location.

OP API | THE OP API EXPLAINED

TECHNICAL GUIDE 80

TIP: You can use prefetch() to maintain good code practice by using it as early as possible in the code for
your Op's cook function. For instance, if your Op depends on data from locations other than the current
output location, from any of the inputs, this would be an ideal time to use prefetch().

CEL and Utilities

There are a number of tasks that Ops are frequently required to complete, such as:

• Creating a hierarchy of locations,

• Determining whether an Op should run based on a CEL expression argument,

• Reporting errors to the user through the scene graph, and

• Obtaining well-known attribute values in an easy to use format, for example, bounding boxes.

Currently you can find headers for these utilities in:

• $KATANA_HOME/plugin_apis/include/FnGeolib/op/FnGeolibCookInterface.h

• $KATANA_HOME/plugin_apis/include/FnGeolib/util/*

The utility implementations live in:

• $KATANA_HOME/plugin_apis/src/FnGeolib/op/FnGeolibCookInterfaceUtils.cpp

• $KATANA_HOME/plugin_apis/src/FnGeolib/util/*

Many of these utilities are self-documenting and follow similar patterns. The following example demonstrates using
the CEL matching utilities:
// Should we run here? If not, return.

FnAttribute::StringAttribute celAttr = interface.getOpArg("CEL");

if (!celAttr.isValid())

 return;

Foundry::Katana::MatchesCELInfo info;

Foundry::Katana::MatchesCEL(info, interface, celAttr);

if (!info.canMatchChildren)

{

 interface.stopChildTraversal();

}

if (!info.matches)

 return;

In the example above, a couple of things are achieved:

1. We determine whether the CEL expression could potentially match any of the children, and if not, we direct the
Runtime to not evaluate this Op at child locations.

2. We determine whether we should run at this location, and return early if not.

OP API | THE OP API EXPLAINED

TECHNICAL GUIDE 81

When using the CEL library you are required to link against libCEL.so, which you can find in $KATANA_
HOME/bin/Geolib3/internal/CEL.

Feel free to explore the range of utility functions available, as it can increase your productivity when writing Ops.

Integrating Custom Ops
At start up, Katana looks for .so files in every Ops sub-folder for each entry within the KATANA_RESOURCES
environment variable. If a .so file contains the declaration for one or more Ops, those Ops are added to the internal
registry of available Ops. There are two methods for integrating these custom Ops into Katana: the GenericOp node
and the Op Toolchain.

TIP: Custom Ops can also be placed in the Libs sub-folder within KATANA_RESOURCES. The Ops are loaded
in Katana regardless of whether they are placed in the Libs or Ops folders.

Building Ops

The .cpp files in the plugin_apis folder are needed when building an Op and, more generally, when building plug-ins.
These files provide a convenient C++ interface to access functionality exposed by Katana. This functionality is
implemented in different shared libraries and exposed to plug-ins through a C interface, which is wrapped in a 'suite'.

For example, the FnGeolibCookInterfaceSuite.h.cpp files provide a GeolibCookInterface class to manage the
interface object passed as an argument to the cook() methods in Ops. Looking at the class implementation, you'll
see that the methods aren't actually doing much more than calling through a 'suite'.

A 'suite' is a C struct, holding function pointers for the functions exposed from an internal library. In the
GeolibCookInterface case, the suite is defined in $KATANA_HOME/plugin_apis/include/FnGeolib/suite
/FnGeolibCookInterfaceSuite.h.

When plug-ins are loaded, Katana takes care of binding those pointers with the appropriate functions, implemented
in internal libraries. We basically expose a C API, but wrapped in a C++ interface on the client side. That's why the
.cpp files kept in plugin_apis/src/*/* are needed.

GenericOp

GenericOp is a fixed-function node useful for testing Ops during development and for use within Super Tools and
macros where the parameter UI isn't directly exposed. It's convenient because it doesn't require a node type, but it
also has a few limitations.

To run your Op through a GenericOp:

1. Create a GenericOp node in the Node Graph tab.

OP API | INTEGRATING CUSTOMOPS

TECHNICAL GUIDE 82

2. Enter the name of your Op in the opType field. Optionally, rename the node to something that accurately
describes its function.

3. Use the Add menu of the opArgs parameter to add arguments that your Op requires.

4. Use the wrench menu on each parameter to rename the parameter and configure how the UI is presented.

5. Configure the node’s inputs and outputs, as you would with any other node.

The GenericOp node converts the contents of its opArgs parameter into the opArgs GroupAttribute required by the
Op using an existing parameter-to-attribute convention established by the AttributeSet node.

The convention follows that:

• String parameters become StringAttributes.

• Non-empty Group parameters become GroupAttributes.

• Number and numberArray parameters are converted into FloatAttributes. You can specify a different numeric
attribute type by adding a peer parameter with the same name prefixed with "__type__" whose value is "IntAttr",
"DoubleAttr" or "FloatAttr". Note: Because the user parameter editor disallows parameter names starting with "__"
(for legacy reasons) it is not possible to set this parameter via the UI, it can however, be created or renamed via the
scripting interface.

As a convenience, and to avoid the number types issue mentioned above, GenericOp node instances have a method
for constructing the "opArgs" parameter hierarchy (with any necessary "__type__" parameters) from an
FnAttribute.GroupAttribute or ScenegraphAttr.GroupAttr:
genericOpNode = NodegraphAPI.CreateNode("GenericOp", NodegraphAPI.GetRootNode())

genericOpNode.buildArgsParametersFromAttr(

 FnAttribute.GroupBuilder()

 .set("some.nested.int_param", FnAttribute.IntAttribute(4))

 .set("some.nested.float_param", FnAttribute.FloatAttribute(42.0))

 .set("my_string_array", FnAttribute.StringAttribute(["a", "b", "c"]))

 .build())

One minor limitation of this method is that there's currently no means to force a single element attribute to be
constructed as an array parameter. This doesn't affect the resulting attribute built from the parameter, but is a
concern if you want to change the array length following creation.

Valid Ops cooked from input ports of GenericOp are added in sequence through setOpInputs(). These are not
added sparsely and no error checking is done, so invalid inputs are omitted. That's only relevant if your Op requires
more than one input and depends on knowing from which absolute port index an input Op was cooked.

The NodeTypeBuilder Class

Katana provides the NodeTypeBuilder class to simplify the definition of new nodes to represent your Op in the
node graph. For more information on the NodeTypeBuilder class, refer to NodeTypeBuilder on page 91.

OP API | INTEGRATING CUSTOMOPS

TECHNICAL GUIDE 83

Op Toolchain

There is a very simple toolchain to allow you to produce the boilerplate code required to write your own Ops, the
steps below guide you through the process:

1. Run the CreateOp.py utility script
$KATANA_HOME/plugin_apis/CreateOp.py <Op_Name_1> ... <Op_Name_N>

2. The CreateOp.py script creates a folder in your current working directory for each <Op_Name> you specify. The
hierarchy of the directory created is:
OpName

 src/

 op.cpp

 README

 Makefile

3. If you wish to create the Ops in a different directory you can specify it using:
-d <dir_name>

4. By default, op.cpp contains an empty Op. By including the -i flag, a simple “hello world” example is generated.

5. Ensure you have set the environment variable $KATANA_HOME to point at your Katana install directory, then to
build and install the Op simply type:
make && make install

6. This generates a shared object and copy it to $KATANA_HOME/bin/Geolib3/Ops.

NOTE: Custom Ops can be sourced from the ‘Ops’ sub-directory of any KATANA_RESOURCES path.

Client Configuration
You can point a Client at a particular Op, configure it to listen to particular locations, and interrogate the scene graph
locations and attributes that are returned by the Runtime. With client configuration, you are also able to use
transactions, which are objects used to batch together operations that are submitted to the Runtime at one time.

The first step in Client configuration is the setup of the client with the Runtime. To do this:
Create the Runtime and a transaction to batch our work for the Runtime into

runtime = FnGeolib.GetRegisteredRuntimeInstance()

transaction = runtime.createTransaction()

Create the Client and point it a terminalOp

client = transaction.createClient()

transaction.setClientOp(client, terminalOp)

OP API | CLIENT CONFIGURATION

TECHNICAL GUIDE 84

Push these changes to the Runtime

runtime.commit([transaction,])

Set a location we're interested in as active

client.setLocationsActive(('/root/world',))

We can then ask the Client for information about the locations we’ve registered interest in, at any point:
Get the list of changed locations

locationDataChangeEvents = client.getLocationEvents()

if not locationDataChangeEvents:

 return

Iterate over each location we've been informed about and interrogate it

for event in locationDataChangeEvents:

 location = event.getLocationPath()

 locationData = event.getLocationData()

 locationAttrs = locationData.getAttrs()

 if not isinstance(locationAttrs, FnAttribute.GroupAttribute):

 continue

Only look at locations of type 'light'

typeAttr = locationAttrs.getChildByName('type')

if (not isinstance(typeAttr, FnAttribute.StringAttribute)

 or typeAttr.getValue('', False) != 'light'):

 continue

Only want to look at xform or material updates

for attrName in ('xform.matrix', 'material',):

 attr = locationAttrs.getChildByName(attrName)

Do something with attr

Advanced Topics

Caching

There are a number of caching systems maintained by various Geolib3 sub-systems. This section covers Runtime-
based caches and Client LocationData caching.

OP API | ADVANCED TOPICS

TECHNICAL GUIDE 85

Runtime-based Caching

The Geolib3 Runtime maintains a cache of previously computed (Op, location) pairs. It maintains another cache for
"scattered queries", made during the cooking process. The lifetime of entries in these caches is explicitly managed
through the Client API; see FnGeolibRuntime.h : client.evict(primaryPathToKeep).

Calling evict() has the effect of clearing the scattered query cache completely. This is data that was asked for in the
process of cooking locations but wasn't in the ancestral path of the location being cooked. It also empties the scene
data store of any locations, which aren't in the ancestral path of primaryPathToKeep.

The explicit management of these caches is currently built into the FnSceneGraphIterator API, and in the Arnold and
PRMan renderer plug-ins. As an example, WriteRI_Group() demonstrates this:
childSgIterator = sgIterator.getFirstChild(EVICT_ON_CHILD_TRAVERSAL);

By making the management explicit but, in the majority of cases, handled by supplied APIs, you are given the
flexibility to manage eviction at a fine-grained level. It is envisaged that per-site customizations can be made to allow
custom attribute conventions, which indicate ‘eviction points’ during the traversal of the scene.

Client-Based Caching

When using Clients to consume scene graph data you are able to take advantage of per-client caching. This is useful if
you require a pool of all previously received location events, as the default behavior is for the Runtime to push the
LocationEvent to your Client and then to forget about it. The consequence of this is that the Runtime only sends you
a LocationEvent once. The API provides the following functions to manage this:
void setEventCachingEnabled(bool enabled);

This enables event caching on the Client, which causes all location events delivered to, and subsequently extracted
through getLocationEvents(), to be cached so they can be retrieved by a call to getCachedLocation().
bool isEventCachingEnabled() const;

Returns true if event caching is enabled.
std::pair<LocationData, bool> getCachedLocation(

 const std::string & locationPath) const;

If event caching is enabled, this returns the location data most recently returned by getLocationEvents(). If there
are pending events to be retrieved by getLocationEvents() they are not added to the Client cache until
getLocationEvents() has been invoked. The function returns a pair containing the LocationData corresponding to
the specified scene graph location, and returns true if the cache lookup was successful. It returns false if an error
occurred for any reason.

NOTE: These are your own ‘private’ caches, unaffected by the evict() function, discussed earlier.

OP API | ADVANCED TOPICS

TECHNICAL GUIDE 86

ScenegraphAttr Porting Guide

Introduction

In Katana 1.x, two classes are used for representing scene graph attributes, FnAttribute is used exclusively by C++
plug-ins, while ScenegraphAttr is used in both C++ and Python contexts.

In Katana 2.x, FnAttribute replaces ScenegraphAttr as the preferred class for handling attribute data.
ScenegraphAttr is now a legacy emulation layer on top of FnAttribute.

Overview of Changes

Availability of ScenegraphAttr

ScenegraphAttr is no longer available from C++ plug-ins. Ops and other C++ plug-ins should use FnAttribute
instead.

ScenegraphAttr is still available from within Python contexts. Functions that previously returned a
ScenegraphAttr object continue to do so, this includes, for example, GetAttr() from AttributeScript nodes and
getAttribute() on GeometryProducers.

Removal of ScenegraphAttr methods

Several methods previously available on ScenegraphAttr objects have been removed in Katana 2.0.
getNearestSampleBuffer() and getXMLElement() were removed as they were esoteric and unhelpful.
writeBinary() has been replaced by getBinary(), which is simpler and more general.

Forwards-compatibility

Methods that were previously only available on FnAttribute have been backported to ScenegraphAttr. This
was done such that script-writers can modify their scripts to use new FnAttribute methods without adding
temporary code to convert between types.

As ScenegraphAttr is just an emulation layer atop FnAttribute, you can also convert ScenegraphAttr objects
to FnAttribute objects through the getFnAttr() method. As the underlying data is the same, the conversion is
essentially toll-free.

OP API | SCENEGRAPHATTR PORTING GUIDE

TECHNICAL GUIDE 87

Porting from 1.x ScenegraphAttr to 2.0 ScenegraphAttr

Data Attributes (strings, ints, floats, doubles)

Methods added
• getBinary()

• getFnAttr()

• getHash()

• getHash64()

• parseBinary() [static]

• parseXML() [static]

Methods removed
• getNearestSampleBuffer()

• getXMLElement()

• writeBinary()

Group Attributes

Methods added
• getBinary()

• getChildByIndex() [equivalent to childByIndex()]

• getChildByName() [equivalent to childByName()]

• getChildName()

• getFnAttr()

• getGroupInherit() [equivalent to inheritChildren()]

• getHash()

• getHash64()

• getNumberOfChildren()

• parseBinary() [static]

• parseXML() [static]

Methods removed
• getNearestSampleBuffer()

• getXMLElement()

• writeBinary()

OP API | SCENEGRAPHATTR PORTING GUIDE

TECHNICAL GUIDE 88

Porting from 1.x ScenegraphAttr to 2.0 FnAttribute

Data Attributes

Methods added
• getBinary()

• getBoundingSampleTimes()

• getHash()

• getHash64()

• getNumberOfTimeSamples() [renamed from getNumTimeSamples()]

• getSampleTime()

• getValue()

• parseBinary() [static]

• parseXML() [static]

Methods removed
• getInterpSample()

• getNearestSampleBuffer()

• getNumTimeSamples() [renamed to getNumberOfTimeSamples()]

• getXMLElement()

• type() [use built-in type() or isinstance()]

• writeBinary() [use getBinary()]

Group Attributes

Methods added
• getBinary()

• getChildByIndex() [renamed from childByIndex()]

• getChildByName() [renamed from childByName()]

• getChildName()

• getGroupInherit() [renamed from inheritChildren()]

• getHash()

• getHash64()

• getNumberOfChildren() [renamed from numChildren()]

• parseBinary() [static]

• parseXML() [static]

OP API | SCENEGRAPHATTR PORTING GUIDE

TECHNICAL GUIDE 89

Methods removed
• childByIndex() [renamed to getChildByIndex()]

• childByName() [renamed to getChildByName()]

• childByNameAndDimension()

• childDict()

• childNames() [use childList()]

• getData()

• getInterpSample()

• getNearestSample()

• getNearestSampleBuffer()

• getNumTimeSamples()

• getNumberOfTuples()

• getNumberOfValues()

• getSampleTimes()

• getSamples()

• getTupleSize()

• getXMLElement()

• inheritChildren() [renamed to getGroupInherit()]

• numChildren() [renamed to getNumberOfChildren()]

• type() [use built-in type() or isinstance()]

• writeBinary() [use getBinary()]

Op Best Practices Cheat Sheet
Here are a list of best practices you should attempt to follow in order for your Ops to run smoothly:

• Remember, the Runtime may evaluate your Op at many locations. If you read a file from disk, you may prefer to
implement appropriate (thread-safe) caching to prevent multiple disk reads.

• FnAttribute has serialization tools, which may be useful if you require any more persistent storage of specific data.

• Use the cook() function to determine what should happen for given locations, and delegate the logic for those
locations to other static functions. This makes code more readable.

• If using CEL, check if the CEL statement can match any child locations. If not, stop child traversal. Doing this results
in increased performance by not running this Op on any of the child locations.

• If you wish to pass data to child locations, the best way to do this is through their OpArgs. The
interface.getOpArg() function gives you all args as a GroupAttr that can be selectively updated using a
GroupBuilder.

• If you need to pass more complex data down to children that aren't representable as attributes, then you can
additionally use the private data pointer.

OP API | OP BEST PRACTICES CHEAT SHEET

TECHNICAL GUIDE 90

• If you would like to using static caching for data, the AttributeKeyedCache is a thread-safe cache included in the
distribution.

• For complex Ops, you may find a mix of static caching and blind data is needed to get the right balance between
cache key count and cost of access. The AlembicOp illustrates this kind of split approach.

• The more nodes in the node graph and Op slots in the Op tree, the greater the overhead of evaluating the scene. If,
for example, you have a layout format, consider creating an Op that can read and traverse this format, substituting
suitable Ops at child locations for cache reading, rather than using a SuperTool to configure many instances of
smaller/leaf ops in the node graph.

• Many sequential Ops can greatly reduce cache re-usability and increase re-cooking compared to merged
independent branches. Consider omitting inputs from ‘generator’ ops to encourage wider trees.

• Use the NodeTypeBuilder to register custom nodes for your Ops.

• Use CamelCase for OpArg names, with the first letter lowercase, for exmaple, “myOpArg”.

• Use an underscore to prefix the name of any OpArg that is not intended as a top-level ‘public’ option, for example,
“_internalArg”.

OP API | OP BEST PRACTICES CHEAT SHEET

TECHNICAL GUIDE

NodeTypeBuilder
NodeTypeBuilder is a Python class that makes it easy to define new 3D nodes that a user can
instantiate in their Katana project. It is the officially supported mechanism for creating nodes for any
custom Ops that you may write.

Introduction
from Katana import Nodes3DAPI

nodeBuilder = Nodes3DAPI.NodeTypeBuilder("MyNodeType")

The NodeTypeBuilder simplifies many of the tasks required to implement and manage the Ops represented by a
node, including:

• Registration of the node with the Katana node graph.

• Management of the ‘dirty state’ of the Ops, represented by the node, based on parameter changes.

• Retrieval of ‘system args’, such as shutter timings or GraphState variables.

• Management and validation of a node’s input ports.

For more details on the functions available, documentation is available in Python under:
help(Nodes3DAPI.NodeTypeBuilder)

help(Nodes3DAPI.NodeTypeBuilder.OpChainInterface)

Creating a New Node
When working with the NodeTypeBuilder, you need to do two things:

1. Write a function that turns the current state of the node (and its parameters) into suitably configured Op
definitions (the buildOpChain function).

2. Write a function that feeds this into a NodeTypeBuilder, along with the parameter definitions for the node.

The buildOpChain Function in Detail

This function should build up a chain of Ops that can enact the functionality of the node. The idea is that whenever
the node has been dirtied, this function is called. The resulting Op chain it builds is automatically compared to the

91

TECHNICAL GUIDE 92

current Ops in the Op Tree from a previous run. If any changes have been made, those Ops are reconfigured/dirtied,
and a re-cook triggered, if appropriate.

Lets take a look at the signature:
def myBuildOpChainFunction(node, interface)

• node - is an instance of the node in the node graph

• interface - is an instance of the NodeTypeBuilder.OpChainInterface

Your code, ultimately, makes a series of calls to the interface to define the needed Ops, most likely using parameters
of the supplied node. The easiest way to see how to put this together is to take a look at some of the included
examples.

Examples of NodeTypeBuilder

RegisterMesserNode.py

This example Python script can be found at plugins/Src/Ops/Messer/RegisterMesserNode.py and shows how
to register a simple CEL-matched Op that "messes up" vertices at the locations it runs at. This is most similar to an
AMP in Katana 1.x versions.

SubdividedSpaceOp.py

This example Python script can be found at plugins/Src/Ops/SubdividedSpace/SubdividedSpaceOp.py and
shows how to register an Op to run at a specific location within the scene graph. The Op generates a hierarchy of
child locations underneath it. This is most similar to an SGG in Katana 1.x versions.

RegisterSphereMakerSGGNode.py

This example Python script can be found at
plugins/Src/ScenegraphGenerators/GeoMakers/RegisterSphereMakerSGGNode.py. It demonstrates how
to wrap a legacy Scene Graph Generator in a custom node by making use of the "ScenegraphGeneratorHost" Op.

NODETYPEBUILDER | EXAMPLES OF NODETYPEBUILDER

TECHNICAL GUIDE 93

How to Install Scripts that Use the NodeTypeBuilder
NOTE: There is no requirement that code using NodeTypeBuilder runs at startup. It can be run at any time
in the Python tab but, at present, it's not possible to re-register a type if it has already been registered.

WARNING: If you don’t run the code again in a new Katana instance before opening a file with these nodes
in, they are replaced with Error nodes.

The best way to install one of the custom nodes is to put the code in a Python file that calls itself, that is to say that
defines the functions, and calls the main one at the end of the file. Place this in the Plugins sub-directory somewhere
on $KATANA_RESOURCES. All files or modules in these directories are loaded on startup and, consequently, the
code runs and the node is registered.

NODETYPEBUILDER | HOW TO INSTALL SCRIPTS THAT USE THE NODETYPEBUILDER

TECHNICAL GUIDE

Super Tools
Super Tools are compound nodes where the internal structure of nodes is dynamically created using
Python scripting.

This means that the internal nodes can be created and deleted depending on the user's actions, as well as
modifications to the connections between nodes and any input or output ports. The UI that a Super Tool shows in
the Parameters tab can be completely customized using PyQt, including the use of signals and slots to create
callbacks based on user actions. To help with this, we have a special arrangement with Riverbank Computing - the
creators of PyQt - allowing us to give user access to the same PyQt that The Foundry uses internally in Katana.

Many of Katana’s common user level nodes, such as the Importomatic, GafferThree, and LookFileManager, are
actually Super Tools created out of more atomic nodes. It can be useful to look inside existing Super Tool nodes and
macros to get a better understanding of how they work. If you Ctrl+middle-click on a suitable node, you open up its
internal Node Graph.

In general, Super Tools consist of:

• A Python script written using the Katana NodegraphAPI that declares how the Super Tool creates its internal
network.

• A Python script using PyQt that declares how the Super Tool creates its UI in the Parameters tab.

• Typically there is a third Python script for common shared utility functions needed by both the nodes and UI
scripts.

94

TECHNICAL GUIDE 95

Registering and Initialization

The Plug-in Registry is used to register new Super Tools. The registration is performed in the init.py (at base level)
which is also, typically, the place where we check the Katana version to make sure a plug-in is supported.

The following example shows the plug-in registration containing separate calls for the node and editor:
import Katana

import logging

log = logging.getLogger('HelloSuperTool')

try:

import v1 as HelloSuperTool

except Exception as exception:

log.exception('Error importing Super Tool Python

package: %s' % str(exception))

else:

PluginRegistry = [("SuperTool", 2, "HelloSuperTool",

(HelloSuperTool.HelloSuperToolNode,

HelloSuperTool.GetEditor))]

The init.py file inside the v1 folder then provides Katana with a function to receive the editor:
from Node import HelloSuperToolNode

def GetEditor():

from Editor import HelloSuperToolEditor

return HelloSuperToolEditor

Node

The Node class declares internal node graph functionality using the NodegraphAPI.

See the following example of a Node.py file:
from Katana import NodegraphAPI, Utils, PyXmlIO as XIO, UniqueName

class HelloSuperToolNode(NodegraphAPI.SuperTool):

def __init__(self):

self.hideNodegraphGroupControls()

self.getParameters().parseXML("""

<group_parameter>

 <string_parameter name='name' value=''/>

 <number_parameter name='value' value="1"/>

SUPER TOOLS |

TECHNICAL GUIDE 96

 </group_parameter>""")

self.addInputPort("mog")

 self.addInputPort("dog")

self.addOutputPort("out")

merge = NodegraphAPI.CreateNode('Merge', self)

 self.getSendPort("mog").connect(

merge.addInputPort('i0'))

 self.getSendPort("dog").connect(

merge.addInputPort('i1'))

self.getReturnPort("out").connect(

merge.getOutputPortByIndex(0))

NodegraphAPI.SetNodePosition(merge, (0,0))

def upgrade(self, force=False):

print ("upgrade() has been called.")

Editor

The Editor class declares the GUI which listens to change events and syncs itself automatically when the internal
network changes. This is particularly important for undo/redo.

See the following example of an Editor.py file:
"""

Module containing the C{L{HelloSuperToolEditor}} class.

"""

from Katana import QtCore, QtGui, UI4, QT4FormWidgets,\

Utils

Class Definitions ---------------------------------------

class HelloSuperToolEditor(QtGui.QWidget):

"""

Example of a Super Tool editing widget that works on two

parameters of a given Super Tool node.

"""

Initializer ---

def __init__(self, parent, node):

"""

Initializes an instance of the class.

"""

 QtGui.QWidget.__init__(self, parent)

self.__node = node

SUPER TOOLS |

TECHNICAL GUIDE 97

Try to upgrade the given node in...

...an undo stack group

nodeName = node.getName()

Utils.UndoStack.\

OpenGroup('Upgrade "%s"' % nodeName)

 try:

node.upgrade()

except Exception as exception:

log.exception('Error upgrading node "%s": %s'

 % (nodeName, str(exception)))

finally:

Utils.UndoStack.CloseGroup()

Get the node's parameters

 nameParameter = \

self.__node.getParameter('name')

valueParameter = \

 self.__node.getParameter('value')

Create parameter policies...

...from the node's parameters

namePolicy = \

UI4.FormMaster.CreateParameterPolicy\

(None, nameParameter)

valuePolicy = \

UI4.FormMaster.CreateParameterPolicy\

(None, valueParameter)

Create widgets for editing...

...the node's parameters

widgetFactory = \

UI4.FormMaster.KatanaFactory.\

ParameterWidgetFactory

nameWidget = \

widgetFactory.buildWidget(self, namePolicy)

valueWidget = \

 widgetFactory.buildWidget\

(self, valuePolicy)

Create a layout and add the...

...parameter editing widgets to it

mainLayout = QtGui.QVBoxLayout()

mainLayout.addWidget(widget)

mainLayout.addWidget(widget)

Apply the layout to the widget

self.setLayout(mainLayout)

SUPER TOOLS |

TECHNICAL GUIDE 98

Examples

The following code examples illustrate various Super Tool concepts and can be used for reference.

NOTE: The Super Tool code examples are shipped with Katana and can be found in the following directory:

$KATANA_ROOT/plugins/Resources/Examples/SuperTools

Pony Stack

This Super Tool example manages a network of PonyCreate nodes all wired into a Merge node. You can create and
delete ponies, change the parent path of all the ponies, and modify the transform for the currently selected pony.

Interesting things to note are (in no particular order):

• The UI listens to change events and syncs itself automatically when the internal network changes (important for
undo/redo).

• There's a hidden node reference parameter on the Super Tool node itself that gives us a reference to the internal
Merge node (which tracks node renames).

• The internal PonyCreate nodes are linked by expression to the Super Tool location parameter to determine where
the ponies appear in the scenegraph

• We are using FormWidgets to expose a standard widget for the location parameter, a custom UI for the pony list,
and FormItems to expose the transform parameter of the currently selected pony's internal node.

EXPERIMENT: Extend this Super Tool, for example, by implementing the ability to rename the pony in the
tree widget and having drag/drop reordering of the ponies inside the tree widget.

Shadow Manager

The ShadowManager shows a more complex example of a Super Tool that can be used to manage (PRMan) shadow
passes. It takes an input scene and allows a user to define render passes. For each render pass the available lights in
the scene can be added to create shadow maps. The user is able to specify settings like resolution and material
pruning on a render pass level (in the Shadow Branch) and further adjust resolution, shadow type and output
location for each light pass. The user need not set the Shadow_File attribute on the light's material as this is handled
internally by the ShadowManager.

The ShadowManager node then creates two output nodes for each render pass. The first one contains the modified
scene (with the corresponding file path set to the Shadow_File shader parameter), the second one passing the
dependencies of the Render nodes to the output port.

The example code covers:

SUPER TOOLS |

TECHNICAL GUIDE 99

• Creating a UI using custom buttons, tree widgets and exposing parameters from underlying nodes.

• Adding a custom UI widget to pick a light from a list of lights available at the current node.

• Renaming and reordering items in tree widget lists and applying the necessary changes to the internal node
network (rewiring and reordering input and output ports).

• Drag and drop of lights from the Scene Graph tab into the light list.

• Handling events regarding items in a tree widget such as adding callbacks for key events and creating a right-click
menu.

• Creating and managing nodes as well as their input and output ports in order to build a dynamic internal node
network. It is also shown how to dynamically re-align nodes and group multiple nodes into one.

EXPERIMENT: Extend this Super Tool with the following:

• It is assumed that all light shaders have the Shadow_File parameter. For use with different shaders or
renderers this can be customized.

• There are often shader parameters for dialing the effect of each shadow file, which would be visible
within the GafferThree. Expose these shader parameters from the GafferThree with the context of the
corresponding shadow map directly inside the ShadowManager UI.

• Constraints are often placed on the lights for use as the shadow camera to frame or optimize to specific
assets. Per-light controls for managing these constraints could be useful.

SUPER TOOLS |

TECHNICAL GUIDE

Scene Graph Generator Plug-Ins
Katana's operation revolves around two graphs: the node graph and the scene graph. To reiterate,
here are some of Katana's key concepts as described in the Katana User Guide:

NOTE: This is a legacy API that has been superseded by Ops. For more information on the Op API,
including how to integrate custom Ops, refer to Op API on page 65

Within the Node Graph tab, Katana utilizes a node-based workflow, where you connect a series of nodes to read,
process, and manipulate 3D scene or image data. These connections form a non-destructive recipe for processing
data. A node's parameters can be viewed and edited in the Parameters tab.

To view the scene generated up to any node within a recipe, you use the Scene Graph tab. The scene graph's
hierarchical structure is made up of locations that can be referenced by their path, such as /root. Each location has a
number of attributes which represent the data at that location. You can view, but not edit, the attributes at a
location within the Attributes tab.

Katana provides a dedicated C++ API for writing Scene Graph Generator (SGG) plug-ins that can be used to
dynamically create entire hierarchies of locations in the Scene Graph tab, containing arbitrary attribute data at each
location.

It is important to note that an SGG plug-in can only create locations and attributes underneath a single scene graph
location, its root location, and that an SGG plug-in does not have access to any other part of the scene graph. The
main purpose of an SGG plug-in is to create scene graph locations and attributes from external sources while being
controlled by certain parameters.

Scene graph generator plug-ins can be regarded as equivalent to procedurals in renderers, and can be used for a
variety of purposes, for example to implement an importer for a custom geometry file format or to generate
procedural geometry such as debris from particle data.

100

TECHNICAL GUIDE 101

Running an SGG Plug-in
The creation of scene graph data by SGG plug-ins is executed through the ScenegraphGeneratorResolve node or
through an implicit resolver, when triggered by a render, for example. Both operate on locations of type
scenegraphGenerator that contain attributes that describe SGG plug-ins to run, including arguments that are
passed along to the plug-ins as a way to control and customize how they create locations and attributes. The easiest
way to create a scenegraphGenerator location with the relevant attributes is by using a ScenegraphGeneratorSetup
node.

ScenegraphGeneratorSetup

The ScenegraphGeneratorSetup node is used to create a location of type scenegraphGenerator. Each
ScenegraphGeneratorSetup node has a field for name, a field for the optional resolveIds, a dropdown menu
showing each available generatorType, and fields for the args for the selected generatorType.

NOTE: The args shown in a ScenegraphGeneratorSetup node depend on the args specified in the
ScenegraphGenerator itself, and so many vary from those shown above.

Prior to being resolved, the ScenegraphGeneratorSetup node, whose parameters are shown above, creates the scene
graph location /root/world/geo/ScenegraphGenerator of type scenegraphGenerator. This location contains a
group of attributes named scenegraphGenerator with the name of the selected SGG plug-in and the arguments as
they are set up under args. For example, the attribute data for a ScenegraphGenerator location of type CubeMaker
is structured like this:

scenegraphGenerator group attribute

generatorType "CubeMaker"

args group attribute

system group attribute (used internally)

timeSlice group attribute

currentTime 1

SCENEGRAPH GENERATOR PLUG-INS | RUNNING AN SGG PLUG-IN

TECHNICAL GUIDE 102

...

numberOfCubes 23

rotateCubes 1

rotateCubes__hints group attribute (used for UI

widget "checkBox"

resolveIds (optional).

NOTE: The ScenegraphGeneratorSetup node does not run the plug-in's code itself. Figuratively speaking, it
merely loads and aims the cannon, ready for the powder to be lit by a ScenegraphGeneratorResolve node.

ScenegraphGeneratorSetup nodes can be tagged with a resolveId, or multiple resolveIds in a space, or comma
delimited list. As shown above, if a resolveId is entered into a ScenegraphGeneratorSetup node, the resulting pre-
resolve scene graph location contains an Attribute named resolveIds, holding the specified resolveId value. This
value is used at resolve time to select ScenegraphGenerator locations to resolve.

ScenegraphGeneratorResolve

The ScenegraphGeneratorResolve node is used to execute SGG plug-ins in order to create scene graph data. It
traverses Katana's scene graph, looks for locations of type scenegraphGenerator and executes the plug-ins that
are described in the attribute data on those locations.

The only parameter to control operation available in a ScenegraphGeneratorResolve node is resolveWithIds, which
can be set to either all or specified. If set to all, the ScenegraphGeneratorResolve node ignores resolveIds and
resolves all locations of type scenegraphGenerator. If set to specified, the resolve traverses the scene graph
looking for locations of type scenegraphGenerator, with at least one matching resolveIds.

It is important to note that a ScenegraphGeneratorResolve node set to ignore resolveIDs operates on all locations of
type scenegraphGenerator that it finds in the Katana project, no matter how they were created.

For more on setting, and using resolveIDs in SGG nodes, see the Generating Scene Graph Data with a Plug-in
section in the Katana User Guide.

SCENEGRAPH GENERATOR PLUG-INS | RUNNING AN SGG PLUG-IN

TECHNICAL GUIDE 103

Generated Scene Graph Structure

Internally, Scene Graph Generator plug-ins use contexts to create new locations in the scene graph. A scene graph
location may contain child locations, have sibling locations and hold any number of attributes.

The main context created by an SGG plug-in is called the root context. This context represents the first location of
the portion of scene graph that is generated by the plug-in. Each context in an SGG plug-in can provide a single first
child context - a context one level below the context that created it - and a single next sibling context - a context at
the same level as its creating context - both of which are optional.

Katana traverses through the user-defined contexts, starting from the root of the SGG plug-in, which in turn
populates the scene graph with the desired locations, their attributes and values. By subsequently providing first
child and next sibling contexts from contexts in an SGG plug-in, arbitrarily nested scene graph structures can be
created.

The following image shows locations created by a simple CubeMaker SGG example plug-in, in the Scene Graph tab.
Note how cube_0 is the first child of the scenegraphGenerator location, cube_1 is the second child, and cube_3 is the
third. All cube_# locations are of type polymesh and contain attributes that define geometry of polygonal cubes.

TIP: An SGG plug-in can be used to create scenegraphGenerator locations when its code is executed,
thereby allowing for recursion. This can be used to embed assets in other assets, or to create fractal
structures, for example. The ScenegraphXML SGG plug-in supports recursion in this way.

SCENEGRAPH GENERATOR PLUG-INS | RUNNING AN SGG PLUG-IN

TECHNICAL GUIDE 104

SGG Plug-in API Classes
This section details the two classes that are provided in the Scene Graph Generator plug-in API to implement a
custom SGG:

• ScenegraphGenerator

• ScenegraphContext

Both of these classes live in the Foundry::Katana namespace, which is usually shortened to FnKat in plug-in source
files:
namespace FnKat = Foundry::Katana

SCENEGRAPH GENERATOR PLUG-INS | SGG PLUG-IN API CLASSES

TECHNICAL GUIDE 105

Class Diagram

ScenegraphGenerator

The ScenegraphGenerator class provides the main entry point for the plug-in. Any new plug-in must extend this
interface (once per plug-in). It tells Katana which arguments the plug-in takes and what the ScenegraphContext

SCENEGRAPH GENERATOR PLUG-INS | SGG PLUG-IN API CLASSES

TECHNICAL GUIDE 106

responsible for generating the root location is. In order to write a custom SGG plug-in, both of these classes have to
be derived and their abstract functions implemented.

Constructor

The constructor is the place to initialize custom variables for new instances of the class derived from
ScenegraphGenerator, like in this example:
CubeMaker::CubeMaker() :

_numberOfCubes(0),

_rotateCubes(false)

{

// empty

}

NOTE: The code examples in this document come from a custom SGG plug-in named CubeMaker that
creates locations for a number of polygonal cubes in a Katana project. Its source code can be found in the
Katana directory:

$KATANA_ROOT/plugins/Src/ScenegraphGenerators/GeoMakers/

Destructor

Usually no special destructor is needed when creating a class derived from ScenegraphGenerator, unless memory or
other resources are allocated for the plug-in that should be released again when an instance is destroyed.

Static Methods

The following static methods must be implemented in a class derived from the ScenegraphGenerator of a custom
Scene Graph Generator plug-in:
static FnKat::ScenegraphGenerator* create()

Returns an instance of the custom Scene Graph Generator's main class, similar to a factory method, as in the
following code example:
FnKat::ScenegraphGenerator*

CubeMaker::create()

{

return new CubeMaker();

}

SCENEGRAPH GENERATOR PLUG-INS | SGG PLUG-IN API CLASSES

TECHNICAL GUIDE 107

The create() function is not declared in the ScenegraphGenerator class in the API, but is used in the DEFINE_SGG_
PLUGIN(class) macro, which makes the plug-in known to Katana. Refer to Registering an SGG Plug-in for more
information.
static FnKat::GroupAttribute getArgumentTemplate()

Returns a group attribute that defines the parameters of the SGG plug-in, which appears as part of the
ScenegraphGeneratorSetup node's parameter interface, just below the generatorType dropdown parameter.

The group attribute returned may contain other group attributes to provide an arbitrarily nested structure of
parameters, including parameter hints, as in the following example:
FnKat::GroupAttribute

CubeMaker::getArgumentTemplate()

{

FnKat::GroupBuilder rotateCubesHints;

rotateCubesHints.set(

"widget",

FnKat::StringAttribute("checkBox"));

FnKat::GroupBuilder gb;

gb.set("numberOfCubes",

FnKat::IntAttribute(20));

gb.set("rotateCubes", FnKat::IntAttribute(0));

gb.set("rotateCubes__hints",

rotateCubesHints.build());

return gb.build();

}

NOTE: In order for SGG plug-ins to be found by Katana, their shared object files have to live at a path that
is contained in the $KATANA_RESOURCES environment variable.

static void flush()

static void flush() clears allocated memory and reloads data from file (if any). static void flush() is called when

flushing Katana's caches, for example, by clicking the Flush Caches button in the Menu Bar, which works on all
nodes in the current Katana project and forces assets, such as look files, to be dropped from memory and reloaded
when needed.

Like the static create() function, the flush() function is not actually declared in the ScenegraphGenerator class in
the API, but is used in the REGISTER_PLUGIN() macro when registering the custom plug-in. See Registering an SGG
Plug-in for more on this topic.

SCENEGRAPH GENERATOR PLUG-INS | SGG PLUG-IN API CLASSES

TECHNICAL GUIDE 108

Instance Methods

The following instance methods are to be implemented in a class derived from the abstract ScenegraphGenerator
class:

• bool checkArgs(FnKat::GroupAttribute args)

• bool setArgs(FnKat::GroupAttribute args)

• FnKat::ScenegraphContext* getRoot()

bool checkArgs(FnKat::GroupAttribute args)

Checks the given argument structure against the expected argument structure regarding types, names, sizes, and
other attribute properties.

Returns true if the given argument structure is valid as input for the setArgs() function of the SGG plug-in (see
below), otherwise false.

The attributes in this case correspond to parameters in the ScenegraphGeneratorSetup node's parameter interface.
Any extra arguments in the given argument structure can quietly be ignored.

The default implementation simply returns true. This function does not necessarily need to be implemented, but it is
generally seen as good style if it is.

bool setArgs(FnKat::GroupAttribute args)

Applies the parameter values contained in the given argument structure to the Scene Graph Generator plug-in.
Returns true if the parameter values were applied successfully, otherwise false.

Katana passes the arguments defined by the static getArgumentTemplate() function with their current parameter
values to this function to be used at runtime by the plug-in.

It is common to store values from arguments that are defined for the SGG plug-in in private or protected instance
variables of the ScenegraphGenerator-derived class, and to use them in the contexts that create locations and
attributes in the scene graph. These variables can be initialized in the constructor of the class and updated in the
setArgs() function, as shown in the following example:
bool CubeMaker::setArgs(

FnKat::GroupAttribute args)

{

if (!checkArgs(args))

return false;

// Apply the number of cubes

FnKat::IntAttribute numberOfCubesAttr = \

args.getChildByName("numberOfCubes");

SCENEGRAPH GENERATOR PLUG-INS | SGG PLUG-IN API CLASSES

TECHNICAL GUIDE 109

_numberOfCubes = numberOfCubesAttr.getValue(20, false);

// Update the rotation flag

FnKat::IntAttribute rotateCubesAttr = \

 args.getChildByName("rotateCubes");

_rotateCubes = \

 bool(rotateCubesAttr.getValue(0, false));

return true;

}

NOTE: Versions of Katana prior to 2.0v1 provided you with default values for all SGG arguments if they
had not been specified locally. In versions 2.0v1 and later, this is no longer the case and you must now
specify the default value yourself. This can be achieved using the FnAttribute library, for example:

FnKat::IntAttribute attr = args.getChildbyName("attr");

int value = attr.getValue(20, //DEFAULT VALUE

 false); //THROW ERROR IF DEFAULT VALUE NOT

 //AVAILABLE OTHERWISE RETURN DEFAULT

 //VALUE

FnKat::ScenegraphContext* getRoot()

Returns an instance of a class derived from ScenegraphContext that represents the root location of the tree of scene
graph locations that are generated by the SGG plug-in.

This is the first step of traversing the contexts in order to create a scene graph structure where the subsequent steps
involve retrieving the child and sibling nodes.
FnKat::ScenegraphContext* CubeMaker::getRoot()

{

return new CubeRootContext(_numberOfCubes,

_rotateCubes);

}

Registering an SGG Plug-in

In the implementation of a custom ScenegraphGenerator-derived class you also need to add some data structures
and functions that make the plug-in known to Katana. These are easy to add using two predefined macros, as shown
in the following code example:
DEFINE_SGG_PLUGIN(CubeMaker)

SCENEGRAPH GENERATOR PLUG-INS | SGG PLUG-IN API CLASSES

TECHNICAL GUIDE 110

void registerPlugins()

{

REGISTER_PLUGIN(CubeMaker, "CubeMaker", 0, 1);

}

DEFINE_SGG_PLUGIN(class)

Declares a data structure of Katana's plug-in system (FnPlugin) that contains information about the Scene Graph
Generator plug-in, for example, its name and API version.

The class to pass to the macro is the class derived from ScenegraphGenerator, which must contain the static create
() and getArgumentTemplate() functions. For more information refer to Static Methods for more information.

void registerPlugins()

Is called by Katana's plug-in system to identify the plug-ins contained in a shared object file (compiled extension).

Should contain calls of the REGISTER_PLUGIN() macro (see below).

REGISTER_PLUGIN(class, className, majorVersion, minorVersion)

Registers a plug-in with the given class, name, and version information.

The major version and minor version are the version of the SGG plug-in defined in a shared object file.

Fills the plug-in's describing data structure of type FnPlugin with values and calls the internal registerPlugin()
function to add the appropriate plug-ins to the global list of plug-ins known to Katana.

ScenegraphContext

The abstract ScenegraphContext class is the base class responsible for providing Katana the information needed to
generate a scene graph location along with its attributes. Each custom scene graph context implemented in an SGG
plug-in must extend this class.

Typically, at least two types of context are required:

• The first type is used for the root location, which replaces the location of type scenegraph generator in the scene
graph when the SGG plug-in is run. This is also known as the root context.

• The second type of context is used for child and sibling locations that create the desired groups, polygonal
geometry, or similar. This is sometimes called a leaf context.

SCENEGRAPH GENERATOR PLUG-INS | SGG PLUG-IN API CLASSES

TECHNICAL GUIDE 111

Constructor

As in a class derived from ScenegraphGenerator, the constructor in a class derived from ScenegraphContext can be
used to initialize instance variables, as shown in the following two examples:

CubeRootContext::CubeRootContext(

int numberOfCubes, bool rotateCubes) :

_numberOfCubes(numberOfCubes),

_rotateCubes(rotateCubes)

{

// empty

}

CubeContext::CubeContext(int numberOfCubes,

bool rotateCubes,

int index) :

_numberOfCubes(numberOfCubes),

_rotateCubes(rotateCubes),

_index(index)

{

// empty

}

Destructor

Again, similar to the ScenegraphGenerator-derived class, no special destructor is needed in a class derived from
ScenegraphContext, unless required for releasing previously allocated resources.

Instance Methods for Locations

The following two instance methods define the structure of the scene graph locations that are created by a custom
SGG plug-in:
FnKat::ScenegraphContext* getFirstChild()

Returns an instance of a class derived from ScenegraphContext, which represents the first child location of the
location represented by the current context.

Returns 0x0 if the current location should not contain any child locations. Such locations are sometimes called leaf
locations and typically provide custom geometry in a scene graph hierarchy.

Consider the following example of a root context for an SGG plug-in that creates a number of locations containing
polygonal cube meshes:
FnKat::ScenegraphContext*

SCENEGRAPH GENERATOR PLUG-INS | SGG PLUG-IN API CLASSES

TECHNICAL GUIDE 112

CubeRootContext::getFirstChild() const

{

if (_numberOfCubes > 0)

{

return new CubeContext(_numberOfCubes, 0);

}

return 0x0;

}

The function checks if a number of cubes has been set and, if so, creates and returns a new instance of the
CubeContext class that represents the first child location under the root location.

The implementation of the same function in the corresponding CubeContext class, which represents locations of
type polymesh, returns 0x0, as a polymesh location does not contain any child locations:
FnKat::ScenegraphContext*

CubeContext::getFirstChild() const

{

return 0x0;

}

FnKat::ScenegraphContext* getNextSibling()

Returns an instance of a class derived from ScenegraphContext that represents the next location at the same level in
the scene graph hierarchy, underneath the same parent as the current location.

Returns 0x0 if the current location does not have any sibling locations. This is typically the case for root locations.

In scenarios with multiple sibling locations, an index number is typically passed on to the next sibling with an
incremented value, as in the following example:
FnKat::ScenegraphContext*

CubeContext::getNextSibling() const

{

if (_index < _numberOfCubes - 1)

{

return new CubeContext(_numberOfCubes,

_rotateCubes,

_index + 1);

}

return 0x0;

}

SCENEGRAPH GENERATOR PLUG-INS | SGG PLUG-IN API CLASSES

TECHNICAL GUIDE 113

Instance Methods for Attributes

The following two instance methods define the names, types, and values of attributes that should live on the current
custom scene graph location:
void getLocalAttrNames(std::vector<std::string>* names)

Fills the given list of names of attributes according to the attributes that should live on the scene graph location
represented by the current context.

Each name in the modified list should be the name of either a single attribute, like type, or the top-level name of a
group of attributes, like xform.

The following code snippet shows example implementations from two custom classes derived from
ScenegraphContext:
void CubeRootContext::getLocalAttrNames(

std::vector<std::string>* names) const

{

names->clear();

names->push_back("type");

names->push_back("xform");

}

void CubeContext::getLocalAttrNames(

std::vector<std::string>* names) const

names->clear();

names->push_back("name");

names->push_back("type");

names->push_back("xform");

names->push_back("geometry");

{

}

Note that the CubeRootContext::getLocalAttrNames() function does not add the geometry attribute to the list
of attribute names, as the corresponding scene graph location is of type group, which does not hold geometry data,
whereas the implementation in the CubeContext class does, as its corresponding location in the scene graph is of
type polymesh for which geometry data is provided.

Also note that the getLocalAttrNames() function of the root context does not contain "name" in the resulting list
of attribute names, as the name of the root location is defined by the location that is set in the
ScenegraphGeneratorSetup node's parameters.

The getLocalAttrNames() function is used to tell Katana what attributes are provided in a scene graph context by
populating the given list of attribute names. In order to access the actual attribute data, the getLocalAttr() function
is called on demand with the name of one of the attributes that are provided.

SCENEGRAPH GENERATOR PLUG-INS | SGG PLUG-IN API CLASSES

TECHNICAL GUIDE 114

In certain cases, like when viewing all attributes of a scene graph location in the Attributes tab, Katana iterates over
all names provided by the getLocalAttrNames() function and calls getLocalAttr() (see below) with each of them.
In other cases, such as during a render and in the viewer, Katana only asks for the attributes it needs at that time.

The getLocalAttrNames() and getLocalAttr() functions can also be used to provide error messages to the user in
case the creation of locations and/or attributes fails. Refer to Providing Error Feedback for more information.

FnKat::Attribute getLocalAttr(const std::string & name)

Returns an object of the Attribute class representing the value of the attribute with the given name. All attribute
values have to be wrapped in objects of classes derived from the Attribute class, for example, IntAttribute,
DoubleAttribute, and StringAttribute.

The attribute returned may be a group of attributes, represented by a GroupAttribute object, and therefore contain
other attributes or an entire hierarchy of attributes.

An empty attribute can be returned to indicate that no value is available for a given attribute name if the attribute is
not supported by a scene graph context, as in the last line in the following function block.

The following code snippet shows an example implementation from the CubeRootContext class:
FnKat::Attribute CubeRootContext::getLocalAttr(

const std::string& name) const

{

if (name == "type")

{

return FnKat::StringAttribute("group");

}

else if (name == "xform")

{

FnKat::GroupBuilder gb;

double translate[] = {0.0, 0.0, -10.0};

gb.set("translate",

FnKat::DoubleAttribute(translate,

3, 3));

gb.setGroupInherit(false);

return gb.build();

}

return FnKat::Attribute(0x0);

}

Groups of attributes can be built using the GroupBuilder class which provides a function called build() that returns a
GroupAttribute instance based on attributes that were added to a group using the set() function.

SCENEGRAPH GENERATOR PLUG-INS | SGG PLUG-IN API CLASSES

TECHNICAL GUIDE 115

Attribute data for a "geometry" group attribute may consist of child group attributes like "point", "poly", "vertex", and
"arbitrary", which can contain vertex normals and texture coordinates, for example. The actual attributes to include
for a "geometry" attribute depend on the type of location. For more information, please see the Katana Reference
Guide.

Providing Error Feedback

A Scene Graph Generator (SGG) plug-in can provide error feedback to the user if an error occurs while initializing the
plug-in or while generating scene graph locations and/or attributes.

Two scene graph attributes are used for providing error feedback:

• A location's type can be set to error to indicate a fatal error. The render output modules abort a render when
they encounter a location of type error . No further traversal occurs at that point.

• A location can have an errorMessage attribute added to it, which is interpreted as the description of an error that
occurred in the location. The given message is displayed underneath the location in the Scene Graph tab, and the
ScenegraphGeneratorResolve node that executed the SGG plug-in is displayed with a red halo in the Node Graph
tab (see images below).

If only an error message is provided without setting the location's type to error, the render output modules treat
the error as non-fatal and continue with traversing the scene graph for rendering.

SCENEGRAPH GENERATOR PLUG-INS | SGG PLUG-IN API CLASSES

TECHNICAL GUIDE 116

To provide an error message the getLocalAttrNames() function can add the errorMessage name to the list of
attribute names it modifies, and the getLocalAttr() function can return a value for the errorMessage attribute,
wrapped in a StringAttribute as mentioned above.

TIP: The text of an error message can be copied to the clipboard through the context menu of the
“errorMessage” attribute in an Attributes tab.

The following code snippet shows examples of how error information can be returned from the
getLocalAttrNames() and getLocalAttr() functions. In this example, both functions check the value of a boolean
instance variable named _errorOccurred, which states whether or not an error occurred. The description of the error
is stored in an instance variable named _errorMessage of type std::string.
void CubeRootContext::getLocalAttrNames(

std::vector<std::string>* names) const

{

names->clear();

names->push_back("type");

names->push_back("xform");

if (_errorOccurred && !_errorMessage.empty())

{

names.push_back("errorMessage")

}

}

FnKat::Attribute CubeRootContext::getLocalAttr(

const std::string& name) const

{

if (name == "type")

{

 return FnKat::StringAttribute(

!_errorOccurred ? "group" : "error");

}

else if (name == "xform")

SCENEGRAPH GENERATOR PLUG-INS | SGG PLUG-IN API CLASSES

TECHNICAL GUIDE 117

{

FnKat::GroupBuilder gb;

 double translate[] = {0.0, 0.0, -10.0};

 gb.set("translate",

FnKat::DoubleAttribute(translate,

3, 3));

gb.setGroupInherit(false);

return gb.build();

}

else if (name == "errorMessage"

 && !_errorMessage.empty())

{

return FnKat::StringAttribute(

_errorMessage);

}

return FnKat::Attribute(0x0);

}

In order to stop Katana from using an SGG plug-in for creating further scene graph locations, if an error in the
creation of locations and/or attributes occurs, the plug-in has to explicitly check for errors, and the getFirstChild()
and getNextSibling() functions of its context classes have to return 0x0, as shown in the following examples:
FnKat::ScenegraphContext*

CubeRootContext::getFirstChild() const

{

if (!_errorOccurred && _numCubes > 0)

{

return new CubeContext(_numCubes, 0);

}

return 0x0;

}

FnKat::ScenegraphContext*

CubeContext::getNextSibling() const

{

if (!_errorOccurred

 && _index < _numberOfCubes - 1)

{

return new CubeContext(_numberOfCubes,

SCENEGRAPH GENERATOR PLUG-INS | SGG PLUG-IN API CLASSES

TECHNICAL GUIDE 118

_rotateCubes,

_index + 1);

}

return 0x0;

}

The files in $KATANA_ROOT/plugins/Src/ScenegraphGenerators/ offer more complete examples of how SGG plug-ins
can be written.

SCENEGRAPH GENERATOR PLUG-INS | SGG PLUG-IN API CLASSES

TECHNICAL GUIDE

Porting Plug-ins
This chapter covers information on how to port existing Scene Graph Generator and Attribute
Modifier Plugins to the new Op API in post-2.0v1 versions of Katana. This is assuming that you have
one or more SGG or AMP plug-ins that you have written yourself, and that you are familiar with their
workings.

Introduction
In Katana 1.x there are two APIs available for the creation of custom plug-ins that can process the scene. The Scene
Graph Generator (SGG) API allows you to create new locations, for example, a geometry cache reader, and the
Attribute Modifier Plugin API (AMP) lets you modify existing locations. This strong divide makes matters complicated
if you want to do both, as SGGs can’t see the incoming scene and AMPs can’t create new locations. Often you end up
with a tool requiring several nodes, and convoluted AttributeCopy steps to make the right data available. Ultimately,
it's not possible to write anything like a Merge node.

Fortunately, with Katana 2.0v1 and later versions, this is a thing of the past - thanks to the Op API. The Op API gives
you the same API that all Katana Ops are built on, and allows you to do more with less code than you could with the
old SGG and AMP plug-ins.

Both SGGs and AMPs are now replaced with Ops. You may prefer to read the chapter on the Op API It outlines the
key concepts of Geolib3, Ops, and the new Runtime, and understanding this is essential for porting existing plug-ins
to be used as Ops.

Implications for Existing Plug-ins

Katana 2.0v1 and later versions provide Ops that host either existing SGGs or AMPs. This means you can continue to
use your current code, albeit with a re-compile and some header updates, in these later versions. There are a few
caveats to using these existing plug-ins however. In particular, the name of a location is no longer an attribute, and
AMPs can't change the name of current location.

Ops Versus Scene Graph Generators
Probably the most significant differences between Ops and SGGs are that:

• The purpose of an SGG is to generate Attribute data on demand, and provide iterators to the scene graph children
and peers of a location when requested, whereas the purpose of an Op is to cook all of the Attribute data that
defines a particular scene graph location and name any potential children the location has, and

119

TECHNICAL GUIDE 120

• Ops also have visibility on the incoming scene, whereas SGGs do not.

This means you no longer patch together the data in a piecemeal fashion. This can greatly simplify the required code,
but, on occasions, may have a higher cost where deferred attribute loading is made possible by the source data. This
also allows you to perform actions like copying an entire hierarchy from another part of the scenegraph under the
current location.

In Katana post-2.0v1 versions, whenever there is an attempt to access any attribute at a location, Katana calculates
all the attributes at the location. Previously, the granularity of calculating attribute data was at the group level, but
now it's at the whole-location level. This means that if there is heavy computation at any location, it's advisable to
determine whether the location needs to be read or not by only accessing data from the parent, by having bounds,
for example, on the parent.

Ops Versus Attribute Modifiers
Compared to SGGs, Ops and AMPs are much closer in that they both get attributes and set them at the current
location. The main differences between Ops and AMPs are that:

• Ops can also create new (potential) child locations, or remove existing ones,

• Ops call other Ops, or change which Op runs at child locations,

• Ops can also see multiple inputs, which allows complex sets or merging to be performed, and

• Ops can delete the current location, the equivalent of Pruning, with the use of DeleteSelf.

Defining the getAttr and getOutputAttr Functions
In Geolib3 Ops, there are two ways to query local attributes. Depending on which APIs you used in Katana 1.x, they
may differ slightly from what you are used to. In Katana 2.0v1 and later versions, the rules are straightforward:

• getAttr always returns the attribute as set in the scene present at the input to the Op.

• getOutputAttr returns the attribute as it currently stands at the location.

This means that if you follow setAttr with getAttr you always see the input value, not the result of your setAttr
call. If you want to see the result if your setAttr call, use getOutputAttr instead.

This also means that if you provide an alternate location to query the attr at, for example, getAttr("foo",
"/root/world/geo/bar") you don't see any of the effects of your Op, if it has been set to run there.

NOTE: The getOutputAttr call does not support querying at other locations, for reasons of infinite
recursion, amongst others.

PORTING PLUG-INS | OPS VERSUS ATTRIBUTE MODIFIERS

TECHNICAL GUIDE 121

If you wish to query an inherited attribute, you need to use the utility function in FnGeolibCookInterface.h:
Foundry::Katana:GetGlobalAttr.

To learn more about some of the subtleties with regards to Ops running as a result of execOp, refer to the chapter
on the Op API on page 65

Recompiling Existing SGG and AMP Plug-ins

Source Locations

The Katana plug-in APIs have undergone a re-factor and, as such, source files have been moved into a more
organized structure. Consequently, includes and Makefiles may need to be updated. The new folder structure uses
the following conventions:

• client - files declaring or implementing a client of a particular plug-in API. In this case, a C++ wrapper class for a
specific functionality is provided. The class only acts as a convenience wrapper around a suite. Client classes are
meant to be used where writing plug-ins to access functionality provided by Katana, for example, FnAttribute or
FnScenegraphIterator.

• plugin - files used to implement a plug-in for an API. Usually a base class is provided and it's meant to be extended
when writing plug-ins, for example, FnScenegraphGenerator.

• suite - C-only structs defining, through function pointers, the interface with the Katana core.

For example, consider the FnScenegraphGenerator or FnScenegraphIterator pair. FnScenegraphIterator
provides an interface to access a feature in Katana (access scene graph locations' data), so it represents a client for a
specific suite, FnScenegraphIteratorSuite. FnScenegraphGenerator, on the other hand, provides a base class to
implement a Scene Graph Generator plug-in.

Additional Build-ins

To avoid some issues with initialization of certain API suites, you may also need to add the following sources to build
into your plug-in, if you don’t have them already:

• FnAsset/client/FnDefaultAssetPlugin.cpp

• FnAsset/client/FnDefaultFileSequencePlugin.cpp

Behavioral Differences for SGGs

In pre-2.0v1 versions of Katana, there were often extra calls to getLocalAttr for attributes that were never named
in getLocalAttrNames. This was because of the ‘pull’ nature of the architecture - the viewer and similar features -
ask for many attributes to influence their behavior.

PORTING PLUG-INS | RECOMPILING EXISTING SGG AND AMP PLUG-INS

TECHNICAL GUIDE 122

In Katana 2.0v1 and later, the SGG host Op only sets attributes that you name in getLocalAttrNames when
cooking the location. Consequently, you may need to add any missing attributes from the named list if you were
responding to them before. This also includes the errorMessage attribute that is used for error reporting, which you
may not have previously added to that list.

In Katana 2.0v1 and later, default values are no longer provided for args that weren’t filled in by the node. As such,
you may want to adjust calls to getAttr accordingly, in order to use the non-excepting variant, complete with the
known default values. For example:
FnKatana::IntAttribute attr = args.getChildByName(“myNumberAttr”);

const int value = attr.getValue(20 /*default*/, false /*don’t throw*/);

Behavioral Differences for AMPs

Locations are explicitly named upon declaration in Geolib3. The “name” attribute is no longer used and behaves just
like ‘any other attr’. As such, you can’t rename a location using setAttr(“name”) any more. Additionally getAttr(
“name”) won’t return the location name, only whatever value another Op may have set it to, which is usually
nothing.

If you need to rename locations, the Rename Node/Op is available, and similar functionality is present within the
CookInterface (copyLocationToChild) if you port your AMP to an Op.

FAQ for Plug-in Porting
1. Can I use my pre-2.0v1 plug-ins?

Yes, you can recompile SGG and AMP plug-in as full Ops, with some header and mild behavioral changes, which
are listed in Recompiling Existing SGG and AMP Plug-ins on the previous page.

2. Why are Ops better?

The Op API is the same API as is used internally by Katana, and this replaces both SGGs and AMPs. That is to say
that you can finally write a Merge or an Instancing Op without jumping through hoops.

3. Anything major I should be aware of now?

The new ‘granularity of data’ is now per-location, in cook, and you have to calculate all of your attributes at the
same time, as well as name your children. Additionally, the name attribute is no longer used, as locations are
explicitly named upon declaration and cook is performed at a named location path.

4. I used ‘ScenegraphContext’ to adapt behavior. How can I replace it?

The simplest match is to port these Contexts to different Ops, and replace the Op for children as you define
them in the way you would construct a different Context when returning getFirstChild or getNextSibiling.

5. I previously passed data to the constructor of my ScenegraphContext. How do I pass down data
now?

OpArgs are the key to this. Replace the OpArgs for the Op with your children. If it's a complex handle, try using
static Op-level caching (though, beware threading), or use the blind data void*.

PORTING PLUG-INS | FAQ FOR PLUG-IN PORTING

TECHNICAL GUIDE 123

6. I make use of other SGGs, for example Alembic_In, at child locations created by my SGG. Is this a
problem?

Just swap the Op out at the child location, so for this example, to the Alembic_In Op. If you want it to be
deferred, use the ‘Ops’ top-level group attr syntax and OpResolve. Some Ops have helper classes to assist in
building their args.

7. What about threading?

You need to pay attention to what you set in setup and make sure you thread-safe your code accordingly, or set
it to ThreadModeGlobalUnsafe.

8. How do I pass data to the Op that runs at a child location?

Due to the cook function being static, you can’t use the practice of passing data to the constructor for the
context that represents the child or sibling location. The way this is handled in Geolib3 is to update the OpArgs
that are available to the cook function when running at that location.

This can be done either by calling replaceChildTraversalOp for the generic case of all children, or by specifying
the new OpArgs when calling createChild. OpArgs should use CamelCase for their names, with the first letter set
in lowercase, for example, “myOpArg”.

It is recommended to distinguish between ‘private’ internal OpArgs, only used for communication to child
locations, and ‘public’ top-level OpArgs by prefixing private names with an underscore. For example,
“numSubdivisions” would be public and “_currentDepth” would be private.

9. How do I define a custom node that users can create in the node graph for my Op?

The Katana.Nodes3DAPI.NodeTypeBuilder is your friend. It greatly simplifies the process of defining a new
node, and ensures the Op network is suitably updated as parameters change. Refer to the chapter on the
NodeTypeBuilder on page 91 for more info.

10. I want my Op to start running at “/root/world/geo/some/location”, in the way that
ScenegraphGeneratorSetup allowed me to. How do I do this with an Op?

The GenericOp node can do this when applyWhen is set to “create new location”. If you are creating a custom
node using NodeTypeBuilder, instead of instantiating your Op, configure a StaticSceneCreate Op in the
buildOpChain function to run your Op at a sub-location, that is to say:
sscb = FnGeolibServices.OpArgsBuilders.StaticSceneCreate()

sscb.addSubOpAtLocation(locationNameFromParam, “MyOp”, myOpArgsBuilder.build())

interface.appendOp('StaticSceneCreate', sscb.build())

The SubdividedSpaceOp example makes use of this technique.

11. How do Nodes/Ops deal with the Inputs? Do I have to manage merging myself?

Ops have the ability to see the incoming scene, from one or more inputs. When using NodeTypeBuilder to
define a custom node, it is simple to control the default set of inputs present on the node when it's created.

• In an ‘empty’ Op, the scene graph on the default input (first index) passes-through the Op unchanged. You do
not need to manually ‘copy input to output’.

• If you don’t want children or attributes to pass through, you need to explicitly delete them.

• If your Op creates a child that already exists, any attrSets you make simply update attributes at that location.

• If your Op is connected to multiple inputs, then you have to explicitly query, and merge in data from the
additional inputs in your code.

PORTING PLUG-INS | FAQ FOR PLUG-IN PORTING

TECHNICAL GUIDE 124

It is recommended to omit inputs from any high-level ‘generator’ Ops that don’t need to see the incoming scene,
as it encourages users to make node graphs that are ‘wider’, rather than ‘deeper’. These can be more efficient
with multi-threading and permit better caching efficiency. This is by no means a requirement though.

NOTE: Deeply overlapping merges of many inputs can be expensive, while non-overlapping merges are
preferred and significantly cheaper.

12. How do I get system args or GraphState variables into my Op?

GenericOp adds these in for you if you enable ‘addSystemOpArgs’. Alternatively, with NodeTypeBuilder in your
buildOpChainFunc you can:
graphState = interface.getGraphState()

argsGb.set('system', graphState.getOpSystemArgs())

13. I'm getting a bit mixed up about ‘swapping the Op for my children’. I thought the Op Tree was
‘immutable’ while the Scenegraph was being cooked?

One of the key differences between Katana 1.x and 2.x versions is that we keep the network of the Ops that the
nodes represent alive all the time, rather than regenerating them every time parameters change.

This is great for performance, but means the the topology of the Op Tree changes as you add nodes. However,
once the scene graph needs to be evaluated, this top-level Op Tree becomes immutable.

You may find it simpler to think of it as a fixed cookie-cutter template of ‘slots’ that Ops can sit in, rather than a
fixed set of specific Ops. Functions like replaceChildTraversalOp, and the ability to adjust the optype when
creating children, simply changes which Op is in a particular ‘slot’ in the cookie-cutter template when that child
location is cooked.

So, you can’t add new branches but you can easily swap Ops or call extra ones in your slot, in a serial fashion.

PORTING PLUG-INS | FAQ FOR PLUG-IN PORTING

TECHNICAL GUIDE

Message Logging
Error, warning, and informational messages are logged in Katana using the logging module of the
Python Standard Library. Messages are logged from contexts including the Python tab, shelf
scripts, and Python startup scripts.

NOTE: More information on logger objects in Python is available in the Python documentation.

You can filter the level of messages generated, and the level of messages displayed. For more on how to filter the
level of messages generated see the Installation and Licensing > Configuring Message Level section in the
Katana User Guide. For more on displaying messages and filtering the level of messages displayed, see the
Customizing Your Workspace > Message Center section in the Katana User Guide.

Message Levels
Katana recognizes the following standard log message levels from the Python logging module:

• info

• warning

• error

• critical

• debug

Loggers
There are two ways of logging messages from a Python context:

• directly through the Root Logger, or

• through a Custom Logger.

Root Logger

The following example logs a message of each supported type through Python's root logger:
import logging

logging.info("This is an informational message.")

125

TECHNICAL GUIDE 126

logging.warning("This is a warning message.")

logging.error("This is an error message.")

logging.critical("This is a fatal error message.")

logging.debug("This is a debugging message.")

Custom Logger

Instead of using the root logger, you can create a custom logger object. The following example creates a custom
logger and generates a message of each level using that logger:
import logging

log = logging.getLogger("myLogger")

log.info("This is an informational message.")

log.warning("This is a warning message.")

log.error("This is an error message.")

log.critical("This is a fatal error message.")

log.debug("This is a debugging message.")

NOTE: The Message level display option in the Messages window is independent of the level of message
actually generated. For example, if the Messages window is set to show debug messages, debug
messages are only actually be displayed if the level of message generated is also set to include debug.
See Installation and Licensing > Configuring Message Level in the Katana User Guide for more on
how to set the level of message that is generated.

MESSAGE LOGGING |

TECHNICAL GUIDE 127

Logging Exceptions
Exceptions can be logged in a way that automatically includes traceback information in the log message, as in the
following example:
import logging

try:

i = 1 / 0

except Exception as exception:

logging.exception("Error in computation: %s"

% str(exception))

Run in the Python tab, this produces a log message with the following text:
Error in computation: float division

Traceback (most recent call last):

File "<string>", line 4, in <module>

ZeroDivisionError: float division

MESSAGE LOGGING | LOGGING EXCEPTIONS

TECHNICAL GUIDE

Asset Management System Plug-
in API

The Katana Asset plug-in API is a Python and C++ interface for integrating Katana with asset management systems. It
permits retrieval and publishing of assets within Katana. The asset management plug-in API provides four core
mechanisms which are described in the Asset API chapter of the Katana User Guide.

The Asset plug-in API does not provide any functions for traversing over a Katana scene graph or for editing nodes,
and it is not a replacement asset management system. It is referenced when resolving a recipe and should therefore
not traverse the Node Graph directly, or instantiate a scene graph iterator. An Asset plug-in is invoked during
interactive Katana sessions and also during rendering.

Katana ships with an example Asset plug-in, called PyMockAsset. The source file MockAsset.py for the example
plug-in is located in:
${KATANA_ROOT}/plugins/Src/Resources/Examples/AssetPlugins/

As well as source file PyMockAssetWidgetDelegate.py for the corresponding UI widget used with PyMockAsset,
which is found in:
${KATANA_ROOT}/plugins/Src/Resources/Examples/UIPlugins/

PyMultiMockAsset is an extended version of PyMockAsset to allow a number of different asset resolving behaviors,
such as publishing to a database or saving to a sandbox. This example uses assetIds with different prefix values to
determine which behavior should be used. Further details are provided in the plug-in source file.

Concepts

Asset ID

An Asset ID is a serialization of an asset’s fields. In a simple case, using the default File Asset plug-in, the Asset ID is
the file path, but in more complex systems it could be an SQL query, a URL, a GUID or a direct string representation
of the asset's fields, such as the PyMockAsset Asset ID shown below.
mock:///show/shot/name/version

As it’s a single string, an Asset ID can be passed as part of an argument string to a subprocess, such as a shell
command or a procedural. It is important therefore that the format of an Asset ID is such that it can be easily found
in a larger string and parsed.

128

TECHNICAL GUIDE 129

Asset Fields

The fields of an asset are the key components needed to retrieve an asset from an asset management system.
Katana assumes that an asset has a name field and - if provided - also uses a version field.

Asset Attributes

An asset can optionally have attributes where additional metadata is stored, such as comments, or information
about the type of asset.

Katana does not rely on particular attributes to exist, but it presumes that there is a mechanism in place for this
additional data to be read from and written to.

NOTE: It is fine to leave these methods unimplemented if your asset management system has no use for
them.

Asset Publishing

Assets are published by users. When an asset is published it is in a finalized state, accessible to other users.
Publishing can involve incrementing the asset version.

NOTE: Any change that alters the project's katanaSceneName whilst saving a scene triggers a call to
SyncAllOutputPorts(). This ensures render outputs affected by this change are correct.

Transactions

A Transaction is a container for submitting multiple publish operations at once. Rather than submit one publish
operation per asset, operations can be grouped. This means that if an error occurs whilst publishing many assets, the
whole operation may be aborted.
beginTransaction (createTransaction)

publish asset A

publish asset B

publish asset C

endTransaction (commit)

The transaction is final only after the endTransaction(commit) operation.

A transaction must have a commit method and a cancel method. The cancel method can be used to rollback.

ASSET MANAGEMENT SYSTEM PLUG-IN API |

TECHNICAL GUIDE 130

NOTE: Implementing plug-in support for Transactions is optional.

Creating an Asset Plug-in
A Python Asset plug-in is created by making a new Python file in an AssetPlugins sub-directory of a folder in a
KATANA_RESOURCES directory.

NOTE: Asset management plug-ins can also be written in C++. See The C++ API for more on this.

Core Methods

The core methods for an Asset plug-in are:

Handling Asset IDs
• buildAssetId()

Serialize asset fields into an Asset ID.

• getAssetFields()

Deserialize an Asset ID into asset fields.

• isAssetId()

Check if a string is an Asset ID.

Publishing an Asset
• createAssetAndPath()

Create an entry for a new asset and optionally pre-publish it. This could have very little in it if your asset
management system does most of its work post creation in postCreateAsset.

• postCreateAsset()

Publish the new asset. This could have very little in it if your asset management system does most of its work
immediately when the resource is allocated in createAssetAndPath.

Retrieving an Asset
• resolveAsset()

Convert an Asset ID to a file path.

• resolvePath()

Convert an Asset ID and a frame number to a file path.

ASSET MANAGEMENT SYSTEM PLUG-IN API | CREATING AN ASSET PLUG-IN

TECHNICAL GUIDE 131

Publishing an Asset
The methods for publishing an Asset in a custom Asset Management System are createAssetAndPath() and
postCreateAsset().

createAssetAndPath() creates or updates an asset entry, given a collection of fields and an asset type. It returns
the ID of the asset which resolves to a valid file path. It is invoked prior to writing an asset. The fields passed to
createAssetAndPath() may be the result of a decomposed Asset ID stored as a parameter on a node.

Both createAssetAndPath() and postCreateAsset() are used by Katana mechanisms that write assets. The Asset
ID returned from createAssetAndPath() is used to create the fields passed to postCreateAsset(). The result from
postCreateAsset() is used from that point onward (such as in the File > Open Recent menu or in any references
to that asset ID in the current scene):
assetFields1 = assetPlugin.getAssetFields(assetId, True)

id1 = assetPlugin.createAssetAndPath(..., assetFields1, ...)

[Write Katana project file, for example]

assetFields2 = assetPlugin.getAssetFields(id1, True)

id2 = assetPlugin.postCreateAsset(..., assetFields2, ...)

This is done to allow a temporary file path to be used for the write operation. The LookFileBake node and the Render
node use these methods.

createAssetAndPath()

The arguments for createAssetAndPath() are:

• txn

The Asset Transaction (implementation optional). Can be used to group create/publish operations together into
one cancelable operation. This transaction is created via the createTransaction method.

• assetType

A string representing which of the supported asset types is published. See Asset Types and Contexts for a list of the
asset types, and contexts.

• fields

A dictionary of strings containing the asset fields that represent the location of the asset. These are typically
produced by de-serializing an Asset ID stored as a parameter on a node (such as a LookFileBake node). These fields
are based on the Asset ID returned by createAssetAndPath().

• args

A dictionary containing additional information about what asset type to create. For example, should we increment
the asset version? Is it an image, is it a Katana file? This is populated directly by the caller of createAssetAndPath
() and varies with the asset type.

ASSET MANAGEMENT SYSTEM PLUG-IN API | PUBLISHING AN ASSET

TECHNICAL GUIDE 132

• createDirectory

A Boolean indicating that a new directory for the asset needs to be created.

createAssetAndPath() should return the Asset ID of the newly created asset. This may be different to the
serialized Asset ID representation of the fields passed in. For example, if createAssetAndPath() were to versionUp
the asset the returned Asset ID would likely be different to the serialized fields passed in. The returned Asset ID can
be stored as a parameter on the node using this plug-in (if it is being used by a node).

The important arguments are assetType, fields and args. There are no rules for how the args dictionary is
populated. It depends on the calling context and the Asset Type that createAssetAndPath() was invoked for.

postCreateAsset()

postCreateAsset() is invoked after Katana has finished writing to an asset file and is used to finalize the publication
of the asset.

The args dictionary for this type contains:

• txn

The Asset Transaction.

• assetType

A string representing which of the supported asset types is published. See Asset Types and Contexts for a list of the
asset types, and contexts.

• fields

The fields that represent the location of the asset. These fields are the identical to those given to
createAssetAndPath().

• args

A dictionary of strings containing additional information about what asset type to create. For example, should we
increment the asset version? If it is an image, what resolution should it be?

Examples

Selecting File > Version Up and Save triggers createAssetAndPath() to be invoked with an args dictionary, in
which the versionUp and publish keys are set to ’True’. This results in a different Asset ID to that of the serialized
fields passed in. versionUp indicates that a new version of the asset should be published.

Selecting File > Save triggers createAssetAndPath(), invoked with versionUp and publish set to False, unless a
custom asset browser has been written. In that case, versionUp and publish are based on the values returned from
the getExtraOptions() method of a custom browser class. See Configuring the Asset Browser for more on this.

ASSET MANAGEMENT SYSTEM PLUG-IN API | PUBLISHING AN ASSET

TECHNICAL GUIDE 133

Asset Types and Contexts
The following asset types are available to the AssetAPI module:

• Katana project

kAssetTypeKatanaScene

• Macro

kAssetTypeMacro

• Live Group

kAssetTypeLiveGroup

• Image

kAssetTypeImage

• Look File

kAssetTypeLookFile

• Look File Manager Settings

kAssetTypeLookFileMgrSettings

• Alembic Files

kAssetTypeAlembic

• ScenegraphXML Files

kAssetTypeScenegraphXml

• Casting Sheets

kAssetTypeCastingSheet

• Attribute Files

kAssetTypeAttributeFile

• F Curves

kAssetTypeFCurveFile

• Gaffer Light Rig

kAssetTypeGafferRig

• Scene Graph Bookmarks

kAssetTypeScenegraphBookmarks

• Shaders

kAssetTypeShader

In addition, the following list of contexts is available inside the AssetAPI module, and passed as hints to the asset
browser whenever it is invoked:

• kAssetContextKatanaScene.

• kAssetContextMacro.

ASSET MANAGEMENT SYSTEM PLUG-IN API | ASSET TYPES AND CONTEXTS

TECHNICAL GUIDE 134

• kAssetContextLiveGroup.

• kAssetContextImage.

• kAssetContextLookFile.

• kAssetContextLookFileMgrSettings.

• kAssetContextAlembic.

• kAssetContextScenegraphXml.

• kAssetContextCastingSheet.

• kAssetContextAttributeFile.

• kAssetContextFCurveFile.

• kAssetContextGafferRig.

• kAssetContextScenegraphBookmarks.

• kAssetContextShader.

• kAssetContextCatalog.

• kAssetContextFarm.

A constant to hold the relationship between assets has been added. This constant is used when the
getRelatedAssetId() function is called:

• kAssetRelationArgsFile.

Accessing an Asset
The resolveAsset() method must be implemented in order for Katana to gain access to the asset itself.

It takes an Asset ID as its first argument and returns a string containing a file path to the asset. This handle is a path
to a file which can be read from and written to.

NOTE: An Asset plug-in must not attempt to use any NodegraphAPI, user interface, or callback
modules when resolving an Asset ID. This is because Asset ID resolution occurs at render time, when these
modules are not available. Reading from the scene graph while writing to it results in undefined behavior.

Additional Methods
In addition to the core methods that need to be implemented by an Asset plug-in there are additional methods,
many of which are variants.

ASSET MANAGEMENT SYSTEM PLUG-IN API | ACCESSING AN ASSET

TECHNICAL GUIDE 135

reset()

Triggered when the user requests that Katana flush its caches. This is used to clear local Asset ID caches to allow
retrieval of the latest version of an asset.

resolveAllAssets()

Used for expanding Asset IDs in a string containing a mix of Asset IDs and arbitrary tokens, such as a command. It
takes a single string parameter which may contain one or more Asset IDs and replaces them with resolved file paths.
resolveAllAssets() is used by:

• Python expressions, which have access to a function called assetResolve() which resolves a string of Asset IDs
split by white space.

• String parameters, which has a method called getFileSequenceValue() that returns the value of the string with
automatic expansion of Asset IDs into file paths.

• ImageWrite node postScripts. An ImageWrite node can execute post scripts commands. The Asset IDs in these
commands are automatically expanded.

resolvePath()

This resolves an Asset ID and frame number pair, where time is a factor in determining the asset resolution (such as a
sequence of images). resolvePath() is called in place of resolveAsset() whenever time is a significant factor in asset
resolution.

resolvePath() is used extensively for resolving procedural arguments in render plug-ins. It is used by the Material
and RiProcedural resolvers, and the Look File Manager. It can be accessed in Attribute Scripts via the AssetResolve()
function in an Attribute Script Util module.

resolveAssetVersion()

This accepts an Asset ID that references a tag or meta version such as latest or lighting and returns the version
number that it corresponds to. It also accepts an Asset ID that contains no version information and an optional
versionTag parameter, and produces the version number that corresponds to the versionTag argument.

This is used by the LookFile resolver, Katana in batch mode, the Casting Sheet plug-in, and the Importomatic user
interface.

ASSET MANAGEMENT SYSTEM PLUG-IN API | ADDITIONALMETHODS

TECHNICAL GUIDE 136

createTransaction()

It allows Katana to create assets in bulk. If createTransaction is implemented to return a custom transaction object,
then the object must have commit and cancel methods that take no arguments. The commit method should
submit the operations accumulated in the transaction to the Asset Repository. The cancel method should rollback
the publish operations accumulated in the transaction.

The transaction is passed by Katana to createAssetAndPath() and to postCreateAsset(). An example of this is in
the Render node.

NOTE: This method must be implemented but it can return None.

containsAssetId()

Reports if a string contains an Asset ID.

The string parameter uses this method prior to expanding the Asset IDs it may contain, when
getFileSequenceValue() is called.

getAssetDisplayName()

Is used to produce a short name for an asset. For example, a name that can be used in the UI.

This is used by the Alembic Importomatic plug-in and the LookFileManager.

getAssetVersions()

Lists the versions that are available for an asset as a sequence of strings.

This is used by the Importomatic, to allow users to choose an asset version in the Importomatic versions column and
by the CastingSheet plug-in.

getUniqueScenegraphLocationFromAssetId()

Provides a scene graph path for an asset, as a string, so that it can be placed easily in the Scene Graph tab, and is
currently used by the LookFileManager.

ASSET MANAGEMENT SYSTEM PLUG-IN API | ADDITIONALMETHODS

TECHNICAL GUIDE 137

getRelatedAssetId()

Given an Asset ID and a string representing a relationship or connection, returns another Asset ID. For example, with
a shader file that has an Args file getRelatedAssetId() can be used to get the Asset ID of the Args file from the Asset
ID of the shader. The contexts listed in Asset Types and Contexts are passed to getRelatedAssetId().

NOTE: If getRelatedAssetId() returns either None, or an empty string, Katana looks up the Args file in
the default fashion, relative to the .so file location.

NOTE: If getRelatedAssetId() returns anything other than None or an empty string, Katana attempts to
load the returned Asset ID. If, for any reason, that Asset ID is not valid, Katana does not fall back to the
default behavior, but gives a load error.

getAssetIdForScope()

This truncates an Asset ID to the given scope, where the scope is an asset field.

For example:
getAssetIdForScope("mock://myShow/myShot/myName/myVersion", "shot")

Produces:
mock://myShow/myShot

The returned Asset ID no longer contains the name and version components.

This is used by the assetAttr() built-in function that Python expressions have access to, and by Katana internally.

setAssetAttributes()

Allows users to set additional metadata on an asset.

This is not used by anything in the Katana codebase. It is entirely up to the users to make use of this function.

getAssetAttributes()

Allows users to store additional metadata on an asset.

ASSET MANAGEMENT SYSTEM PLUG-IN API | ADDITIONALMETHODS

TECHNICAL GUIDE 138

The casting sheet example plug-in uses this method and Python expressions have access to an assetAttr built-in
method that retrieves asset attribute information.

Top Level Asset API Functions
The top level Asset API functions can be found by opening a Python tab and typing:
help(AssetAPI)

The most useful are:

• SetDefaultAssetPluginName()

Sets the default asset plug-in to use in the user interface for this Katana project.

• GetDefaultAssetPlugin()

Retrieves an asset plug-in by name.

• GetAssetPluginNames()

Lists the names of all the currently registered asset plug-ins.

LiveGroup Asset Functions
A studio may decide to use permissions for working with certain assets on a project. These permissions may depend
on the name of the current user, the name of the user’s workstation, or certain environment variables for a project,
such as show, shot, or sequence. Katana’s AssetAPI supports such access permissions through a dedicated function,
checkPermissions(), which is called for certain LiveGroup operations. When a function to check permissions in a
specific context is called, the asset API plug-in queries the Asset Management System (AMS) to check general
permissions or permissions for working with the asset with the given ID in the given context. Checking permissions
for a given ID can be used to check whether the current user has sufficient permissions to edit the asset or whether
the asset has already been checked out for editing.

NOTE: It is possible, with a custom implementation leveraging the Asset Management System, to inform
users of editable permission errors, such as when another user is currently editing the LiveGroup source of
the node you’re attempting to edit. If another LiveGroup node references the same LiveGroup source
and has been made editable by another user, an error is displayed and the state of the node is not
changed.

The function signature for checking permissions is:
checkPermissions(assetID: string, context: map of string to string): bool

The context dictionary contains information about the context from which to check permissions, with names of
information fields as keys and values of information fields as values. For example, the following might be produced:

• action = edit

ASSET MANAGEMENT SYSTEM PLUG-IN API | TOP LEVELASSET API FUNCTIONS

TECHNICAL GUIDE 139

• shot = ts520

• show = srow

• username = name

• workstation = seat

When the function to run a custom asset plug-in command is called the asset API plug-in uses the AMS to check if the
command succeeds or fails. The function signature to run the plug-in command is:

runAssetPluginCommand(assetID: string, command: string, commandArgs: map of string): bool

The command parameter receives the command to execute, for example:

• acquireLock

• releaseLock

The commandArgs dictionary contains information about the arguments with which to customize the execution of
the given command, with names of command arguments as keys and values of command arguments as values.
The commandArgs dictionary may be empty.

Extending the User Interface with Asset Widget
Delegate
Katana provides a mechanism for configuring the asset related parts of its user interface. This is achieved by
implementing and registering an AssetWidgetDelegate.

The PyMockAssetWidgetDelegate.py provides a good reference. This file is shipped with Katana in:
${KATANA_ROOT}/plugins/Src/Resources/Examples/UIPlugins/

This allows users to:

• Configure the asset / file browser. Typically this is done by extending with a custom asset browser tab.

• Implement a custom Python QT widget for displaying and editing Asset IDs in the Parameters tab.

• Implement a custom Python QT widget for displaying and editing render output locations in the Parameters tab.

• Customize the QuickLink paths used by the file browser.

To create an AssetWidgetDelegate plug-in, create a new Python file and place it in a directory called UIPlugins in a
folder in your KATANA_RESOURCES.

NOTE: The UI4 module is the main Python module for working with the Katana user interface.

ASSET MANAGEMENT SYSTEM PLUG-IN API | EXTENDING THE USER INTERFACEWITH ASSET WIDGET

TECHNICAL GUIDE 140

Configuring the Asset Browser

The entry point for extending the Katana asset browser is the method configureAssetBrowser(), which must be
implemented in your AssetWidgetDelegate plug-in. configureAssetBrowser() takes a single browser argument,
which is the Katana Asset Browser to configure. At its core the Asset Browser is a QT dialog window (QDialog) with
additional utility methods. The most useful of these are:

• addBrowserTab()

Add a new tab to the Asset Browser.

• addFileBrowserTab()

Add a standard file browser tab to the Asset Browser.

• getCurrentIndex()

Return the index of the currently open tab.

• setCurrentIndex()

Set the currently open tab.

The base implementation of configureAssetBrowser() sets the window title from the given hints and creates a file
browser tab. If you want to avoid creating a file browser tab, implement a shouldAddFileTabToAssetBrowser()
method with a return value of False.

The following methods exist but need minimal implementation:

• setSaveMode()

Tells us whether the browser is invoked for opening a file or for saving one. If the saveMode is True, then the
browser has been opened for saving a file.

• selectionValid()

Checks whether the current asset path refers to a valid asset. For a file browser dialog window this returns false if
a chosen path does not exist.

• setLocation()

Sets the default location with which to open the browser.

• getExtraOptions()

This is used to support a versionUp and a publish option for LookFileBake and create a new Katana file. If those
options are displayed in the custom user interface Katana retrieves them using this method:

{"versionup" : "False" / "True", "publish" : "False" / "True" }

NOTE: The function getExtraOptions() should return a dict.

NOTE: The custom browser tab added using addBrowserTab() should emit a selectionValid signal to
indicate a change in selection validity and therefore the state of the Asset Browser Accept button, for

ASSET MANAGEMENT SYSTEM PLUG-IN API | EXTENDING THE USER INTERFACEWITH ASSET WIDGET

TECHNICAL GUIDE 141

example:

browserTab.emit(QtCore.SIGNAL('selectionValid'), browserTab.selectionValid())

The browser dialog listens for this signal from the currently viewed tab and sets the enabled state of its
Accept button accordingly.

The Asset Control Widget
The AssetWidgetDelegate plug-in API makes it possible to replace the default string widget that allows users to view
and edit an Asset ID in the node Parameters tab.

Typically you edit the fields of an asset through a UI. Internally those fields are serialized into a single string as an
Asset ID, and stored as a parameter on a node.

Using a custom Asset Control Widget you can replace the widget displaying the fields. Katana knows to use the
custom widget through the assetIdInput hint, which is associated with all string parameters that represent an
Asset ID.

Implementing A Custom Asset Control Widget

The entry point that Katana needs, in order to create a custom asset control widget is the
createAssetControlWidget() method of our custom AssetWidgetDelegate class.

The createAssetControlWidget() method instantiates the SimpleMockAssetControlWidget, which must inherit
from BaseAssetControlWidget. BaseAssetControlWidget is a QT QWidget with an HBoxLayout.
createAssetControlWidget() then adds the control widget to the parent layout. The parent is a QWidget and part
of the Parameter tab.

The following methods must be implemented by an asset control widget:

• buildWidgets()

This is invoked by the BaseAssetControlWidget constructor to build the child widgets. This is where most of the
work happens.

• setValue()

Updates this widget with the given Asset ID.

ASSET MANAGEMENT SYSTEM PLUG-IN API | THE ASSET CONTROLWIDGET

TECHNICAL GUIDE 142

• getValue()

Return the Asset ID from this widget.

• setReadOnly()

Enable/Disable editing of this widget.

The BaseAssetControlWidget supplies an emitValueChanged() method for notifying Katana that the user has
changed the Asset ID in the widget. This must be called when the value in the UI has changed.

Asset Render Widget

The Asset Widget Delegate allows customization of the display of the render output location shown in a Render
node’s Parameters tab. This is useful for when rendering to a location in a custom asset management system.

This output location could be an automatically generated temporary path or one set explicitly using a Render Output
Define node. It is set on a Render Node and therefore the Asset Render Widget is read-only.

Implementing an Asset Render Widget

Implementing an Asset Render Widget is optional. The Asset Management user interface does not require this. The
entry point for a custom widget delegate is similar to that of the Asset Control Widget.

The Asset Widget Delegate must implement createAssetRenderWidget() which in turn must return a class that
inherits from baseAssetWidgetDelegate() and implements two methods, buildWidgets() and updateWidgets().

createAssetRenderWidget() has an additional outputInfo argument which is a dictionary of output information
and must be passed to the BaseAssetRenderWidget constructor. The outputInfo dictionary contains the output
location’s Asset ID along with additional information (such as the image file type and resolution).
BaseAssetRenderWidget provides a utility method, getOutputInfo() for accessing this dictionary.

The key for the Asset ID of the output location is outputLocation.

Additional Asset Widget Delegate Methods

There are several methods used to make small customizations to the Asset Management UI. These are implemented
as overridable methods on the Asset Widget Delegate.

addAssetFromWidgetMenuItems()

Allows you to extend the menu item to the right of an Asset ID in the Parameters tab with additional items.
def addAssetFormWidgetMenuItems(self, menu):

menu.addAction("Custom Action",

ASSET MANAGEMENT SYSTEM PLUG-IN API | THE ASSET CONTROLWIDGET

TECHNICAL GUIDE 143

self.__customCallback)

def __customCallback(self, *args):

print args

shouldAddStandardMenuItem()

When False is returned from this method, the menu item to the right of an Asset ID in the Parameters tab is not
displayed when clicked on.

shouldAddFileTabToAssetBrowser()

The File tab is not displayed in the Asset Browser when this is set to return False.

getQuickLinkPathsForContext()

For customization of the quicklink paths displayed at the bottom of the File tab. Must return a sequence of file
paths.

Locking Asset Versions Prior to Rendering
In many pipelines it is considered desirable to lock all the assets used in a shot to specific versions prior to rendering.
When an asset is locked, meta versions (or tags) are resolved to a fixed static version, represented by a number. This
ensures that the same asset version is used for rendering all frames. Conventional ways of doing this include creating
a look-up table to specify which explicit version of an asset to use for all asset references, or by supplying an
additional date-stamp to use when resolving assets.

The FarmAPI is a mechanism that allows users to take charge of the submission of jobs to a render farm and the
construction of a look up table might be implemented within this API. See the Farm API docs for how to write a Farm
API plug-in.

Setting the Default Asset Management Plug-in
The default Asset plug-in and file sequence is defined with two environment variables. If you want to set your own
plug-in and sequence as default, make sure the following are set on your system:
KATANA_DEFAULT_ASSET_PLUGIN = yourAssetPlug-in

KATANA_DEFAULT_FILE_SEQUENCE_PLUGIN = yourFileSequence

ASSET MANAGEMENT SYSTEM PLUG-IN API | LOCKING ASSET VERSIONS PRIOR TO RENDERING

TECHNICAL GUIDE 144

The C++ API
You can implement an Asset plug-in in C++ as well as in Python. This is done by inheriting from the FnAsset class in
the C++ plug-in SDK. Almost exactly the same methods must be implemented in C++ as in Python.

It is not possible to implement a custom Asset Browser, Asset Control Widget or Asset Render Widget via the C++
plug-in SDK. However, these user interfaces can still be implemented in Python and work alongside a C++ Asset
Management Plug-in.

Asset management plug-ins implemented in C++ and Python are accessed via the same Python interface inside of
Katana and similarly, C++ plug-ins that make use of an asset management plug-in have access to those implemented
in Python and in C++.

In order for Katana to load a custom asset management plug-in, it must be compiled as a shared object and placed in
a directory called Libs inside your KATANA_RESOURCES directory.

ASSET MANAGEMENT SYSTEM PLUG-IN API | THE C++API

TECHNICAL GUIDE

Python Processes and Geolib3
To avoid problems with the Python GIL locking Geolib3, a new system has been implemented for
Python code that needs to be run as part of scene graph evaluation. Such code is now executed by
distinct Python interpreters in a separate process pool, with inter-process communication between
the processes in this pool and Geolib3.

NOTE: This is only for processes that need to be run as part of Geolib3 Op evaluation, such as Attribute
Scripts and Ops that need to resolve Asset Management Plug-ins implemented in Python. Other uses of
Python, such as Katana in script mode, Shelf script, or Python script buttons in the UI, are not affected.

Running these processes in a separate pool avoids locking thread execution of Geolib3, but means there is an
additional overhead when executing Python processes from Geolib3 compared with Katana 1.x. Due to this,
execution of Attribute Scripts and Python-based Asset Management plug-ins may be slower than in Katana 1.x.

In general it is recommended to use the new Op Scripts instead of Attribute Scripts, and to implement Asset
Management System Plug-ins in C++ if possible. This is particularly true for processes that need to be run on a large
number of locations, such as an Attribute Script that runs on all geometry locations.

By default, each process that uses the Geolib3 runtime creates a maximum of one Attribute Script Python
interpreter sub-process. To avoid contention when performing re-entrant multi-threaded renders, the maximum
number of processes can be set according to the value of the following environment variable: KATANA_NUM_
ATTRIBUTE_SCRIPT_INTERPRETERS

Processes using the Geolib3 runtime exit with a non-zero exit code, when unable to acquire an Asset Management
Plug-in Python interpreter process. When using Katana in batch mode, this behavior may be disabled by setting the
following environment variable: KATANA_DISABLE_EXIT_ON_ASSET_PROCESS_MANAGER_FAILURE

Under certain circumstances, such as when referenced file paths or mount points are inaccessible due to heavy NFS
server load or network outages, the loading of external Python processes that are used to handle AttributeScripts
and Python-based AssetAPI plug-ins may be delayed, resulting in the Katana's process manager being terminated
due to timeouts. Two environment variables are provided to allow you to fine-tune the number of retries and
verification attempts Katana makes before killing a process:

• KATANA_IPC_MAX_SPAWN_ATTEMPTS - The maximum number of times the process manager should attempt to
spawn a given process before reporting unable to do so. The process manager repeatedly attempts to spawn the
specified process up to the number of times set by KATANA_IPC_MAX_SPAWN_ATTEMPTS, at which point it
returns with failure. The consequences of returning with failure depend on the state of the process manager. The
fatal case occurs where the process manager is unable to spawn a single process.

The default value is 5.

• KATANA_IPC_MAX_VERIFY_ATTEMPTS - The maximum number of times the process manager should attempt to
verify if a process is alive and/or ready to accept work. To determine which processes are available for work, the

145

TECHNICAL GUIDE 146

process manager sends various verification messages to the processes it's currently managing. KATANA_IPC_MAX_
VERIFY_ATTEMPTS determines how many times the process manager attempts to verify if a process is alive and/or
ready for work.

The default value is 101.

PYTHON PROCESSES AND GEOLIB3 |

TECHNICAL GUIDE

Render Farm API
The Render Farm Python API is an interface with hooks and utility functions for customizing the way
jobs are submitted to a render farm from Katana. It provides functions for adding options to the
Render Farm menu, for creating custom farm parameters, and for retrieving render node
dependencies and render pass information.

The Render Farm API cannot export scene graphs or Katana recipes, and cannot be used for writing complex user
interfaces or for modifying the Node Graph. Katana provides other modules for accomplishing these tasks.

The Farm API works exclusively with the Render, RenderScript and ImageWrite nodes, which are typically the final
nodes in a recipe.

What scripts work with the Farm API?
To use the Farm API you must create a plug-in that is instantiated at the start of each Katana session. Python plug-
ins are modules which must be placed in a Plugins sub-directory of a location in your KATANA_RESOURCES.

For example, make a directory called MyResources, with a sub-directory called Plugins and append the path to
MyResources to your KATANA_RESOURCES environment variable. Plug-ins located in the Plugins directory are
instantiated at the start of each Katana session.

NOTE: The way plug-ins are picked up is similar to the way that Macros are located. See theGroups,
Macros, & Super Tools chapter in the Katana User Guide for more on this.

Farm XML Example
Katana ships with an example Farm API plug-in called Farm XML. When invoked, this plug-in produces an example
configuration script for submission to a Render Farm.

The Python source for this example is provided in:
${KATANA_ROOT}/plugins/Src/Resources/Examples/Plugins/FarmXML.py

The onStartup Callback
Plug-ins are initialized during the Katana startup sequence. Once initialized, a plug-in can register new node types or
callback handlers. For example, a Render Farm plug-in must register an onStartup handler to be invoked once

147

TECHNICAL GUIDE 148

initialization is complete:

from Katana import Callbacks
def onStartup(**kwargs):

pass
Callbacks.addCallback(Callbacks.Type.onStartup, onStartup)

The onStartup callback handler is used to add Farm menu options to the UI and register Farm specific node
parameters.

Farm Menu Options
A Render Farm menu option is a UI hook for triggering a custom Render Farm Submission tool, which in turn could
launch a File Browser or a custom dialog.

Two UI menus can be extended by the Farm API. The Util menu in the top menu bar and the Render Farm menu,
which appears in a pop-up when you right-click on a node in the Node Graph.

The Util Menu

The function AddFarmMenuOption() adds a new menu item to the Util menu.

It's arguments are a menu item title and a callback function to invoke when the menu item is chosen. For example:
from Katana import FarmAPI, Callbacks

def runMyOption(**kwargs):

print("My Render Farm Util Menu Option has been clicked")

def onStartup(**kwargs):

FarmAPI.AddFarmMenuOption("My Render Farm Util Menu

Option", runMyOption)

Callbacks.addCallback(Callbacks.Type.onStartup, onStartup)

Render Farm Pop-Up Menu Option

The function AddFarmPopupMenuOption() adds a new item to the Render

Farm section of a supported node’s right-click menu. Like the Util menu, its arguments are an item title and a
callback function to invoke when the item is chosen. For example:

RENDER FARM API | FARM MENUOPTIONS

TECHNICAL GUIDE 149

from Katana import FarmAPI, Callbacks

def runMyOption(**kwargs):
print(“My Render Farm Menu Option has been clicked”)

def onStartup(**kwargs):
FarmAPI.AddFarmPopupMenuOption("My Render Farm Menu Option", runMyOption)

Callbacks.addCallback(Callbacks.Type.onStartup, onStartup)

Farm Node Parameters

The Farm API provides a mechanism for storing persistent settings in a Katana recipe. These settings appear as
parameters under a farmSettings parameter on nodes of type Render, ImageWrite or RenderScript. You can add
parameters of the following types:

• String

• StringArray

• Number

• NumberArray

As with menu items, these settings must be registered when the onStartup() handler in invoked. For example:
from Katana import FarmAPI, Callbacks

def onStartup(**kwargs):

FarmAPI.AddFarmSettingString("My_Custom_Farm_Parameter")

Callbacks.addCallback(Callbacks.Type.onStartup, onStartup)

All settings can have UI hints. Array settings can be constructed with an initial size, and single value settings can be
constructed with a default value.

NOTE: The Farm API function GetAddedFarmSettings() returns a dictionary of any added settings.

NOTE: The function ExtractFarmSettingsFromNode() returns a dictionary of the values of any added
settings on a given node.

The Farm API automatically registers default settings. The documentation for these settings can be found in the
Parameters tab by clicking on the help icon to the left of a parameter's name.

• setActiveFrameRange

The frame range to process on the farm.

• dependAll

RENDER FARM API | FARM MENUOPTIONS

TECHNICAL GUIDE 150

Render nodes that depend on this render node require all of its outputs to complete before the next process is
launched.

• forceFarmOutputGeneration

Force this node to appear in the farm file submitted to the render farm regardless of whether it has any outputs.

• ExcludeFromFarmOutputGeneration

Do not include this node in the render farm file.

Although the parameters listed above exist for each renderable node, it is the responsibility of the writer of a Farm
Plug-in to chose whether and how to implement them.

Get Sorted Dependency List

The Farm API provides a function for obtaining rendering dependencies and minimal render pass and output file
information. This is all obtained via the GetSortedDependencyList() function, which returns a list of dictionaries,
with one dictionary per rendering node. Dictionaries are ordered so that each entry appears after its dependencies.
For example:
from Katana import FarmAPI, Callbacks

def displayOutputs(**kwargs):

renderNodeInfo = FarmAPI.GetSortedDependencyList()

print(renderNodeInfo)

def onStartup(**kwargs):

For the Util menu

FarmAPI.AddFarmMenuOption("Display Outputs", displayOutputs)

For the popup

FarmAPI.AddFarmPopupMenuOption("Display Outputs", displayOutputs)

Callbacks.addCallback(Callbacks.Type.onStartup, onStartup)

In a new Katana session, make a CameraCreate node and connect it to a Render node. When invoked,
displayOutputs() produces console text similar to the following:
[{'name': 'Render', 'service': 'prman', 'views': '', 'outputs': [{'outputLocation':

'/tmp/katana_tmpdir_9514/Render_rgba_square_512_lnf.#.exr', 'enabled': True, 'name':
'primary',

'tempRenderLocation': ''}], '2Dor3D': '3D', 'dependAll': 'No', 'range': None, 'deps':
[], 'memory': '',

'output': True, 'renderInternalDependencies': 'No',

'farmFileName' : '' }]

Get Sorted Dependency List Keys

Many of the keys produced by displayOutputs() mirror a FarmSetting parameter value:

RENDER FARM API | FARM MENUOPTIONS

TECHNICAL GUIDE 151

Key Type Description

2Dor3D String Describes whether the node works with 2D or 3D data. An
ImageWrite node is 2D, while a Render node is 3D.

dependAll String Describes whether dependencies must wait until all outputs are
complete.

deps String[] The names of the RenderNodes that this render node depends
on.

name String The name of the render node that this dictionary represents.

outputs Dictionary[] A list of dictionaries. The render passes the current node
outputs. Each dictionary contains a render pass name, a temp
location and a proper location as an asset id.

range Float[] A tuple of floats giving the range to render, as set by the Farm
settings parameters.

service String The renderer used. Could be prman, arnold or another
renderer.

Render Dependencies
The function GetSortedDependencyList() provides the information needed to obtain the names of any other
nodes a Render node depends on. For example, the following script returns the names of a Render node’s
dependencies, as a sequence:
def dependencyList(nodeName):

"""

Use GetSortedDependencyList to retrieve the entire dependency tree for a render node.

Each entry is ordered so that render nodes are sorted by number of dependencies, in
descending order.

"""

Get hold of the node and all of its dependencies as a sequence of dictionaries

node = NodegraphAPI.GetNode(nodeName)

info = FarmAPI.GetSortedDependencyList([node])

Extract the 'deps' for each entry in the sequence

to produce a flat list.

allDeps = [dep for i in info for dep in i["deps"]]

return allDeps

RENDER FARM API | RENDERDEPENDENCIES

TECHNICAL GUIDE 152

Render Passes and Outputs
As with Render Dependencies, the sequence of dictionaries returned by GetSortedDependcyList() contains the
names, paths, and temporary paths of the outputs a Render node produces.

Render Output Names

The following example script defines a function that returns a sequence comprised of the names of the output
passes produced by a render node:

def outputNames(nodeName):
"""
Get the render outputs of a render node
"""
Get hold of the node and all of its dependencies as a
dictionary
node = NodegraphAPI.GetNode(nodeName)
info = FarmAPI.GetSortedDependencyList([node])
Extract the names of the outputs
of a render node
allDeps = [

The output name
output["name"]
Each info entry
for i in info

We only want the info for our particular node
if i["name"] == nodeName

We only want output info
for output in i["outputs"]

]

return allDeps

Render Output File Paths

Each image file rendered is written to a temporary location before being copied to the chosen final location. It
therefore has two locations, the temporary (which is always a local file path) and the final (which can be an Asset ID).
The default temporary path contains the Process ID of the current Katana session (not the one running on the farm).
This path can be changed through the UI or the Nodegraph API.

The following example script defines a function that produces a sequence with each entry containing the name of an
output, the path for the image files it produces, and the temporary file location:

RENDER FARM API | RENDER PASSES AND OUTPUTS

TECHNICAL GUIDE 153

def outputNames(nodeName):
"""
Get the render outputs of a render node
"""
Get hold of the node and all of its dependencies as a dictionary
node = NodegraphAPI.GetNode(nodeName)
info = FarmAPI.GetSortedDependencyList([node])
Extract the names of the outputs
of a render node
allDeps = [

The output information
(

Name
output["name"],
Location
output["outputLocation"],
Temp location
output["tempRenderLocation"]
)

Each info entry
for i in info

We only want the info for our particular node
if i["name"] == nodeName
We only want output info

for output in i["outputs"]
]

return allDeps

File Browser Example
The following example plug-in retrieves rendering information and dumps it to a JSON file. The UI4 module is used to
display a File Browser dialog window:

from Katana import FarmAPI, Callbacks
import json
def writeRenderInfo(**kwargs):

from Katana import UI4
renderNodeInfo = FarmAPI.GetSortedDependencyList()
farmFilePath = UI4.Util.AssetId.BrowseForAsset
(
'', 'Specify a filename', \

True,{'fileTypes':'json','acceptDir': False}

RENDER FARM API | FILE BROWSER EXAMPLE

TECHNICAL GUIDE 154

)
with open(farmFilePath, "w") as farmFile:

farmFile.write(
 json.dumps(

renderNodeInfo
)

)
def onStartup(**kwargs):

FarmAPI.AddFarmMenuOption("Display Out", \
writeRenderInfo)

Callbacks.addCallback(Callbacks.Type.onStartup, onStartup)

Custom Dialog

The default dialog is a starting point for a farm plug-in dialogue window, but for a custom plug-in, it may be
necessary to create a custom dialog window. In this case PyQT and the UI4 module should be used.

Errors, Warnings and Scene Validation
It is useful to check particular conditions of a recipe’s state before submitting it to a render-farm. For example, the
recipe should have no unsaved changes, so that what is rendered is consistent with what is displayed in Katana.

The utility IsSceneValid() checks for unsaved changes, and returns a boolean with a value of True if the recipe is
eligible for submission. For example:
eligibleForSubmission = FarmAPI.IsSceneValid(

nodeScope = FarmAPI.NODES_ALL,

allowUnsavedChanges=False,

allowCapitalLetters=False,

allowDigits=False,

unwantedSymbols=["_"]

)

The nodeScope argument specifies which nodes are submitted. The argument value is stored in the internal state of
the Farm API and can be retrieved with GetNodeProcessType(), which returns one of the following:

• NODES_SINGLE

• NODES_SELECTED

• NODES_ALL

The function GetNodeList() retrieves the nodes specified by the nodeScope, if IsSceneValid() was successful. For
example:
eligibleForSubmission = FarmAPI.IsSceneValid(

RENDER FARM API | ERRORS, WARNINGS AND SCENE VALIDATION

TECHNICAL GUIDE 155

nodeScope = FarmAPI.NODES_ALL,

allowUnsavedChanges=False,

allowCapitalLetters=False,

allowDigits=False,

unwantedSymbols=["_"]

)

if eligibleForSubmission:

nodesForFarm = FarmAPI.GetNodeList()

If a scene fails the IsSceneValid() check, any errors and warnings are retrieved using GetErrorMessages() and
GetWarningMessages(). The following example displays any errors in a message box:
errorText = FarmAPI.GetErrorMessages()

if len(errorText) > 0:

UI4.Widgets.MessageBox.Warning('Error', \

' '.join(errorText))

return

The functions AddErrorMessage() and AddWarningMessage() are used to issue additional error messages. These
are only used when writing a custom dialog.

Additional Utils

The following table details the utility functions that the Farm API provides. Refer to the Python help function for
more information on these functions:

Name Type Description

GetKatanaFileName() String Returns the Asset ID of the currently open Katana
recipe.

GetSelectedNodes() Node[] Returns a list of the currently selected nodes.

GetCurrentNode() Node Returns the node currently under the mouse, if the
mouse has been clicked. If there is no qualifying node,
returns the first element in the list of selected nodes.

GetClickedNode() Node Returns the node currently under the mouse, if the
mouse has been clicked.

GetSceneFrameRange() Dictionary of floats
with string keys

Returns the In Time and Out Time of the currently
open Katana recipe.

GetCurrentNodeFrameRange() Dictionary of floats
with string keys

Returns the FarmSettings frame range of the current
node.

RENDER FARM API | ERRORS, WARNINGS AND SCENE VALIDATION

TECHNICAL GUIDE

Custom Node Graph Menus
The LayeredMenuAPI allows you to create custom menus for the Node Graph tab that are similar to
the node creation menu that is shown when pressing the Tab key.

LayeredMenuAPI Overview
The LayeredMenuAPI allows you to define and register custom menus in the Node Graph tab that can be used to
execute custom Python code when an entry is chosen. The entries that are shown for a layered menu can be
customized with arbitrary text and a color per entry. When entering text while a layered menu is shown, its entries
are filtered based on the entered text, just like entries of the node creation menu are filtered when typing the name
of a node type.

The layered menu plug-ins can define the following:

156

TECHNICAL GUIDE 157

• The keyboard shortcut that triggers the menu to be displayed.

• The list of menu entries to be displayed.

• A callback function that is called when a user selects an entry.

• For a callback that creates a new node, whether or not that node should float with the mouse pointer after it is
created, allowing a user to place the node in the Node Graph tab. This is similar to when a node is created using
the node creation menu, triggered by the Tab key.

• Whether the menu is populated every time it is displayed, or only the first time. This can be useful if the list of
entries can change during a Katana session, and should be refreshed before showing the menu.

• If the string to filter the entries by should match only the beginning of an entry's text, or any portion of it.

More information is available in Python:

help(LayeredMenuAPI)
help(LayeredMenuAPI.LayeredMenu)

Creating a Custom Node Graph Menu Plug-in
You can define custom menus for the Node Graph tab using the LayeredMenuAPI in Python scripts that you can
place in a UIPlugins folder within one of your $KATANA_RESOURCES paths.

In order to define a custom menu, you need to import the LayeredMenuAPI from Katana and create a class
derived from LayeredMenuAPI.LayeredMenu. After defining the class, you need to register an instance of the
class with the LayeredMenuAPI, using the LayeredMenuAPI.RegisterLayeredMenu() function. A unique ID for
the layered menu needs to be provided. The IDs of layered menus that have already been registered can be obtained
by calling the LayeredMenuAPI.GetLayeredMenuIDs() function.

The initializer of your LayeredMenu-derived class should have the following parameters:

Parameter Description

populateCallback The function to call for filling a given menu with entries.

actionCallback The function to call when an entry of the menu has been chosen.

keyboardShortcut The string representation of the keyboard shortcut that can be used to show the menu,
for example, M or Alt+M.

alwaysPopulate A flag that controls whether the given populateCallback is called every time the menu
is shown (True) or only the first time (False).

onlyMatchWordStart A flag that controls whether entered text is used to match the text of entries at their
beginning, or anywhere in their text.

CUSTOM NODEGRAPH MENUS | CREATING A CUSTOM NODEGRAPH MENUPLUG-IN

TECHNICAL GUIDE 158

The function used as the populateCallback receives a layered menu, usually named menu, which is the instance of
the LayeredMenu subclass. Entries can be added by calling the addEntry() function on that instance, which
expects the following:

• A value that can be an object of any type, which is passed to the actionCallback when the entry is chosen.

• The text to show for the entry in the menu, which is matched against the entered filter text. If no text is given
(default: None), the string representation of the given value is used.

• A color that is used as part of the entry's rectangle. If no color is given (default: None), a default color is used for
the entry.

• A size (a tuple of width and height) to use for the dimensions of the entry's rectangle. If no size is given (default:
None), the entry's size is calculated based on its text.

The following example shows how a layered menu with two entries can be defined. When choosing one of the
entries, the corresponding value of the entry is printed to the console:

"""
Example script that registers a layered menu for the B{Node Graph} tab, which
shows the names of available PRMan shaders and creates a PrmanShadingNode node
with the chosen shader set on it when one of the menu entries is chosen.
"""

from Katana import NodegraphAPI, RenderingAPI, LayeredMenuAPI
from RenderingAPI import RenderPlugins

def PopulateCallback(layeredMenu):
"""
Callback for the layered menu, which adds entries to the given
C{layeredMenu} based on the available PRMan shaders.

@type layeredMenu: L{LayeredMenuAPI.LayeredMenu}
@param layeredMenu: The layered menu to add entries to.
"""
Obtain a list of names of available PRMan shaders from the PRMan renderer
info plug-in
rendererInfoPlugin = RenderPlugins.GetInfoPlugin('prman')
shaderType = RenderingAPI.RendererInfo.kRendererObjectTypeShader
shaderNames = rendererInfoPlugin.getRendererObjectNames(shaderType)

Iterate over the names of shaders and add a menu entry for each of them
to the given layered menu, using a green-ish color
for shaderName in shaderNames:

layeredMenu.addEntry(shaderName, text=shaderName,
color=(0.3, 0.7, 0.3))

def ActionCallback(value):
"""

CUSTOM NODEGRAPH MENUS | CREATING A CUSTOM NODEGRAPH MENUPLUG-IN

TECHNICAL GUIDE 159

Callback for the layered menu, which creates a PrmanShadingNode node and
sets its B{nodeType} parameter to the given C{value}, which is the name of
a PRMan shader as set for the menu entry in L{PopulateCallback()}.

@type value: C{str}
@rtype: C{object}
@param value: An arbitrary object that the menu entry that was chosen

represents. In our case here, this is the name of a PRMan shader as
passed to the L{LayeredMenuAPI.LayeredMenu.addEntry()} function in
L{PopulateCallback()}.

@return: An arbitrary object. In our case here, we return the created
PrmanShadingNode node, which is then placed in the B{Node Graph} tab
because it is a L{NodegraphAPI.Node} instance.

"""
Create the node, set its shader, and set the name with the shader name
node = NodegraphAPI.CreateNode('PrmanShadingNode')
node.getParameter('nodeType').setValue(value, 0)
node.setName(value)
node.getParameter('name').setValue(node.getName(), 0)
return node

Create and register a layered menu using the above callbacks
layeredMenu = LayeredMenuAPI.LayeredMenu(PopulateCallback, ActionCallback,

'Alt+P', alwaysPopulate=False,
onlyMatchWordStart=False)

LayeredMenuAPI.RegisterLayeredMenu(layeredMenu, 'PrmanShaders')

Example of Layered Menu Plug-in

CustomLayeredMenuExample

Katana ships with an example plug-in that implements a menu that lists the names of available PRMan shaders.
When choosing an entry from that list, a PrmanShadingNode is created, with its node name, and its name and
nodeType parameters set to the name of the chosen shader. To see this example, navigate to
$KATANA_HOME/plugins/Src/Resources/Examples/UIPlugins/CustomLayeredMenuExample.py

CUSTOM NODEGRAPH MENUS | EXAMPLE OF LAYERED MENUPLUG-IN

TECHNICAL GUIDE

Typed Connection Checking
The constituent nodes of a Network Material can specify which connections are valid, based on
simple string tags. Shaders can declare a set of named tags that indicate what they provide as
outputs, and input connections. Shaders can specify what tags they require for that connection to be
valid.

Shader Outputs
Any shader can declare a set of tags to represent what outputs the shader provides. Tags are all simple string values
and are declared in .args files using the following syntax:
<args format="1.0">

<output name="out">

<tags>

<tag value="color"/>

<tag value="color4"/>

<tag value="diffuse"/>

</tags>

</output>

</args>

The following is the equivalent hint dictionary syntax:
{"PrmanShadingNode.parameters": {

"containerHints":{

"": {"outputs":{"out":{"tags":["color","color4","diffuse"]}}},

 "open": "True"},

}

For PRMan co-shaders, tag values are typically the names of methods the coshader provides, that can be
interrogated by another shader. For example, if a shader provides a method called outColor, this can be advertised
by declaring an output tag called outColor. The ability to declare multiple tags allows co-shaders to advertise any
number of different methods they provide.

For renderers - such as Arnold - where shader components provide strongly typed data, these tags can simply be the
names of the data types they provide, such as float, vector or color.

Tag values can also be used for higher level constructs, such as declaring that a shader provides all the outputs
necessary for a layerShader.

160

TECHNICAL GUIDE 161

Shader Inputs
Each connectable input parameter for a shader can declare what tag values it requires for a connection to be valid.
The user interface makes use of these declarations to only allow the user to make valid connections.

Tag values for an input input parameter are declared in .args files with the following syntax:
<args format="1.0">

<param name="diffStr" >

<tags>

<tag value="(color and diffuse and color4) or test"/>

</tags>

</param>

</args>

The following is the equivalent hint dictionary syntax:
{"PrmanShadingNode.parameters.diffStr": {

"widget": "null",

"name": "diffStr",

"transientHints": {"helpCaption": true},

"tags": ["color and diffuse"],

"helpCaption": "shader: MyShaderName - diffStr",

"coshaderPort": "True"

}

}

Logical Inputs

Boolean logic is available to make more advanced rules specifying which connections are valid for any input
parameter. The available operators are and, or, not, (', ')

AND

<param name="diffStr" >

<tags>

<tag value="color and color4 and diffuse"/>

</tags>

</param>

TYPED CONNECTION CHECKING | SHADER INPUTS

TECHNICAL GUIDE 162

This tag states that the output of the shader connected to this parameter needs to provide all of the tags color,
color4 and diffuse. If any tag is omitted, then the connection is not allowed.

OR

<param name="diffStr" >

<tags>

<tag value="color or color4 or diffuse"/>

</tags>

</param>

This tag states that the output of the shader connected to this parameter needs to provide at least one of the tags
color, color4 or diffuse. If none of the tags are provided, then it doesn't allow you to make the connection.

NOT

<param name="diffStr" >

<tags>

<tag value="not float"/>

</tags>

</param>

The not operator allows you to specify exception rules. So the above tag allows the incoming shader parameter to
have any tag value except float.

PARENTHESIS (', ')

<param name="diffStr" >

<tags>

<tag value="diffuse and (color or color4)"/>

</tags>

</param>

Tag rules can also contain parenthesis to allow you to group logic together, for either readability or for pure logic
purposes. The above rule allows any connection that provides diffuse as well as at least one of color or color4.

TYPED CONNECTION CHECKING | SHADER INPUTS

TECHNICAL GUIDE

Args Files in Shaders
Args files provide hints about how parameters are presented in the user interface. One of their main
uses is describing how shader parameters are presented. Various aspects, such as options for a
shader parameter's widget, conditional options, and help text can be modified interactively inside
Katana’s UI. Further details, such as grouping parameters into pages, are defined in .args files.

When loading a shader, Katana looks in the following directories for the associated .args file:

• an Args sub-directory of the shader directory.

• ../Args relative to the shader directory.

• the existing ../doc directory for backwards compatibility.

• any Args sub-directories of $KATANA_RESOURCES.

NOTE: Args files must be named to match the name of the shader they correspond to, rather than the
filename of the library that produced the shader.

The .args file for KatanaBasicPhong reads as follows:
<args format="1.0">

<param name="opacity"/>

<param name="Kd"/>

<param name="Kd_color" widget="color"/>

<param name="Ks"/>

<param name="Ks_color" widget="color"/>

<param name="SpecularExponent"/>

<param name="Ka"/>

<param name="Ka_color" widget="color"/>

</args>

The .args file shown above controls how the parameters of the KatanaBasicPhong shader appear in Parameters
tabs, as shown below:

163

TECHNICAL GUIDE 164

Edit Shader Interface Interactively in the UI

Enabling Editing the User Interface

To allow for editing of the shader interface, turn on Edit Shader Interface in the wrench menu that opens when
clicking the wrench icon to the right-hand side of a shader in a Parameters tab of a Material node. When turned
on, a wrench button appears to the right of every parameter, allowing the configuration of the parameter's widget
and help text.

ARGS FILES IN SHADERS | EDIT SHADER INTERFACE INTERACTIVELY IN THE UI

TECHNICAL GUIDE 165

Edit Main Shader Description

By choosing Edit Main Shader Description... from the wrench menu, you can add context help for the selected

shader. This can include HTML, and is shown when clicking the icon next to the shader name.

Export Args File

The shader interface can be exported using the Export Args File... command in the wrench menu.

NOTE: By default the shader interface is saved to the /tmp directory, but alternate directories can be
specified.

Widget Types

Depending on the user parameter defined in a shader's Args File, different Widget Types are available to choose
from. The main user parameters are the Number, String, and color parameters. The widget types available for a
Number shader parameter are shown below.

The widget types for a String shader parameter are shown below.

The widget types and widget hint values for the different user parameters are shown in the table below:

ARGS FILES IN SHADERS | EDIT SHADER INTERFACE INTERACTIVELY IN THE UI

TECHNICAL GUIDE 166

Widget Type Widget Hint Values Description and Example

Number, String, Button, Toolbar, TeleParameter, and Node Drop Proxy

Boolean boolean Displays two values or options, such as true or false.
<param name="opacity" widget="boolean"/>

Popup popup Displays entries specified in the Widget Options in a
dropdown menu.
<param name="opacity" widget="popup">

<hintlist name="options">

<string value="1.0"/>

<string value="1.5"/>

 <string value="2.0"/>

</hintlist>

</param>

Mapping Popup
Menu

mapper Similar to Popup Menu, but with the option to map values.
See Widget Options for more information.
<param name="opacity" widget="mapper">

<hintdict name="options">

<float value="0.0" name="A"/>

<float value="0.5" name="B"/>

 <float value="1.0" name="C"/>

</hintdict>

</param>

Check Box checkBox Similar to Boolean, but displayed as a checkbox.
<param name="opacity"

widget="checkBox"/>

String, Button, Toolbar, TeleParameter, and Node Drop Proxy

Scene Graph
Location

scenegraphLocation Widget for specifying locations in the Scene Graph tab, for
example, /root/world/geo/pony1
<param name="loc"

widget="scenegraphLocation"/>

CEL Statement cel Specify a CEL Statement. For more information on CEL
Statements, consult the Katana User Guide.
<param name="loc" widget="cel"/>

ARGS FILES IN SHADERS | EDIT SHADER INTERFACE INTERACTIVELY IN THE UI

TECHNICAL GUIDE 167

Widget Type Widget Hint Values Description and Example

Resolution resolution A resolution, for example: 1024x768.
<param name="loc"

widget="resolution"/>

Asset assetIdInput Widget to represent an asset. The fields that are displayed
in the UI and the browser that is used for selection can be
customized using the Asset Management System API.
<param name="EnvMap"

widget="assetIdInput"/>

File Path fileInput String parameter representing a file on disk. Uses the
standard Katana file browser for selection.
<param name="texname"

widget="fileInput"/>

Script Button scriptButton A button executing a Python script when clicked.
<param scriptText="print 'Hello'"

name="btn"

buttonText="Run Script"

widget="scriptButton"/>

TeleParameter teleparam Creates a parameter that 'teleports' parameters from
another source (node, SuperTool, or similar).
<param name="EnvMap"

widget="teleparam"/>

Script Editor scriptEditor A field for entering a script as the parameter.
<param name="EnvMap"

widget="scriptEditor"/>

ARGS FILES IN SHADERS | EDIT SHADER INTERFACE INTERACTIVELY IN THE UI

TECHNICAL GUIDE 168

Widget Type Widget Hint Values Description and Example

Dynamic Array dynamicArray A number or string array of dynamic size. Not available
through the UI wrench menu.
<numberarray_parameter hints="
{'widget': '

dynamicArray'}" name="testNumArray"
size="3"

tupleSize="1">

<number_parameter name="i0"

value="0"/>

<number_parameter name="i1"

value="0"/>

<number_parameter name="i2"

value="0"/>

</numberarray_parameter>

Multi-line Text text Enables a string field to support multiple lines of text. For
example, you can set KatanaBlinn.args with the following
line:
<param name="BumpMap" widget="text"/>

to set BumpMap to take multiple lines of text and display
the expected UI.

Group Only

Multi multi Creates a group set of parameters within a group.

Number Array Only

Color color Creates a color widget that allows you to set the RGB, HSL,
and HSV values.

String Array Only

Scene Graph
Locations

scenegraphLocationArray Creates three Scene Graph Locations widgets that allow you
to set locations.

NOTE: See Parameter Hints for more on setting hint strings on User Parameters.

NOTE: SeeUser Parameters and Widget Types in the Katana User Guide for a full list of the User
Parameters, widget types, and widget options accessible through the UI.

ARGS FILES IN SHADERS | EDIT SHADER INTERFACE INTERACTIVELY IN THE UI

TECHNICAL GUIDE 169

Widget Options

Based on the specified widget type, there are a number of options available. In case of a color parameters for
example, these options allow settings like the restriction of the components (RGBA) to a range between 0 and 1. For
numeric parameters, the display format and slider options, such as range and sensitivity, can be specified.

For example, in the widget options of a Mapping Popup menu, if you specify a list of numbers and their labels, they
are displayed as a dropdown list.

Conditional Visibility Options

Some shader parameters are not applicable or do not make sense under certain conditions. To hide these
parameters from the UI, select Conditional Visibility Options... from the wrench menu. Multiple conditions are
matched and combined using AND OR keywords.

This looks as follows In an .args file:
<param name="SpecularExponent">

<hintdict name="conditionalVisOps">

<string value="greaterThan" name="conditionalVisOp"/>

<string value="../Ks" name="conditionalVisPath"/>

<string value="0" name="conditionalVisValue"/>

</hintdict>

ARGS FILES IN SHADERS | EDIT SHADER INTERFACE INTERACTIVELY IN THE UI

TECHNICAL GUIDE 170

</param>

Conditional Locking Options

Conditional Locking works exactly like the Conditional Visibility Options, except that parameters are locked under the
specified conditions rather than hidden.

Editing Help Text

Similar to the Main Shader Description, you can specify an HTML help text for every parameter. The text is specified
using the Edit Help Text... command from the wrench menu.

In the .args file, the tooltip shown above is stored as follows:
<args format="1.0">

<param name="Kd_color" widget="color">

<help>

Diffuse color

</help>

</param>

</args>

Grouping Parameters into Pages

Pages allow parameters to be grouped and displayed in a more organized way.

ARGS FILES IN SHADERS | EDIT SHADER INTERFACE INTERACTIVELY IN THE UI

TECHNICAL GUIDE 171

This is achieved in one of two ways when editing .args files:

1. Adding a page attribute with the name of the page to each parameter:
<param name="Kd" page="myPage"/>

2. Grouping parameters using a page tag:
<page name="myPage">

.

.

</page>

TIP: The attribute open can be set to True to expand a group by default. The open hint also works for
group parameters and attributes, which are closed by default. For example:

 <page name="Basics" open="True">

NOTE: The shader parameters not explicitly specified in the .args file are displayed last in the Material
node UI.

Co-Shaders

It is a RenderMan convention to specify co-shaders used in a shader interface using parameters of type string or
shader. If specified using type shader, Katana detects that this is a co-shader port automatically. If specified using
type string, you must provide a hint in the .args file.
<param name="Kd_color_mycoshader" coshaderPort="True" />

Co-Shader Pairing

Katana allows co-shaders to be represented as network materials. For user convenience, there is a convention that
allows pairs of parameters, representing a value and a port for a co-shader, to be presented to the user to look like a
single connectable value in the UI.

RenderMan co-shader pairing is used by adding a co-shader port and specifying the co-shader's name in the
coshaderPair attribute of the parameter. In the args file, this is achieved as follows:
<args format="1.0">

<param name="Kd_color_mycoshader" coshaderPort="True" />

<param name="Kd_color"

coshaderPair="Kd_color_mycoshader" widget="color"/>

</args>

ARGS FILES IN SHADERS | EDIT SHADER INTERFACE INTERACTIVELY IN THE UI

TECHNICAL GUIDE 172

Example Args File

An example of an .args file using pages and different types of widgets is KatanaBlinn.args, saved in ${KATANA_
ROOT}/plugins/Resources/PRMan17/Shaders/Args:
<args format="1.0">

<page name="Basics" open="True">

<param name="Kd"/>

<param name="Kd_color" widget="color"/>

<param name="Ks"/>

<param name="Ks_color" widget="color"/>

<param name="Roughness"/>

<param name="Ka"/>

<param name="Ka_color" widget="color"/>

<param name="opacity"/>

</page>

<page name="Textures">

<param name="ColMap" widget="filename"/>

<param name="SpecMap" widget="filename"/>

<param name="RepeatS" widget="boolean"/>

 <param name="RepeatT" widget="boolean"/>

</page>

<page name="Bump Mapping">

<param name="BumpMap" widget="filename"/>

<param name="BumpVal"/>

</page>

<page name="Reflection">

<param name="EnvMap" widget="filename"/>

<param name="EnvVal"/>

<param name="UseFresnel" widget="boolean"/>

</page>

<page name="Refraction">

<param name="RefractMap" widget="filename"/>

<param name="RefractVal"/>

<param name="RefractEta"/>

</page>

</args>

ARGS FILES IN SHADERS | EDIT SHADER INTERFACE INTERACTIVELY IN THE UI

TECHNICAL GUIDE 173

Args Files for Render Procedurals

Similar to their use in shader interfaces, UI hints can be defined for PRMan and Arnold procedurals. The
RendererProceduralArgs node looks for an .args file called <proceduralName>.so.args in the same directory as the
.so file for the procedural.

In contrast to their use with Shaders, Args files for a procedural must specify a default value for each parameter, as
shown in the procedural.so.args file below:
<args format="1.0" outputStyle="typedArguments">

<int name='count' default='100'/>

<int name='segments' default='3'/>

<float name='rootWidth' default='0.04'/>

<float name='tipWidth' default='0.00'/>

<float name='lengthMin' default='0.4'/>

<float name='lengthMax' default='1.3'/>

<float name='turnsMin' default='0.5'/>

<float name='turnsMax' default='2.0'/>

<float name='radiusMin' default='0.06'/>

<float name='radiusMax' default='0.09'/>

<float name='min_pixel_width' default='1.0'/>

</args>

Parameters are parsed from an Args file to a procedural as either serialized key-value pairs, or typed arguments. If
the Args file does not specify an output style, it defaults to serialized key-value pairs.

Serialized Key-Value Pairs Examples

If an Args files does not specify an output style, parameters are output to the procedural as serialized key-value
pairs. In which case, all parameters are read into a string variable, which must be tokenized to extract individual
parameters. In the case of the PRMan procedural extract shown below, the expected parameters are an array of
RtColor, and a float.
struct MyParams

{

RtColor csValues[4];

float radius;

MyParams(RtString paramstr)

: radius(1.0f)

{

printf("paramstr: %s\n", paramstr);

//initialize defaults

ARGS FILES IN SHADERS | EDIT SHADER INTERFACE INTERACTIVELY IN THE UI

TECHNICAL GUIDE 174

for (int i = 0; i < 4; ++i)

{

csValues[i][0] = 1.0f;

 csValues[i][1] = 0.0f;

csValues[i][2] = 0.0f;

}

//tokenize input string

std::vector<char *> tokens;

//copy the paramstr because strtok wants to mark it up

char * inputParamStr = strdup(paramstr);

char * separator = const_cast<char *>(" ");

char * inputSource = inputParamStr, * cursor;

while ((cursor = strtok(inputSource, separator)))

{

inputSource = NULL;

tokens.push_back(cursor);

}

for (unsigned int i = 0; i < tokens.size(); ++i)

{

if (!strcmp(tokens[i], "-color"))

{

++i;

if (i+2 < tokens.size())

{

for (unsigned int j = 0; j < 3; ++j, ++i)

{

float value = atof(tokens[i]);

for (int k = 0; k < 4; ++k)

{

csValues[k][j] = value;

}

}

--i;

 }

 }

else if (!strcmp(tokens[i], "-radius"))

ARGS FILES IN SHADERS | EDIT SHADER INTERFACE INTERACTIVELY IN THE UI

TECHNICAL GUIDE 175

{

++i;

if (i < tokens.size())

{

radius = atof(tokens[i]);

}

}

}

//free the copied parameter string

free(inputParamStr);

}

};

NOTE: Parameters are passed from an .args file to a procedural as either serialized key-value pairs, or
typed arguments. If the Args file does not specify an output style, it defaults to serialized key-value pairs.
The example shown in Example Args File uses typed arguments.

For procedurals, the type and default value of a parameter have to be declared. This is in contrast to the
use of .args files in shaders, where the type can be interrogated directly from the shader.

presetsGroup
In .args files, the presetsGroup widget type for pages allows you to define default values for specific shader
parameters. Defining a presetsGroup for a specific page results in a dropdown menu that displays in the
Parameters tab for the shader parameters.

Defining presetsGroup Values

In order to define preset groups in the shader.args file, three attributes are required in the page element:

• widget attribute - must be set to presetsGroup.

• policies attribute - specifies the parameter names you want to set default values for, separated by a comma.

• presets attribute - specifies the default values for the different presets. Each preset is defined by a name and a list
of values, one for each parameter specified in the policies attribute. The value and parameter types need to
match. Presets are separated by a pipe character.

NOTE: Only floats, list of floats, and strings are allowed in the presets attribute.

ARGS FILES IN SHADERS | PRESETSGROUP

TECHNICAL GUIDE 176

In the example below, the page element's widget is set to presetsGroup and it defines presets for four parameters:
Kd, Kd_color, ColMap, and Ks.
Each preset then contains four values: a float, a list of three floats (color), a string, and a float. For instance, the
preset called Low contains the following values: 0.1,(0.1, 0.1, 0.1),"low_map",1.0.

<args format="1.0">
<page name="Basics" open="True"

widget='presetsGroup'
policies='Kd,Kd_color,ColMap,Ks'
presets='Low,0.1,(0.1, 0.1, 0.1),"low_map",1.0|Medium,0.4,(0.4, 0.4,

0.4),"mid_map",0.4|High,0.8,(0.8, 0.8, 0.8),"hi_map",0.5|MyPreset,1.0,(0.1, 0.2,
0.3),"Goofy",0.9'

>

<param name="Kd"/>
<param name="Kd_color" widget="color"/>
<param name="ColMap" widget="fileInput"/>
<param name="Ks"/>
<param name="Ks_color" widget="color"/>
<param name="SpecularExponent"/>
<param name="Ka"/>
<param name="Ka_color" widget="color"/>
<param name="opacity"/>

</page>
<page name="Textures" open="True" hide="False">

<param name="SpecMap" widget="fileInput"/>
<param name="RepeatS" widget="boolean"/>
<param name="RepeatT" widget="boolean"/>

</page>
<page name="Bump Mapping" open="False">

<param name="BumpMap" widget="fileInput"/>
<param name="BumpVal"/>

</page>
<page name="Reflection">

<param name="EnvMap" widget="fileInput"/>
<param name="EnvVal"/>
<param name="UseFresnel" widget="boolean"/>

</page>
<page name="Refraction">

<param name="RefractMap" widget="fileInput"/>
<param name="RefractVal"/>
<param name="RefractEta"/>

</page>
</args>

ARGS FILES IN SHADERS | PRESETSGROUP

TECHNICAL GUIDE 177

UI Hints for Plug-ins Using Argument Templates
Instead of using .args files, Scene Graph Generators (SGG) and Attribute Modifier Plug-ins (AMP) must declare UI
hints directly in their source code as part of the Argument Template. The Argument Template is used to declare what
arguments need to be passed to the plug-in.

The syntax used for these is the same as you would use in an .args file, just that you're handing the values as
attributes instead of declaring them inside an XML file.

Usage in Python Nodes

In Python, additional UI hints such as widget or help text are specified by defining them in a dictionary. The
dictionary is passed to Katana in the NodegraphAPI addParameterHints() function.

For example, set extra hints on an Alembic_In node:
_ExtraHints = {

"Alembic_In.name" : {

"widget" :"newScenegraphLocation",

},

'Alembic_In.abcAsset':{

'widget':'assetIdInput',

 'assetTypeTags':'geometry|alembic',

'fileTypes':'abc',

 'help':"""Specify the asset input for an Alembic

.abc) file."""

},

}

Usage in C++ Nodes

In C++ nodes, the Argument Template consists of - nested - groups containing the UI hints. Each UI element has its
group of hints which then is added to a top-level group. The resulting hierarchy for a simple example using a
checkbox, file chooser and dropdown looks as follows:
+ top-level group

| + checkBoxArg (float)

| + checkBoxArg__hints (group)

| | + widget (string)

| | + help (string)

| | + page (string)

ARGS FILES IN SHADERS | UI HINTS FOR PLUG-INS USING ARGUMENT TEMPLATES

TECHNICAL GUIDE 178

| + fileArg (string)

| + fileArg__hints (group)

| | + widget (string)

| | + help (string)

| | + page (string)

| + dropBoxArg (string)

| + dropBoxArg__hints (group)

| | + widget (string)

| | + options (string)

| | + help (string)

| | + page (string)

The following example code shows the implementation of the hierarchy shown above and how the top-level group is
built and returned in getArgumentTemplate():
static FnKat::GroupAttribute getArgumentTemplate()

{

FnKat::GroupBuilder gb_checkBoxArg_hints;

gb_checkBoxArg_hints.set("widget",

FnKat::StringAttribute("checkBox"));

gb_checkBoxArg_hints.set("help",

 FnKat::StringAttribute("the mode value"));

gb_checkBoxArg_hints.set("page",

FnKat::StringAttribute("pageA"));

FnKat::GroupBuilder gb_fileArg_hints;

gb_fileArg_hints.set("widget", FnKat::StringAttribute(

 "assetIdInput"));

gb_fileArg_hints.set("help", FnKat::StringAttribute(

"the file to load"));

gb_fileArg_hints.set("page", FnKat::StringAttribute(

"pageA"));

FnKat::GroupBuilder gb_dropBoxArg_hints;

gb_dropBoxArg_hints.set("widget",

FnKat::StringAttribute("mapper"));

gb_dropBoxArg_hints.set("options",

FnKat::StringAttribute("No:1|SmoothStep:2|

 InverseSquare:3"));

gb_dropBoxArg_hints.set("help", FnKat::StringAttribute(

"a dropbox argument"));

gb_dropBoxArg_hints.set("page", FnKat::StringAttribute(

"pageA"));

FnKat::GroupBuilder gb;

gb.set("checkBoxArg", FnKat::FloatAttribute(

ARGS FILES IN SHADERS | UI HINTS FOR PLUG-INS USING ARGUMENT TEMPLATES

TECHNICAL GUIDE 179

DEFAULT_SCALE));

gb.set("checkBoxArg__hints",

gb_checkBoxArg_hints.build());

gb.set("fileArg", FnKat::StringAttribute("/tmp/

myFile.xml"));

gb.set("fileArg__hints", gb_fileArg_hints.build());

gb.set("dropBoxArg", FnKat::StringAttribute("No"));

gb.set("dropBoxArg__hints",

gb_dropBoxArg_hints.build());

return gb.build();

}

ARGS FILES IN SHADERS | UI HINTS FOR PLUG-INS USING ARGUMENT TEMPLATES

TECHNICAL GUIDE

Customizing the GafferThree
You can customize the behavior of the GafferThree in your scene by creating a custom package class or registering
callbacks.

Creating a Custom GafferThree Package Class
Package classes in the GafferThree define the types of items that can be created through the GafferThree, the way in
which they are displayed in the GafferThree's UI within the Parameters tab, and other properties such as whether
the items can accept other items as children.

In order to create a custom package class for the GafferThree, the following components are required:

• Package class

• Edit package class (Optional)

• UI delegate class

• Package initialization file

Package Class

The package’s main class is responsible for creating nodes which produce the scene graph locations and attributes
for your package, as well as the parameters for modifying these locations and attributes.

To implement a package class, do the following:

• Create a class derived from PackageSuperToolAPI.Packages.Package, or choose a specific type of package class
to derive from if appropriate, for example, the GafferThree’s LightPackage class.

• Implement the create() class method. Your implementation should create and connect together the nodes for the
package within a Group node, and instantiate and return a new package class instance.

• After defining your package class, register it with the GafferThreeAPI by calling
GafferThreeAPI.RegisterPackageClass(), and passing your class.

180

TECHNICAL GUIDE 181

TIP: You can store references to nodes you create using the
PackageSuperToolAPI.NodeUtils.AddNodeRef() function. AddNodeRef() stores the name of the node
as a custom parameter on the package node, and makes it easy to refer to nodes within a package from
elsewhere in the code associated with your package. Node references stored in this way can be obtained
using the corresponding GetNodeRef() function from the NodeUtils module.

Edit Package Class (Optional)

An edit package class is responsible for creating nodes, which can edit scene graph locations in the incoming scene
graph. These locations may have been created by an instance of your custom package class in an upstream
GafferThree node.

To implement an edit package class, which is optional, do the following:
Create a class derived from PackageSuperToolAPI.Packages.EditPackage, or choose a specific type of edit
package class to derive from if appropriate. For instance, the GafferThree’s LightEditPackage class.

UI Delegate Class

A UI delegate class is responsible for defining the parameter interface shown in tabs below the Gaffer object table in
the Parameters tab.

To implement a UI delegate class, do the following:

• Create a class derived from PackageSuperToolAPI.UIDelegate.UIDelegate, or choose a specific type of UI
delegate class to derive from if appropriate. For instance, the GafferThree’s LightUIDelegate class.

TIP: You can use PackageSuperToolAPI.UIDelegate.GetUIDelegateClassForPackageClass() to
obtain the UI delegate class that was registered for a specific package class.

• You can also implement the getTabPolicy() instance method, which is optional:

getTabPolicy() receives the name of a tab, Object, Material, or Linking in the case of GafferThree, and is
expected to return a QT4FormWidgets.PythonGroupPolicy instance containing parameter policies for editing
parameters on the nodes created by your package class.

TIP: You can use PackageSuperToolAPI.NodeUtils.GetRefNode() to reference nodes in your package
that you have previously stored using AddNodeRef().

Package Initialization File

To ensure that your package is initialized, place your package modules in a SuperTools subdirectory of a path which
is contained in your $KATANA_RESOURCES environment variable, alongside an __init__.py file which imports your

CUSTOMIZING THEGAFFERTHREE |

TECHNICAL GUIDE 182

package files.

The resulting directory structure should look similar to the following:

SuperTools
`-- SkyDome

|-- __init__.py
|-- ExamplePackage.py
`-- ExampleUIDelegate.py

The UI delegate class can only be imported if Katana is running in UI mode:

import PackageSuperToolAPI
import ExamplePackage

if PackageSuperToolAPI.IsUIMode():
import ExampleUIDelegate

Example of Implementing a Custom GafferThree Package Class: Sky
Dome

This section describes how to create a custom package for a new type of GafferThree item: a sky dome light. You
may want to customize such a package for different renderers, or to make use of different shader libraries.

Katana's sky dome provides a light which uses HDR image-based lighting, with feedback in the UI to indicate
orientation of the image. This example has been chosen as it is frequently encountered by studios using Katana, and
gives you a useful introduction to important aspects of working with GafferThree.

For a more general introduction to creating new GafferThree package types, have a look at the Creating a Custom
GafferThree Package Class section.

The sky dome example package consists of the following files:

File name File description

SkyDomePackage.py Module providing package classes.

SkyDomeUIDelegate.py Module providing package UI delegate classes.

__init__.py Initialization module.

skyDome16.png Icon for displaying packages in the Gaffer object table.

CUSTOMIZING THEGAFFERTHREE |

TECHNICAL GUIDE 183

You can find these files in $KATANA_HOME/plugins/Src/Resources/Examples/SuperTools/SkyDome/v1.
Sections of the files are included below, with explanatory annotations:

SkyDomePackage.py

The SkyDomePackage module defines two Package classes: SkyDomePackage and SkyDomeEditPackage. The
SkyDomePackage is responsible for creating the nodes that create the appropriate scene graph locations and
attributes for our sky dome. The SkyDomeEditPackage is responsible for creating appropriate nodes for adopting
a sky dome from an incoming scene graph, that is, nodes for editing the locations and attributes associated with a
sky dome when they are present in the scene graph that is produced by nodes that are connected to a GafferThree
node’s input port.

SkyDomePackage Class

First, import a couple of modules in order to get access to parts of the GafferThreeAPI and the underlying
PackageSuperToolAPI:

from Katana import NodegraphAPI, Decorators, Plugins
import PackageSuperToolAPI.NodeUtils as NU
from PackageSuperToolAPI import Packages

The GafferThreeAPI Python package is part of Katana’s Plugins Python package. The
PackageSuperToolAPI.NodeUtils module contains useful functions for manipulating nodes and parameters. It is
imported as NU for brevity and readability.

The SkyDomePackage class is derived from the GafferThree's built-in LightPackage class:

GafferThreeAPI = Plugins.GafferThreeAPI
LightPackage = GafferThreeAPI.PackageClasses.LightPackage
LightEditPackage = GafferThreeAPI.PackageClasses.LightEditPackage

class SkyDomePackage(LightPackage):

Some standard class variables required by the PackageSuperToolAPI are defined:

The name of the package type as it should be shown in the UI
DISPLAY_NAME = 'SkyDome'

The default name of a package when it is created. This also defines the
default name of the package's scene graph location
DEFAULT_NAME = 'skyDome'

The icon to use to represent this package type in the UI

CUSTOMIZING THEGAFFERTHREE |

TECHNICAL GUIDE 184

DISPLAY_ICON = os.path.join(_iconsDir, 'skyDome16.png')

The following create() method does most of the work of the class. It sets up the node network for the package, and
creates, initializes, and returns an instance of the Package class.

First, create the main enclosing node for the package, and use NodeUtils to store a reference to the package type
and the path to the package’s scene graph location as custom parameters on the package node:

@classmethod
def create(cls, enclosingNode, locationPath):

"""
A factory method which returns an instance of the class.

@type enclosingNode: C{NodegraphAPI.Node}
@type locationPath: C{str}
@rtype: L{LightPackage}
@param enclosingNode: The parent node within which the new

package's node should be created.
@param locationPath: The path to the location to be created/managed

by the package.
@return: The newly-created package instance.
"""
Create the package node
packageNode = NodegraphAPI.CreateNode('Group', enclosingNode)
packageNode.addOutputPort('out')

Add parameter containing the package type and location path to the
package node
NU.AddPackageTypeAndPath(packageNode, cls.__name__, locationPath)

Next, create the create node, which generates the scene graph location for the package. An expression is used to link
the name of the location created to the name of the package. This expression uses a new syntax for Katana 2.0
expressions: =^/parameterName. This links the parameter to the parameter named parameterName on the
enclosing group node:

Create an expression to link the name of the sky dome location to the
name of the package.
locExpr = '=^/%s' % NU.GetPackageLocationParameterPath()

Create geometry for the light - in this case a sphere
createNode = NodegraphAPI.CreateNode('PrimitiveCreate', packageNode)
createNode.getParameter('type').setValue('coordinate system sphere', 0)

...

CUSTOMIZING THEGAFFERTHREE |

TECHNICAL GUIDE 185

Next, information about the package type is stored on the create node, then a reference to the name of the create
node is stored on the package node. WireInlineNodes() and AppendNodes() utility functions are used to connect
and position all the nodes that the package has created:

Store the package class as a parameter on the create node
NU.SetOrCreateDeepScalarParameter(

createNode.getParameters(), 'extraAttrs.info.gaffer.packageClass',
cls.__name__)

...
Add node references to the package node
NU.AddNodeRef(packageNode, 'create', createNode)

...
Wire up and position the nodes
NU.WireInlineNodes(packageNode, (masterMaterialDistantPortNode,

createNode,
typeAttrSetNode,
viewerTypeAttrSetNode,
lightListEditNode,
materialNode,
copyPreviewTextureOpScriptNode,
copyXformOpScriptNode,
viewerUVFlipOpScriptNode,
viewerObjectSettingsNode))

Create and append light linking nodes
linkingNodes = Packages.LinkingMixin.getLinkingNodes(packageNode,

create=True)
NU.AppendNodes(packageNode, tuple(linkingNode

for linkingNode in linkingNodes
if linkingNode is not None))

Next, create an instance of the class, and ensure that any callbacks that have been registered for this package type
are executed:

Create a package instance
result = cls(packageNode)
Packages.CallbackMixin.executeCreationCallback(result)

For performance reasons, most of the nodes associated with packages in the GafferThree are in a branch inside the
GafferThree node which does not consider the incoming scene. The post-merge stack node is created further down
the internal GafferThree node tree, after the scene graph created by the package nodes has been merged back into
the incoming scene. Any nodes which need knowledge of the incoming scene should be added to the post-merge
GroupStack node.

In this case, write an attribute at /root which tells Arnold which location to use as the environment background. This
is done in the post-merge stage to ensure that the attribute isn’t overridden by values in the incoming scene.

CUSTOMIZING THEGAFFERTHREE |

TECHNICAL GUIDE 186

Create a post-merge stack node for this package
postMergeNode = result.createPostMergeStackNode()

Use an AttributeSet node to set Arnold's background attribute at root
arnoldBGAttrSetNode = NodegraphAPI.CreateNode('AttributeSet',

packageNode)
arnoldBGAttrSetNode.setName("ArnoldBGAttributeSet")
arnoldBGAttrSetNode.getParameter('paths.i0').setValue('/root', 0)
arnoldBGAttrSetNode.getParameter('attributeName').setValue(

'arnoldGlobalStatements.background', 0)
arnoldBGAttrSetNode.getParameter('attributeType').setValue(

'string', 0)
arnoldBGAttrSetNode.getParameter('stringValue.i0').setExpression(

'getParam("%s.__gaffer.location")' % packageNode.getName())
postMergeNode.buildChildNode(adoptNode=arnoldBGAttrSetNode)

Finally, return the Package instance you just created:

return result

SkyDomeEditPackage Class

Next, define the edit package class for the package type. This class is responsible for creating nodes which can edit
the scene graph locations and attributes associated with a sky dome when they are present in the incoming scene.
The process of creating an edit package within the GafferThree for a particular location is referred to as adopting that
location.

The SkyDomeEditPackage class is derived from the GafferThree's built-in LightEditPackage class:
class SkyDomeEditPackage(LightEditPackage):

Similarly to the SkyDomePackage, the create() method does the work of creating the edit nodes. Create nodes for
editing the material and the transform of the sky dome:

@classmethod
def create(cls, enclosingNode, locationPath):

Create the package node. Since this is an edit package we want to use
an EditStackNode instead of a GroupNode, since it already has an
input and an output by default. This also adds some necessary
parameters to this node.
packageNode = cls.createPackageEditStackNode(enclosingNode,

locationPath)

Build material edit node
materialNode = NodegraphAPI.CreateNode('Material', packageNode)

CUSTOMIZING THEGAFFERTHREE |

TECHNICAL GUIDE 187

...
packageNode.buildChildNode(adoptNode=materialNode)

Build transform edit node
transformEditNode = NodegraphAPI.CreateNode('TransformEdit',

packageNode)

...

Adds reference parameters to the transform edit node
NU.AddNodeRef(packageNode, 'transform_edit', transformEditNode)

Add the transform edit node into the package node using
EditStackNode's buildChildNode().
packageNode.buildChildNode(adoptNode=transformEditNode)

Instantiate a package with the package node
return cls.createPackage(packageNode)

The getAdoptableLocationTypes() method defines which types of locations can be adopted by this edit package:

@classmethod
def getAdoptableLocationTypes(cls):

return set(('light',))

Finally, register the package classes, and associate the SkyDomePackage with its corresponding edit package type:

Register the package classes, and associate the edit package class with the
create package class
GafferThreeAPI.RegisterPackageClass(SkyDomePackage)
GafferThreeAPI.RegisterPackageClass(SkyDomeEditPackage)
SkyDomePackage.setEditPackageClass(SkyDomeEditPackage)

SkyDomeUIDelegate.py

The SkyDomeEditUIDelegate.py module defines two UIDelegate classes: SkyDomeUIDelegate and
SkyDomeEditUIDelegate. UI delegates are responsible for providing the widgets to be displayed in the
GafferThree’s UI in the Parameters tab when an item in its scene graph view is selected. These widgets are provided
through parameter policies, which refer to a parameter on a node and provide hints about what kind of widget
should be displayed.

The SkyDomeUIDelegate class inherits behavior from the GafferThree LightUIDelegate class:

CUSTOMIZING THEGAFFERTHREE |

TECHNICAL GUIDE 188

GafferThreeAPI = Plugins.GafferThreeAPI
LightUIDelegate = UIDelegate.GetUIDelegateClassForPackageClass(

GafferThreeAPI.PackageClasses.LightPackage)
LightEditUIDelegate = UIDelegate.GetUIDelegateClassForPackageClass(

GafferThreeAPI.PackageClasses.LightEditPackage)

class SkyDomeUIDelegate(LightUIDelegate):

Define standard class variables to add keyboard shortcuts for adding new instances of our package in the
GafferThree UI:

The hash used to uniquely identify the action of creating a package
This was generated using:
hashlib.md5('SkyDome.AddSkyDome').hexdigest()
AddPackageActionHash = 'f1765c35808868c77019cebd796f14b7'

The keyboard shortcut for creating a package
DefaultShortcut = 'Alt+S'

The getTabPolicy() method does the main work of the UI delegate. The name of a tab within the UI (Object,
Material, or Linking in the case of the GafferThree) is passed in, and the method should return a policy containing
parameter policies for the parameters which should be displayed in the given tab. The SkyDomeUIDelegate class
defers to the base class except for the case of the Object tab:

def __getObjectTabPolicy(self):
"""
Returns the widget that should be displayed under the 'Object' tab.
"""
Get the create node in the package, which contains the transform
parameter.
packageNode = self.getPackageNode()
createNode = NU.GetRefNode(packageNode, "create")
if createNode is None:

return None

Create a root group policy and add some hints on it
rootPolicy = QT4FormWidgets.PythonGroupPolicy('object')
rootPolicy.getWidgetHints()['open'] = True
rootPolicy.getWidgetHints()['hideTitle'] = True

transformPolicy = QT4FormWidgets.PythonGroupPolicy('transform')
transformPolicy.getWidgetHints()['open'] = True

translatePolicy = FormMaster.CreateParameterPolicy(
None, createNode.getParameter("transform.translate"))

CUSTOMIZING THEGAFFERTHREE |

TECHNICAL GUIDE 189

rotatePolicy = FormMaster.CreateParameterPolicy(
None, createNode.getParameter("transform.rotate"))

scalePolicy = FormMaster.CreateParameterPolicy(
None, createNode.getParameter("transform.scale"))

transformPolicy.addChildPolicy(translatePolicy)
transformPolicy.addChildPolicy(rotatePolicy)
transformPolicy.addChildPolicy(scalePolicy)

rootPolicy.addChildPolicy(transformPolicy)

return rootPolicy

The UI delegate for the edit package works very similarly.

Finally, associate the UI delegate classes with their corresponding package classes:

UIDelegate.RegisterUIDelegateClass(SkyDomePackage, SkyDomeUIDelegate)
UIDelegate.RegisterUIDelegateClass(SkyDomeEditPackage, SkyDomeEditUIDelegate)

__init__.py

The initialization module only needs to import the API and the two new modules. The UI delegate module is only
imported if Katana is being run in UI mode:

import PackageSuperToolAPI

import SkyDomePackage

if PackageSuperToolAPI.IsUIMode():
import SkyDomeUIDelegate

Registering Callbacks
You can customize the behavior of the GafferThree in your scene by registering callbacks. You can register
callbacksfor the following actions:

• onGafferLightCreated - executed when a light is created.

• onGafferRigCreated - executed when a rig is created.

• onGafferMasterMaterialCreated - executed when a master material is created.

• onGafferShaderSelected - executed when a shader is selected in the GafferThree object table.

CUSTOMIZING THEGAFFERTHREE | REGISTERING CALLBACKS

TECHNICAL GUIDE

Creating New Importomatic
Modules

Importomatic Core Files
The Importomatic is a SuperTool which means that it wraps the functionality of multiple nodes into a single node
and presents it to the user through a customizable interface. The Node class extends NodegraphAPI.SuperTool
and sets up the underlying Node Graph, such as the Group and Merge nodes. The Editor class extends a
QtGui.QWidget, which displays the user interface in the Parameters tab.

New modules must register a class that extends AssetModule and, subsequently, override the functions that are
needed for a given task. In order to create a hierarchy of elements within the Importomatic list, each level in the
hierarchy has to extend from AssetTreeChild, which generates the corresponding element with the corresponding
name, type, icon, or similar.

Where to Place New Modules
New modules can be placed anywhere, as long as the path where the module lies is included in KATANA_RESOURCES.

Minimum Implementation
Only two files are needed to get a new module going:

1. A main asset file, which registers the callbacks and creates the relevant nodes and user interface.

2. An init file, which imports the module file and assigns the registration functions to the Importomatic plug-in
registry.

The following example shows how to implement a camera asset within the Importomatic. Doing so is technically
abusing the intended scope of the Importomatic, but is a useful demonstration.

190

TECHNICAL GUIDE 191

Importomatic Camera Asset Example

In this example, the main asset file is CameraAsset.py into which we need to import the Nodegraph API and plug-
ins from Katana. We also include OS, solely to acquire the current path when referencing the asset icon.
from Katana import NodegraphAPI, Plugins

import os

Next, we define the registration function, which is called from the init file in order to register the callback and module
type for the plug-in.
def Register():

ImportomaticAPI.AssetModule.RegisterCreateCallback('Add Camera', AddCamera)

ImportomaticAPI.AssetModule.RegisterType('CameraCreate' , CameraModule())

The callback comes into play when the user clicks the plus sign with the intent of instantiating a new module
within an Importomatic. The first string specifies the text shown in the menu command.

If the Add Camera module is selected from the dropdown list, the AddCamera function is called, which
communicates with the Nodegraph API and creates a Camera node. The output of the Camera node is automatically
connected to the input of a Merge node, within the Importomatic.
def AddCamera(importomaticNode):

node = NodegraphAPI.CreateNode('CameraCreate')

node.setName("CameraCreate")

return node

CREATING NEW IMPORTOMATICMODULES |

TECHNICAL GUIDE 192

The registered type class CameraModule() is also instantiated when the user selects the module from the menu.
The function setItemState is called, if it exists, which defines the item properties in the Importomatic list.
class CameraModule(ImportomaticAPI.AssetModule):

def setItemState(self, node, item)

from Katana import UI4, VpCore

ScenegraphIconManager = UI4.Util.ScenegraphIconManager

IconManager = UI4.Util.IconManager

iconPath = os.path.dirname(__file__) + '/camera16. png'

item.setText(ImportomaticAPI.NAME_COLUMN, 'Camera')

item.setText(ImportomaticAPI.TYPE_COLUMN, 'Camera')

item.setIcon(ImportomaticAPI.NAME_COLUMN, IconManager.GetIcon(iconPath))

item.setText(ImportomaticAPI.STATUS_COLUMN, 'Ready')

CREATING NEW IMPORTOMATICMODULES |

TECHNICAL GUIDE 193

The parameter editor is resolved automatically in cases where the user is allowed to change properties. The UI4 and
VpCore packages are imported within this scope, because this function is only called in interactive mode (these
packages are not allowed in batch mode).

In the init file, __init__.py, we import the camera asset, append it to the plug-in registry as an Importomatic module,
and pass in the registration function. Alternatively, pass an additional GUI registration function (if needed) in the
form of a tuple.
PluginRegistry=[]

import CameraAsset

PluginRegistry.append(

("ImportomaticModule", "0.0.1", "CameraAsset", CameraAsset.Register),

)

Custom Hierarchy Structures and Extensions
Enhancing the functionality of a module requires following a specific design pattern, where the core ideas are:

• No global variables are allowed. Instead any persistent data must be written as parameters on the primary node.
This parameter metadata is used to generate the underlying Node Graph, and corresponding hierarchy structure
in the Importomatic interface.

• The module class returns an object of type AssetTreeChild, which corresponds to the root item of the tree.

• The remaining nodes in the tree are implemented using a class, which extends a base handler where each derived
class either inherits or overrides the functions that interact with the UI.

• A separate GUI registration is defined in the init file, to avoid errors while running Katana in batch mode.

CREATING NEW IMPORTOMATICMODULES | CUSTOM HIERARCHY STRUCTURES AND EXTENSIONS

TECHNICAL GUIDE 194

• The main node, and any other nodes used to implement the custom Importomatic module, are placed in a Group
node. This ensures a clean and clutter-free internal structure of the Importomatic node, with each module
encapsulated using a single node - all of which connect to the Merge node. It's not possible to create nodes
between the Merge node and the group's out port (a module should not affect the outcome of other modules
anyway) because disconnecting the out port has implications that hinder any further processing.

Creating a Tree Structure

Here we look at the concepts discussed in Custom Hierarchy Structures and Extensions in more detail, using the
ScenegraphXML module as a reference. ScenegraphXML loads a scenegraph from an XML file using the
ScenegraphXml_In node, then applies modifiers and look files, which can either be read from the XML file, or through
manual interaction in the Importomatic. If applied through manual interaction, modifiers and look files are called
overrides.

The first step involves parsing the XML file to extract the geometric data in terms of assemblies, as well as any
assigned modifiers/look files. This information is written as parameters on the Group node, which encapsulates the
module. This automatically creates the top node ScenegraphXml of type ScenegraphXmlTreeRoot. See Custom
Hierarchy Structures and Extensions for more information.

The second step uses these node parameters to generate the Node Graph and hierarchy within the Importomatic.
The ScenegraphXmlTreeRoot is instantiated and the traversing process begins where its method getChildren is
called, which instantiates the ScenegraphXmlRootHandler.

The root handler contains every other handler by going through the Group node's metadata, instantiating an
AssetTreeHandler for every asset, which subsequently calls the getChildren function that goes on to instantiate any
sub-asset/modifier/look file recursively. The images below show an example generated hierarchy.

CREATING NEW IMPORTOMATICMODULES | CUSTOM HIERARCHY STRUCTURES AND EXTENSIONS

TECHNICAL GUIDE 195

Each class has to implement the setItemState function, which specifies the item name and type. If the item relates
to a particular node in the Node Graph the node interface can be exposed to the user within the Importomatic,
using the function getEditor.

Updating the Node Graph

Similar to the CameraAsset example in Creating a Tree Structure on the previous page, the scenegraph module
registers a call, which adds the geometry that, in this case, is the Group node, which encapsulates every node for this
module and the ScenegraphXml_In node.

A function that recursively reads the metadata parameters from the Group node, and builds the remaining nodes
representing the modifiers/look-files, is called at the end of the registered function and in functions that have an
effect on the Node Graph.

Additional Context Menu Actions

Delete item

Declare in the class if the item can be deleted, for instance:
def isDeletable(self):

return True

CREATING NEW IMPORTOMATICMODULES | CUSTOM HIERARCHY STRUCTURES AND EXTENSIONS

TECHNICAL GUIDE 196

If this function returns True, a delete menu option is added to the context menu when the item is right-clicked. The
method delete(self) implements what happens when the delete option is selected.

Ignore Item

Similar to 'Delete item the function isIgnorable(self) defines if the item can be ignored and adds the appropriate
context menu option if this method returns true.

The functions isIgnored(self) and setIgnored(self) are used to determine and set the ignore state. Function
isIgnored(self) returns True or False depending on the defined ignore state.

Custom Actions

You can add custom actions to the context menu using the addToContextMenu function, which is only allowed in
GUI mode. A new action is added using menu.addAction([QtGui.QAction]). The class extending the QAction has
to be within a GUI scope, which is registered separately in the init file. See Registering the GUI for more information.

The custom action instantiates a QAction with the context menu description, and connects a listener to the signal,
which is triggered when the menu option is selected.

Registering the GUI

When GUI commands are needed, they are registered in a separate definition that contains a scoped import of the
QtGui and QtCore. This avoids illegal calls to these packages when running Katana in batch mode.

This is done using a tuple in the init file when registering the plug-in. The GUI registration class is the second item, as
shown here using the scenegraph XML module as a reference:
PluginRegistry=[]

import ScenegraphXmlAsset

PluginRegistry.append(

("ImportomaticModule" , "0.0.1" , "ScenegraphXmlAsset" ,

(ScenegraphXmlAsset.Register, ScenegraphXmlAsset.RegisterGUI)),

)

NOTE: ScenegraphXML is provided as a reference example only. It is not intended for production use, and
is not supported.

Adding Importomatic Items Using a Script

Using the Alembic module as a reference, adding a new Alembic item in the Importomatic is achieved by registering
the callback:

CREATING NEW IMPORTOMATICMODULES | CUSTOM HIERARCHY STRUCTURES AND EXTENSIONS

TECHNICAL GUIDE 197

ImportomaticAPI.AssetModule.RegisterCreateCallback('Add Alembic', AddAlembicGeometry)

where the menu option Add Alembic is added, which calls AddAlembicGeometry when selected.

The function AddAlembicGeometry can be called from a script in order to automate the population of Alembic files
but the node it returns has to be inserted into the output merge of the Importomatic, which is something the caller
does for you in the callback case above.

This is achieved using the insertNodeIntoOutputMerge function:
importomaticNode.insertNodeIntoOutputMerge(returnedNode, 'default')

where the node is connected to the default port.

CREATING NEW IMPORTOMATICMODULES | CUSTOM HIERARCHY STRUCTURES AND EXTENSIONS

TECHNICAL GUIDE

Custom Render Resolutions
You can define custom render resolutions to supplement or replace Katana's pre-defined resolutions.
You can define resolutions in Katana through the UI, using Python, by modifying the Katana
resolutions XML file, or by creating your own XML file of resolutions.

Using the UI
You can set the render resolution through any node with a resolution field, such as a RenderSettings or ImageColor
node. Each node with a resolution field has a dropdown menu of pre-defined resolutions, and text entry boxes for
manual definition.

Resolutions defined manually are saved - and recalled - with the Katana project, but are not saved for use in other
Katana projects. If you select a pre-determined resolution, that selection is saved - and recalled - with the Katana
project.

NOTE: The resolution field in the Tab > Project Settings window specifies the resolution for 2D image
nodes, not 3D renders.

Modifying the Resolutions XML
The default Katana resolutions are specified in FoundryResolutions.xml in ${KATANA_ROOT}
/plugins/Resources/Core/Resolutions. You can edit this file directly to add, modify or delete entries. The resolutions
are all nested in <formats> elements and take the form:

198

TECHNICAL GUIDE 199

<format width="[int]" height="[int]" pixelAspect="[float]" name="[string]" groupName="
[string]"/>

You can edit existing resolutions, or add resolutions within the <format> tags, using the existing form.

Using a Custom Resolutions XML
You can use custom resolutions in an .xml file by placing it in a Resolutions sub-directory of any location specified
in your KATANA_RESOURCES environment variable. This adds the new resolutions specified in your .xml file to the
resolutions supplied with Katana.

You can also specify a KATANA_RESOLUTIONS environment variable, and point it to the location of a new resolutions
.xml file. This replaces the resolutions supplied with Katana with the contents of the new .xml file.

Using the Python API
To define new resolutions for use in a single Katana project (as with manual definitions specified through the UI),
start Katana in UI mode, and in the Python tab enter:
from Katana import ResolutionTable;

resolutionTable = ResolutionTable.GetResolutionTable();

r1 = resolutionTable.createResolution(1000, 1000, name="1K",

groupName="Thousands");

r2 = resolutionTable.createResolution(2000, 2000, name="2K",

groupName="Thousands");

r3 = resolutionTable.createResolution(3000, 3000, name="3K",

groupName="Thousands");

resolutionTable.addEntries([r1, r2, r3]);

TIP: Using Python to set the render resolution means you can make that resolution conditional on data
read from the Node Graph.

The createResolution() function takes in two ints, to specify width and height in pixels, and two strings to specify a
name, and group name. It creates a new resolution with the given width, height and name, and makes it available in
the specified group.

Resolutions entered this way expire with the Katana session. Using the ResolutionTable Python API, you can use
createResolutions() in Python startup scripts, making them persistent across Katana sessions. To do this, add the
code above - or your variant of it - to one of Katana's startup scripts. These are files named init.py, located in a

CUSTOM RENDER RESOLUTIONS | USING A CUSTOM RESOLUTIONS XML

TECHNICAL GUIDE 200

Startup folder, under the path defined in the KATANA_RESOURCES environment variable. Alternatively, you can use
a startup script in the form of an init.py file placed in the .katana folder in your $HOME directory.

CUSTOM RENDER RESOLUTIONS | USING THE PYTHON API

TECHNICAL GUIDE

Managing Keyboard Shortcuts
and the shortcuts.xml File

The $HOME/.katana/shortcuts.xml configuration file can be used to override the default
keyboard shortcuts of actions and key events that are registered with Katana’s new Keyboard Shortcut
Manager.

Example of a shortcuts.xml File
Below is an example of a shortcuts.xml file:

<shortcuts>
<shortcut id="430f81d33d338680a0c64ae9ea311cd7"

name="SceneGraphView.ExpandBranchesToAssembly"
shortcut="A"></shortcut>

</shortcuts>

The ID of a keyboard shortcut element is assigned by the developer that registers the action or key event. It is a hash
based on the original name of the action or key event. While the name of an action or key event changes, the ID
remains the same for future versions of Katana. This ensures that the correspondence of custom keyboard
shortcuts to the respective actions or key events remain the same, even if names change in future Katana releases.

The name attribute of a shortcut XML element only appears for readability, making it easy to identify the action or
key event to which the shortcut has been assigned. The names in the shortcuts.xml file are not updated
automatically when names of actions or key events are changed in the application.

You can view the currently assigned keyboard shortcuts of actions and key events, for which custom keyboard
shortcuts can be assigned, in the Keyboard Shortcuts tab. You can copy an XML representation of an item in the
keyboard shortcuts tree to the selection buffer clipboard by right-clicking the item and selecting Copy as XML from
the context menu. Pasting such an XML representation into the shortcuts.xml file allows you to override the
custom keyboard shortcut assigned for the respective action or key event.

In future releases of Katana, more and more of Katana’s menu commands and other actions and key events are
adopted to using the new Keyboard Shortcut Manager, so that they can be customized as well.

201

TECHNICAL GUIDE

Custom Node Colors
You can set the display color of individual nodes through the UI by selecting a node, then choosing
Colors, then a color from the presets available in the Node Graph's Colors menu.

You can also apply a custom color by selecting a node, then choosing Colors > Set Custom Color, which brings up a
color picker window.

NOTE: To reset a node's color back to the default, select the node, then choose Colors > None.

You can also define colors for groups of nodes using Python, and apply those changes across your project.

Flavors and Rules
Node colors are defined in rules. Rules consist of a rule name and an RGB color value. Rules are applied to flavors,
and a flavor is a list of node types.

Rules contain the name of the flavor to which it is applied in the form of a string, and an RGB value, in the form of
three 0-1 range floats. To see a list of defined rules, run the following in the Python tab:

import Nodes2DAPI.NodeColorDelegate

print(Nodes2DAPI.NodeColorDelegate.rules)

You should see something like the following, which is a list of the rules defined with Katana as shipping:
[

('filter', (0.345, 0.300, 0.200)),

('keying', (0.200, 0.360, 0.100)),

('composite', (0.450, 0.250, 0.250)),

('transform', (0.360, 0.250, 0.380)),

('color', (0.204, 0.275, 0.408)),

('SHOW_MACROS', (0.010, 0.010, 0.010)),

('SPI_MACROS', (0.010, 0.010, 0.010)),

(None, None)

]

Each individual rule follows the form:
('flavorName', (R value float, G value float, B value float))

202

TECHNICAL GUIDE 203

Editing Rules

You can edit rules and add new ones by overwriting list entries using Nodes2DAPI.NodeColorDelegate. For
example, to edit the color associated with the flavor composite to pure red, enter the following in the Python tab:
Nodes2DAPI.NodeColorDelegate.rules[2] = ('composite', (0, 0, 1))

Creating New Rules

You can create a new rule using:
NodegraphAPI.Flavor.AddNodeFlavor('nodeName', 'flavorName')

To append a rule to the active rules use:
import Nodes2DAPI.NodeColorDelegate

Nodes2DAPI.NodeColorDelegate.rules.append('nodeName', 'flavorName')

Editing Flavors

Flavors are collections of node types. You can see a list of all flavors in use in a recipe by entering:
print(NodegraphAPI.GetAllFlavors())

You should see something like the following, which is a list of the flavors defined with Katana, as shipped:
['2d', '3d', '_dap', '_hide', '_macro', '_supertool', 'analysis', 'color',
'composite', 'constraint', 'filter', 'i/o', 'input', 'lookfile', 'output',
'procedural', 'resolve', 'source', 'transform']

You can see a list of all nodes that comprise a particular flavor by entering:
NodegraphAPI.GetFlavorNodes('flavorName')

For example, to see a list of all nodes in the flavor color, enter:
print(NodegraphAPI.GetFlavorNodes('color'))

You should see something like the following, which is a list of the members of the flavor color with Katana, as
shipped:
['ImageBrightness', 'ImageBackgroundColor', 'ImageChannels', 'ImageContrast',
'ImageExposure', 'ImageFade', 'ImageGain', 'ImageGamma', 'ImageInvert',
'OCIOCDLTransform', 'OCIOColorSpace', 'OCIODisplay', 'OCIOFileTransform',
'OCIOLogConvert', 'OCIOLookTransform', 'ImageSaturation', 'ImageClamp', 'ImageLevels',
'ImageThreshold']

NOTE: Flavor assignments are stored on the node itself, and each node can have multiple assignments. If
competing rules overlap on the same node type, the first rule applied wins.

CUSTOM NODECOLORS |

TECHNICAL GUIDE 204

Creating New Flavors

To add a new flavor, enter the following in the Python tab:
NodegraphAPI.Flavor.AddNodeFlavor('nodeName', 'flavorName')

For example, to add the node type Render to a flavor called myRenderFlavor, enter the following:
NodegraphAPI.Flavor.AddNodeFlavor('Render', 'myRenderFlavor')

NOTE: If you want to completely customize node creation, you can also create a class derived from
NodegraphAPI.NodeDelegateManager.SuperDelegate with a function called processNodeCreate()
with one parameter that receives a newly created node:

class MySuperDelegate(NodegraphAPI.NodeDelegateManager.SuperDelegate):

 def processNodeCreate(self, node):

print("Processing new node %s..." % node)

NodegraphAPI.NodeDelegateManager.RegisterSuperDelegate(MySuperDelegate())

Updating Node Colors

New rules and flavors, created and applied by entering them in the Python tab, are not retrospectively applied to
existing nodes in the Node Graph. To apply changes to existing nodes, choose the Color Nodes shelf item from the

main menu.

CUSTOM NODECOLORS |

TECHNICAL GUIDE 205

Making Updates Persist

Rules and flavors created or modified within the Python tab expire with the Katana session. Using the Node Graph
and Nodes2DAPI.NodeColorDelegate Python APIs, you can include your rules and flavor changes in Python
startup scripts, making them persistent across Katana sessions. To do this, add your code to one of Katana's startup
scripts. These are files named init.py, located in the Startup folder, under the path defined in the KATANA_
RESOURCES environment variable. Alternatively, you can use a startup script in the form of an init.py file placed in
the .katana folder in your $HOME directory.

CUSTOM NODECOLORS |

TECHNICAL GUIDE 206

Flavor API

API Usage

NodegraphAPI.Flavor

AddNodeFlavor() Adds a new flavor

Syntax:

Takes two strings, the node type, and the flavor name.

AddNodeFlavor('nodeType', 'flavorName')

Example:

NodegraphAPI>Flavor.AddNodeFlavor('Render', 'myNewFlavor')

Adds nodes of type Render to a new flavor named myNewFlavor.

ClearFlavorNodes() Clears all entries in a flavor

Syntax:

Takes a single string, the flavor name.

ClearFlavorNodes('flavorName')

Example:

NodegraphAPI.Flavor.ClearFlavorNodes('myFlavor')

Clears all entries in the flavor named myFlavor.

GetAllFlavors() Gets a list of all flavors.

Syntax:

Takes no arguments

Example:

NodegraphAPI.Flavor.GetAllFlavors()

CUSTOM NODECOLORS | FLAVOR API

TECHNICAL GUIDE 207

API Usage

NodegraphAPI.Flavor

GetFlavorNodes() Gets a list of all nodes in a given flavor.

Syntax:

Takes a single string, the name of the flavor.

GetFlavorNodes('flavorName')

Example:

NodegraphAPI.Flavor.GetFlavorNodes('2d')

Gets a list of all nodes in the flavor named 2d.

GetNodeFlavors() Gets a list of the flavors stored on a given node.

Syntax:

Takes a single string, the name of the node type.

GetNodeFlavors('nodeType')

Example:

NodegraphAPI.Flavor.GetNodeFlavors('Merge')

Gets a list of all flavors stored on the node type Merge.

CUSTOM NODECOLORS | FLAVOR API

TECHNICAL GUIDE 208

API Usage

NodegraphAPI.Flavor

NodeMatchesFlavors() Checks to see if a specified node is in a specified flavor, and not in any
specified ignore flavors. Returns a Boolean.

Syntax:

Takes three strings, node type, flavor to match, and ignore flavors. The
node type must be a single string, while flavor, and ignore flavors can be
any sequence of strings. Flavor, and ignore flavors can each also be
None.

NodeMatchesFlavors('nodeType', 'matchFlavors', 'ignoreFlavors')

Examples:

To check if a the node type Merge is in the flavor 3d, but not in the flavor
2d:

NodegraphAPI.Flavor.NodeMatchesFlavor('Merge', '3d', '2d')

Returns True.

To just check if the node type Merge is the the flavor 3d:

NodegraphAPI.Flavor.NodeMatchesFlavor('Merge', '3d', None)

Returns True.

To check if the node type Merge is not in the flavor 2d:

NodegraphAPI.Flavor.NodeMatchesFlavors('Merge', None, '2d')

Returns True.

CUSTOM NODECOLORS | FLAVOR API

TECHNICAL GUIDE 209

API Usage

NodegraphAPI.Flavor

RemoveNodeFlavor() Deletes a flavor.

Syntax:

Takes a single string, the name of the flavor to remove.

RemoveNodeFlavor('flavorName')

Example:

NodegraphAPI.Flavor.RemoveNodeFlavor('myFlavor')

Removes the flavor named myFlavor.

CUSTOM NODECOLORS | FLAVOR API

TECHNICAL GUIDE

Appendix A: Custom Katana
Filters

There are two C++ APIs for writing new scene graph filters: the Scene Graph Generator API and Attribute Modifier
API. Scene Graph Generators allow you to create new scene graph locations, and Attribute Modifiers allow you to
modify attributes at existing location. These are often used together.

Scene Graph Generators
Scene Graph Generators are custom filters that allow new hierarchy to be created, and attributes values to be set on
any locations in the newly created locations.

Typical uses for Scene Graph Generators include reading in geometry from custom data formats (for example,
Alembic_In is written as a Scene Graph Generator), or to procedurally create data such as geometry at render-time
(such as the for render-time created debris or plants).

From a RenderMan perspective, Scene Graph Generators can be seen as Katana's equivalent of RenderMan
procedurals. The main advantages of using Scene Graph Generators are:

The data can be used in different target renderers.

Render-time procedurals are usually black-boxes that are difficult for users to control. Data produced by a Scene
Graph Generator can be inspected, edited and over-ridden directly in Katana.

Since Katana filters are be run on demand as the scene graph it iterated, Scene Graph Generators have to be written
to deliver data on demand as well. The API reflects this: for every location you create you provide methods to
respond to requests for:

• What are the names of attribute groups at this location.

• For any named attribute group, what are its values for the current time range.

• What are iterators for the first child and next sibling of this location, to enable walking the scene graph.

Example code for a number of different Scene Graph Generators are supplied in the Katana installation:

• ${KATANA_ROOT}/plugins/Src/ScenegraphGenerators/GeoMakers

• ${KATANA_ROOT}/plugins/Src/ScenegraphGenerators/SphereMakerMaker

• ${KATANA_ROOT}/plugins/Src/ScenegraphGenerators/ScenegraphXml

• ${KATANA_ROOT}/plugins/Src/ScenegraphGenerators/Alembic_In

210

TECHNICAL GUIDE 211

Documentation of the API classes is provided in:

• ${KATANA_ROOT}/docs/plugin_apis/html/group__SG.html

Attribute Modifiers
Attribute Modifier plug-ins (AMPs) are filters that can change attributes but can't change the scene graph topology.
Incoming scene graph data can be inspected through scene graph iterators, and attributes can be created, deleted
and modified at the current location being evaluated. New locations can't be created or old ones deleted.

In essence this is the C++ plug-in equivalent of the Python 'AttributeScripts'. It is common to prototype modifying
attributes using Python in AttributeScript nodes and then converting those to C++ Attribute Modifiers if efficiency is
an issue such as for more complex processes that are going to be run in many shots.

Using the Attribute Modifier API:

• An input is provided by a scene graph iterator. This can be interrogated to find the existing attribute values at the
current location being evaluated, as well as inspect attribute values at any other location (for example, /root) if
required.

• You provide methods to respond to any requests for attribute names of values of attributes at the current
location. Using this you can pass existing data through, create new attributes, delete attributes, or modify the
values of attribute.

From a RenderMan perspective, AttributeModifiers can be largely seen as the equivalent of riFilters.

Example code

• PLUGINS/Src/AttributeModifiers/GeoScaler

• PLUGINS/Src/AttributeModifiers/Messer

• PLUGINS/Src/AttributeModifiers/AttributeFile

• Documentation of the API classes is provided in:

• ${KATANA_ROOT}/docs/plugin_apis/html/group__AMP.html

APPENDIX A: CUSTOM KATANA FILTERS | ATTRIBUTE MODIFIERS

TECHNICAL GUIDE

Appendix B: Other APIs

File Sequence Plug-in API
API that tells how a file sequence should be described as a string, and how to resolve that string into a real file path
when given a frame number.

File Sequence plug-ins can be implemented in either Python or C++.

Attributes API
C++ API to allow manipulation of Katana attributes in C++ plug-ins.

Attribute History
There is a new API for querying Attribute History from Python. You can find it in the
UI4.Util.AttributeHistory module.

Attribute History can be queried synchronously, in which case the UI blocks until the result is computed and
returned, or asynchronously if you provide a callback to run when the computation is complete.

LiveRenderAPI
The new LiveRenderAPI Python package provides access to several functions that allow you to modify the
behavior of the Live Rendering system. It contains the following functions:

• SendCommand() - Sends custom Live Render commands to the renderer plug-in through the command socket.

• SendData() - Sends custom data updates to the renderer plug-in through the data socket.

• AppendTerminalOp() and RemoveTerminalOp() - Adds or removes additional terminal Ops to the Live
Rendering client allowing you to customize the scene graph data that is passed through to renderers.

212

TECHNICAL GUIDE 213

• InsertTerminalOp() - Inserts a terminal Op into the Live Rendering client at a specified position index.

• GetTerminalOps() - Returns a list of tuples describing each terminal Op along with its Op args.

• ClearAllTerminalOps() - Removes all Live Rendering terminal Ops, including the defaults (specified in renderer
info plug-ins).

• RestoreDefaultTerminalOps() - Restores the default terminal Ops and removes all others.

• InsertTerminalOp() - Inserts a terminal Op into the Live Rendering client at a specified position index.

• GetTerminalOps() - Returns a list of tuples describing each terminal Op along with its Op args.

Render Farm API
Python API to allow implementation of connection of Katana with custom render farm management and submission
systems.

Importomatic API
Python API to allow creation of custom new asset types to use in the Importomatic node.

Gaffer Profiles API
Python API to allow custom profiles when using specified renderers in the Gaffer node.

Viewer Manipulator API
Python API to allow rules to be set up to connect OpenGL manipulators in the viewer to custom shaders, and to
create new custom manipulators.

Viewer Modifier API
C++ API to allow customization of how the Viewer displays new custom location types in the Scene Graph tab.

Viewer Proxy Loader API
Python API to specify custom Scene Graph Generators to use in the Viewer to display new proxy file types.

APPENDIX B: OTHER APIS | RENDER FARM API

TECHNICAL GUIDE 214

Renderer API
Python and C++ API to integrate new renders with Katana.

APPENDIX B: OTHER APIS | RENDERER API

TECHNICAL GUIDE

Appendix C: Glossary

Glossary

Node

A reusable user interface component for processing a Katana scene graph in a deferred manner. A node contains
parameters.

Asset Fields

A dictionary containing the minimum components needed to retrieve an Asset from an Asset Management System.
The fields may contain a name, version, the name of a parent directory or anything else needed to locate the asset.

Asset ID

A single string representing the serialization of an Asset’s Fields.

Asset Widget Delegate

A Python class that implements methods for customizing the Asset Management System user interface inside of
Katana.

Widget

A user interface component that implements a mechanism for displaying and editing data. All Katana widgets inherit
from QT Qwidget.

215

TECHNICAL GUIDE 216

Hint

Metadata that contains information about how a piece of Katana data is presented in the user interface.

Katana Scene Graph

A data tree containing all the information needed to render a scene.

Katana Node Graph

A network of nodes for processing a scene graph in a deferred manner.

Look File

A collection of changes to apply to a scene graph. A look file is static data stored on disk.

Node Parameter

String and Number data used to calibrate how a node processes a scene graph. A node contains parameters.

Scene Graph Attribute

The leaf elements of a scene graph. Attributes contain the actual data in a scene graph.

Scene Graph Location

A branch in a scene graph. A scene graph location contains one or more scene graph attributes and contains an
arbitrary number of scene graph locations.

APPENDIX C: GLOSSARY |

TECHNICAL GUIDE

Appendix D: Standard
Attributes

Key Locations
The following table gives an overview of the standard attributes conventions at various important scene graph
locations. Attribute data types use the notation <type>[<size>].

Attribute and Location Type Description

/root

/root This group is located at the top of the
hierarchy and contains collections,
output settings, and global render
settings. Most of these attributes are not
inherited.

rendererGlobalStatements

(not inherited)

This defines global renderer-specific
settings and has a different name,
depending on which renderer is used, for
instance prmanGlobalStatements,
arnoldGlobalStatements, and similar.

collections Containing definitions of collections that
are globally available, for example
GafferLights.

collections.GafferLights.baked string[] A list of scene graph locations for all
lights created through a gaffer.

lookfile.asset

(not inherited)

string The file path to the look file.

217

TECHNICAL GUIDE 218

Attribute and Location Type Description

renderSettings.cameraName

(not inherited)

string The scene graph location of the camera,
for example,
/root/world/cam/camera.

renderSettings.renderer

(not inherited)

string The renderer; for example, PRMan.

renderSettings.resolution

(not inherited)

string The render resolution preset; for
example, 512sq.

renderSettings.overscan

(not inherited)

float4 Overscan value in pixels.

renderSettings.adjustScreenWindow (not inherited) string The method for auto-adjusting the pixel
ratio.

renderSettings.maxTimeSamples

(not inherited)

integer Defines how many times a point is
sampled when the shutter is open.

renderSettings.shutterOpen

(not inherited)

float The timing of the opening of the camera
shutter (0, where 0 represents the
current frame.)

renderSettings.shutterClose

(not inherited)

float The timing of the closing of the camera
shutter.

renderSettings.cropWindow

(not inherited)

float4 The render crop window in normalized
co-ordinates.

renderSettings.interactiveOutputs

(not inherited)

string Indicates which outputs (defined under
renderSettings.outputs) to use for
interactive renders.

renderSettings.producerCaching.limitProducerCaching

(not inherited)

integer Controls how the Katana procedural
caches potentially terminal scenegraph
locations.

/root > renderSettings.outputs.<passname>

APPENDIX D: STANDARD ATTRIBUTES |

TECHNICAL GUIDE 219

Attribute and Location Type Description

renderSettings.outputs.<passname> Contains a sub group for every render
pass. The default pass is named primary.

The rendererSettings/locationSettings
are configurable per output. Output
types are customizable by plug-ins. For
instance, a color output has different
rendererSettings than a shadow output.

renderSettings.outputs.<passname>.
type (not inherited)

string The type of output.

renderSettings.outputs.<passname>.
includedByDefault

(not inherited)

string When enabled, this Render Definition is
sent to the Render node.

renderSettings.outputs.<passname>.
rendererSettings.colorspace

(not inherited)

string The color space.

renderSettings.outputs.<passname>.
rendererSetting.fileExtension (not inherited)

string The file extension of the output file.

renderSettings.outputs.<passname>.
rendererSettings.channel

(not inherited)

string The channel of the output file.

renderSettings.outputs.<passname>.
rendererSettings.convertSettings (not inherited)

Attribute group with file format-
dependent conversion settings.

renderSettings.outputs.<passname>.
rendererSettings.clampOutput (not inherited)

integer Post-render, clamps negative RGB values
to 0 and alpha values to 0-1.

renderSettings.outputs.<passname>.
rendererSettings.colorConvert (not inherited)

integer Post-render, converts rendered image
data from linear to output colorspace
specified in the filename.

renderSettings.outputs.<passname>.
rendererSettings.cameraName (not inherited)

string Scene graph location of camera to render
from.

APPENDIX D: STANDARD ATTRIBUTES |

TECHNICAL GUIDE 220

Attribute and Location Type Description

renderSettings.outputs.<passname>.
rendererSettings.locationType (not inherited)

string The type of location.

renderSettings.outputs.<passname>.
locationSettings.renderLocation (not inherited)

string The file path and name of the output.

/root/world

/root/world This group defines attributes that are
inherited by the whole world, for
instance, geometry, cameras, or lights.
Some attributes like the lightList are
inherited further down the hierarchy;
others like globals, however, define
universal settings and are not inherited.

globals.cameraList

(not inherited)

string[] The list of scene graph locations of
cameras; for example,
/root/world/cam/camera and
/root/world/cam/camera2.

/root/world > lightList.<light>

lightList.<light> A sub-group for every light; for example,
/root/world/lgt/gaffer/light1.

lightList.<light>.path string Scene graph location of the light, for
example,
/root/world/lgt/gaffer/light1.

lightList.<path>.enable integer Defines whether the light is enabled.

viewer.default.pickable integer Defines whether the object can be
selected in the Viewer.

viewer.default.drawOptions.hide integer Defines whether the object/group is
visible in the Viewer.

viewer.default.drawOptions.fill string The fill setting used in the Viewer.

viewer.default.drawOptions.light string The lighting setting used in the Viewer.

APPENDIX D: STANDARD ATTRIBUTES |

TECHNICAL GUIDE 221

Attribute and Location Type Description

viewer.default.drawOptions.smoothing string The smoothing setting used in the
Viewer.

viewer.default.drawOptions.pointSize float The point size used for drawing.

viewer.default.annotation.text string The text of the annotation.

viewer.default.annotation.color float3 The color of the annotation text.

Location Type Conventions
Location types follow specific conventions and contain a certain attribute structure. The following table documents
these attributes for the most common Location types.

Location Type or Attribute Type Description

Groups

Assembly Components are designed to be the
building blocks that assets can be made out
of. Assemblies are designed to be
structured assets that can be built out of
components or other assemblies.

As a convention for complex hierarchies, a
component is a building block that can
contain a hierarchy of geometry and non-
geometry locations, but it shouldn't contain
any assemblies or other components. This
convention is used by some tools in Katana
to reduce the amount of Scenegraph that
needs to be inspected to do certain things,
such as search for LookFiles that are being
used, with the assumption that no LookFile
is assigned deeper than any 'component'
location.

Group Attributes

APPENDIX D: STANDARD ATTRIBUTES | LOCATION TYPE CONVENTIONS

TECHNICAL GUIDE 222

Location Type or Attribute Type Description

Group Attributes The following attributes are commonly
found on groups but can be found at any
location type. For materialAssign may be
assigned directly at a polymesh location.

component See Assembly

group Base location type to create scene graph
hierarchy. Groups inherit their attributes
from /root/world. The types assembly and
component contain the same attributes as
group.

rendererStatements This defines local renderer-specific settings
and has a different name, depending on
which renderer is used (for example,
prmanStatements and arnoldStatements).

attributeEditor.exclusiveTo string The scene graph location of the node that is
manipulated when using the interactive
manipulators.

bound List of six doubles defining two points that
define a bounding box. The order of the
values is xmin, xmax, ymin, ymax, zmin, and
zmax.

Bounds are in local (object) space, not world
space.

Group Attributes > attributeModifiers.<modifierName>

attributeModifiers.<modifierName> Sub-groups are created for deferred
evaluation/loading of Attribute Modifier
Plug-ins or Attribute Scripts. The
scenegraphLocationModifiers attribute is a
legacy version of attributeModifiers and is
deprecated.

attributeModifiers.<modifierName>.type string The type of attribute modifier, for example,
OP_Python.

APPENDIX D: STANDARD ATTRIBUTES | LOCATION TYPE CONVENTIONS

TECHNICAL GUIDE 223

Location Type or Attribute Type Description

attributeModifiers.<modifierName>.recursiveEnable integer Indicates if recursion is enabled.

attributeModifiers.<modifierName>.resolvedIds string The resolve Ids. Individual resolvers can be
instructed to pay attention to only
modifiers containing an expected resolveId
Value.

attributeModifiers.<modifierName>.args group This attribute group contains the
arguments defined in the Attribute Modifier
Plug-in or Attribute Script.

lookfile See /root.

materialAssign string The scene graph location of the assigned
material, for example
/root/materials/material1.

viewer See /root/world.

APPENDIX D: STANDARD ATTRIBUTES | LOCATION TYPE CONVENTIONS

TECHNICAL GUIDE 224

Location Type or Attribute Type Description

xform.<group> The xform attribute contains a sub-group
for every transform in the order these
transforms are applied. A sub-group with
the name interactive contains the
transform used for manipulation in the
Viewer.

An object can have only one interactive
group. If another transform is added (using
a Transform3D node for example), the
previous interactive group automatically
gets renamed.

The group can be any arbitrary name, but
uses the conventions: occurrence of
’interactive’ to receive transformations for
the Viewer, ’constraintN’ for any number of
constraints, or ’groupN’ for the default
group of regular transforms created by
Transform3D nodes.

This supports an arbitrary list of transform
commands, similar to RScale and Rtranslate
in PRMan.

The name prefix (translate, rotate, scale,
matrix, origin) is how Katana determines
how to use each xform child attribute it
finds.

Note: Transform commands can be
grouped together in sub-groups, or they
can be declared without sub-groups, for
example xform.rotateX instead of
xform.<group>.rotateX.

xform.<group>.translate

(not inherited)

double3 Translation on the xyz axes.

APPENDIX D: STANDARD ATTRIBUTES | LOCATION TYPE CONVENTIONS

TECHNICAL GUIDE 225

Location Type or Attribute Type Description

xform.<group>.rotateX

(not inherited)

double4 The first number indicates the angle of
rotation. The remaining three define the
axis of rotation (1.0/0.0/0.0 for X axis).

xform.<group>.rotateY

(not inherited)

double4 The first number indicates the angle of
rotation. The remaining three define the
axis of rotation (0.0/1.0/0.0 for Y axis).

xform.<group>.rotateZ

(not inherited)

double4 The first number indicates the angle of
rotation. The remaining three define the
axis of rotation (0.0/0.0/1.0 for Z axis).

xform.<group>.scale

(not inherited)

double3 Scale on the xyz axes.

xform.<group>.matrix double16 A 4x4 homogenous matrix transformation.

xform.<group>.origin double Resets the transformation to identity,
ignoring everything prior to it in the
transformation stack. This is synonymous
with the RiIdentity() attribute in the
Renderman specification.

Note: The presence of this attribute is all
that is required to set the transform to
identity. The value is ignored but the type
must be double.

Geometry

Geometry > Polymesh

Polymesh Polygonal mesh geometry. A polygonal
mesh is formed of points, a vertex list
(defining vertices) and start index list
(defining faces). Additional information,
such as normals and arbitrary data, can also
be defined.

geometry.point.N float3[] List of point normals.

APPENDIX D: STANDARD ATTRIBUTES | LOCATION TYPE CONVENTIONS

TECHNICAL GUIDE 226

Location Type or Attribute Type Description

geometry.point.P float3[] List of points. The geometry points are
unique floating point positions in object
space coordinates (x, y, z). Each point is only
stored once but it may be indexed many
times by a particular vertex.

APPENDIX D: STANDARD ATTRIBUTES | LOCATION TYPE CONVENTIONS

TECHNICAL GUIDE 227

Location Type or Attribute Type Description

geometry.poly.startIndex integer[] Is a list of indices defining the faces of a
mesh. For example, consider a cube. A cube
has a startIndex list size equal to the
number of faces in the mesh plus one. This
is because we must store the index of the
first point on the first face as well as the end
point of all the faces (including the first). So,
for example, the beginning of a cube’s
startIndex list may look like:

0 – 0

1 – 4

2 – 8

......

The indices for each polyon N are from
startIndex(N) to startIndex(N+1)-1. The
value at index 0 of the list tells us the first
face should start at index 0 in the
vertexList, the second value in the list tells
us the first face ends at index 3 (n-1).

This indicates the first face is a quadrilateral
polygon. The image below shows the
startIndex values of the first face in green.
The red text shows the indexed values of
the vertexList.

APPENDIX D: STANDARD ATTRIBUTES | LOCATION TYPE CONVENTIONS

TECHNICAL GUIDE 228

Location Type or Attribute Type Description

geometry.poly.vertexList integer[] The vertexList describes the vertex data of a
mesh. There is a vertex at each edge
intersection. The value of the vertexList is
used as an index into the geometry.point.P
list which stores the actual object
coordinates of each unique point. Many
indices in a vertexList can index the same
point in the geometry.point.P list. This
saves space as a vertex is described as a
simple integer rather then the three floating
point values required to describe a 3D
geometry point (x, y, z).

geometry.vertex.N float3[] List of vertex normals.

geometry.vertex.UV float2[] List of texture coordinates (per vertex, non
face-varying).

Geometry > geometry.arbitrary.<group>

geometry.arbitrary.<group> This group contains any sort of user data,
such as custom attributes, defined in other
applications. Texture coordinates, for
example, are defined using a group called
st.

APPENDIX D: STANDARD ATTRIBUTES | LOCATION TYPE CONVENTIONS

TECHNICAL GUIDE 229

Location Type or Attribute Type Description

geometry.arbitrary.<group>.scope group The scope of the attribute. Valid values are:
primitive (equivalent to "constant" in
PRMan), face (equivalent to "uniform" in
PRMan), point (equivalent to "varying" in
PRMan), vertex (equivalent to "facevarying"
in PRMan).

Support for the different scope types
depends on the renderer's capabilities.
Therefore, not all of these are supported in
every renderer.

Katana currently supports the following
types: float, double, integer, string, color3,
color4, normal2, normal3, vector2, vector3,
vector4, point2, point3, point4, matrix9,
and matrix16. Depending on the renderer's
capabilities, all these nodes might not be
supported.

geometry.arbitrary.<group>.inputType string Type under 'value' or 'indexedValue'. It's
important to note that the specified
'inputType' must match the footprint of the
data as described.

geometry.arbitrary.<group>.outputType string Output type for the arbitrary attribute can
be specified, if the intended output type
(and footprint) differs from the input type
but can be reasonably converted. Examples
of reasonable conversions include: float ->
color3 , color3 -> color4.

geometry.arbitrary.<group>.value integer,
float,
double, or
string

The value is specified by either a 'value'
attribute or an indexed list using the 'index'
and 'indexedValue' attributes.

Attribute containing the value. The type is
dependent on the type specified. The base
type can be integer, float, double, or string.

APPENDIX D: STANDARD ATTRIBUTES | LOCATION TYPE CONVENTIONS

TECHNICAL GUIDE 230

Location Type or Attribute Type Description

geometry.arbitrary.<group>.index integer[] List of indexes (if no index is present, the
index is implicitly defined by the scope).

geometry.arbitrary.<group>.indexedValue integer,
float,
double, or
string

List of values. The base type can be integer,
float, double, or string.

geometry.arbitrary.<group>.elementSize integer This optional attribute determines the array
length of each scoped element. This is used
by some renderers, for example, PRMan
maps this to the "[n]" portion of a
RenderMan type declaration: "uniform
color[2]"

Geometry > pointcloud

pointcloud Point cloud geometry. A point cloud is the
simplest form of geometry and only
requires point data to be specified.

geometry.point See polymesh.

geometry.arbitrary.<group> See polymesh.

Geometry > subdmesh

subdmesh Sub-division surfaces geometry. Sub-
division surfaces (Subds) are similarly
structured to polygonal meshes.

geometry.facevaryinginterpolateboundary A single integer flag, used by PRMan in the
RiHierarachicalSubdivisionMeshV call by
renderer output. Ignored in other
renderers.

See the RenderMan documentation for
more information.

APPENDIX D: STANDARD ATTRIBUTES | LOCATION TYPE CONVENTIONS

TECHNICAL GUIDE 231

Location Type or Attribute Type Description

geometry.facevaryingpropagatecorners A single integer flag, used by PRMan in the
RiHierarachicalSubdivisionMeshV call by
renderer output. Ignored in other
renderers.

See the RenderMan documentation for
more information.

geometry.interpolateboundary A single integer flag, used by PRMan in the
RiHierarachicalSubdivisionMeshV call by
renderer output. Ignored in other
renderers.

See the RenderMan documentation for
more information.

geometry.point

geometry.poly

geometry.vertex

geometry.arbitrary.<group>

See polymesh.

Geometry > Locator

Locator Used only in the Viewer; ignored by the
renderers.

geometry.point

geometry.poly

geometry.arbitrary.<group>

See polymesh.

Geometry > spheres

spheres A more efficient way of creating a group of
spheres in PRMan at once. This is ignored
by other plug-ins.

geometry.point.P float3 List of points that represent the sphere
centers.

APPENDIX D: STANDARD ATTRIBUTES | LOCATION TYPE CONVENTIONS

TECHNICAL GUIDE 232

Location Type or Attribute Type Description

geometry.point.radius float[] The spheres radii.

geometry.constantRadius float Can be used instead of
geometry.point.radius to specify a single
radius for all spheres.

Geometry > curves

curves For creating groups of curves parented to
the same transform. Curves cannot be
created by the UI but can be created
through the Python API.

geometry.constantWidth float A float which defines the width of a curve,
which is applied uniformly to each control
point.

geometry.degree integer Specifics whether curve(s) are linear or
cubic, linear = 1, cubic = 3.

geometry.knots float[] Knot vector, a sequence of parameter
values, which defines the index positions of
the points in geometry.point.P. For
example, a curve with 6 points in
geometry.point.P, with knots [0 1 2 0 1 2]
creates 2 curves.

Knots are ignored for all curve types aside
from trimmed curves.

Note: When splitting geometry.point.P
into multiple curves using knots, the values
in numVertices must correspond. For
example, given 6 control points in
geometry.point.P and knots [0 1 2 0 1 2]
numVertices must read [3 3].

APPENDIX D: STANDARD ATTRIBUTES | LOCATION TYPE CONVENTIONS

TECHNICAL GUIDE 233

Location Type or Attribute Type Description

geometry.numVertices float[] The number of vertices in each curve.

The following XML is from a scene graph
that creates 3 linear curves with 3
segments:
<attr type="GroupAttr"
inheritChildren="false">

<attr type="IntAttr"
name="degree" tupleSize="1">

<sample value="1 " size="1"
time="0"/>

</attr>

<attr type="FloatAttr"
name="knots" tupleSize="1">

<sample value="0.0 " size="1"
time="0"/>

</attr>

<attr type="IntAttr"
name="numVertices"
tupleSize="1">

<sample value="4 4 4 " size="3"
time="0"/>

</attr>

<attr type="GroupAttr"
name="point"
inheritChildren="false">

<attr type="FloatAttr" name="P"
tupleSize="3">

<sample value=" 0.2 0 5 -2.8 0
2.0 0.5 0 1.0 -0.3 0

-1.5 1.8 0 4.9 -0.4 0 2.2 2.5 0
1.0 1.6 0 -1.4 3.8 0 4.9 1.6 0
2.2 4.5 0 1.0 3.6 0 -1.4 "
size="36" time="0"/>

</attr>

</attr>

</attr>

The numVertices list defines the index
ranges of the knots used by each curve.

APPENDIX D: STANDARD ATTRIBUTES | LOCATION TYPE CONVENTIONS

TECHNICAL GUIDE 234

Location Type or Attribute Type Description

geometry.point.P float3 List of points. The geometry points are
unique floating point positions in object
space coordinates (x, y, z). Each point is only
stored once but it may be indexed many
times by the same knot.

geometry.point.orientation float3 For Arnold-oriented curves. An nX3 tuple of
floats, where n is the number of control
points in the curve. Specifies the
orientation, relative to camera, of each
point in the curve.

geometry.point.width float[] An nX1 tuple of floats, where n is the
number of control points in the curve.
Defines the width (diameter) of the curve at
each control point.

Note: If both geometry.constantWidth
and geometry.point.width are set, the
values in geometry.point.width are used.

Geometry > nurbspatch

nurbspatch NURBS patch geometry. NURBS patches
are a special type of geometry, quite
different from conventional mesh types. A
NURBS curve is defined by its order, a set of
weighted control points and a knot vector.

geometry.uSize

geometry.vSize

integer The size.

geometry.point.Pw float4[] List of control points and their weights.

geometry.u.order

geometry.v.order

integer The order.

geometry.u.min

geometry.u.max

float Parameters defining the NURBS patch.

APPENDIX D: STANDARD ATTRIBUTES | LOCATION TYPE CONVENTIONS

TECHNICAL GUIDE 235

Location Type or Attribute Type Description

geometry.u.knots

geometry.v.knots

float[] Knot vector, a sequence of parameter
values.

geometry.trimcurves Parameters defining the NURBS patch.

geometry.arbitrary.<group> See polymesh.

Geometry > sphere

sphere Built-in primitive type for a sphere,
supported by some renderers.

geometry.radius double The radius of the sphere.

geometry.id integer Object ID. This is not used for output,
originally it was added as an example for
SGG plug-in.

Geometry > camera

camera Location type to declare a camera.

geometry.projection string The light projection mode (perspective or
orthographic).

geometry.fov double The field of view angle in degrees

geometry.near double Distance of the near clipping plane

geometry.far double Distance of the far clipping plane

geometry.left

geometry.right

geometry.bottom

geometry.top

double The screen window placement on the
imaging plane. The bound of the screen
window.

geometry.centerOfInterest double This is used for tumbling in the viewer it has
no affect on the camera matrix.

geometry.orthographicWidth double The orthographic projection width.

APPENDIX D: STANDARD ATTRIBUTES | LOCATION TYPE CONVENTIONS

TECHNICAL GUIDE 236

Location Type or Attribute Type Description

Geometry > light

light Location type to declare a light.

geometry Shares the same attributes as camera.

geometry.radius float The radius of the light.

geometry.previewColor float3 The color of the light in the Viewer.

Instancing

Instancing > Arnold

Instancing > Arnold > instance source

instance.type string Sets the instance type.

Optional. If not set, it defaults to object.

Note: Instancing in Arnold works by either
specifying an instance source location for
each instance, or by specifying an instance
ID, in which case the first location
encountered with a given ID becomes the
instance source for all subsequent locations
with the same ID.

If specifying an instance source, the
attributes under Instancing > Arnold >
instance apply. If specifying an instance
ID, the attributes under Instancing >
Arnold > geometry apply.

Instancing > Arnold > instance

geometry.instanceSource string Specifies the scene graph location of the
instance source.

instance.arbitrary group Follows the same conventions as
geometry.arbitrary for specifying per-
instance user data overrides.

APPENDIX D: STANDARD ATTRIBUTES | LOCATION TYPE CONVENTIONS

TECHNICAL GUIDE 237

Location Type or Attribute Type Description

Instancing > Arnold > geometry

instance.ID string A string attribute instance.ID. Locations
sharing the same value for instance.ID
become instances of the first location with
that ID encountered.

Instancing > PRMan

Instancing > PRMan > instance source

instance.type string Optional. If not set, it defaults to object.
Available options are:

object

katana

inline.archive

Note: Defining an object as instance source
captures the state of the RIB file at that
object block, including shaders and other
attributes, whether set in the object block,
or inherited from higher in the stack. This
generally overrides the state at the point of
instantiation at instance locations.
Because of this, care should be taken when
using PRMan instancing. For more
information, see the PRMan
documentation, and the Instancing chapter
in the Katana User Guide.

forceExpand integer An integer that, when set to 1, ensures the
instance source location is forced to expand
before any of the instances.

Instancing > PRMan > instance

geometry.instanceSource string Specifies the scene graph location of the
instance source.

APPENDIX D: STANDARD ATTRIBUTES | LOCATION TYPE CONVENTIONS

TECHNICAL GUIDE 238

Location Type or Attribute Type Description

instance.arbitrary group Follows the same conventions as
geometry.arbitrary for specifying per-
instance primvar overrides.

bound double6 List of six doubles defining two points that
define a bounding box. The order of the
values is xmin, xmax, ymin, ymax, zmin, and
zmax.

Materials

Materials > material Location type for a shader definition.

material.viewerShaderSource string Source of the Viewer shader.

material.<renderer><ShaderCategory>Shader group This group has different names depending
on the renderer and shader used, for
example, prmanLightShader or
arnoldSurfaceShader.

The group contains all the shader attributes
used by a particular shader type for a
specific renderer.

Other

Other > brickmap PRMan only - a brickmap is a file used by
RendermRenderManan to store 3D
information.

geometry string Filename: Katana passes this value to
PRMan as:

RiGeometry("brickman," "filename",
<geometry.filename>, RI_NULL)

Other > volume PRMan only

APPENDIX D: STANDARD ATTRIBUTES | LOCATION TYPE CONVENTIONS

TECHNICAL GUIDE 239

Location Type or Attribute Type Description

geometry.type string This attribute controls how the volume
location is interpreted. Different render
plug-ins support specific attribute
conventions based on this attribute.

As of the PRMan 17 plug-in, the following
volume types are supported:

riblobby

riblobbydso

rivolume

rivolumedso

The corresponding attribute conventions
for each are described in the rest of this
section. Primvars are supported through
the canonical geometry.arbitrary
attribute convention.

Other > riblobby The riblobby type is mapped to a prman
RiBlobbyV call. The required attributes for
this type reflect the parameter of the
RiBlobbyV function.

See PRMan documentation for more
details.

geometry.type string type == riblobby

geometry.nleaf integer Number of primitive blobs

geometry.code integer[] Sequence of Op-codes describing the
object’s primitive blob fields.

geometry.floats float[] Float parameters of the primitive fields
(optional)

geometry.strings string[] String parameters of the primitive fields
(optional)

APPENDIX D: STANDARD ATTRIBUTES | LOCATION TYPE CONVENTIONS

TECHNICAL GUIDE 240

Location Type or Attribute Type Description

Other > riblobbydso The riblobbydso is a convenience type that
is mapped to a single 1004-opcode
RiBlobbyV call. The dso filename provided
through the dso attribute is prepended to
the stringargs attribute values and then
passed as strings parameter.

A typical Blobby call for a riblobbydso type
looks as follows:
Blobby 1 [1004 0 size
(<floatargs>) 0 size
(<stringargs>) 1]

[<floatargs>] [<dso>
<stringargs>]

See the PRMan documentation for more
details.

geometry.type string type == riblobbydso

geometry.dso string Specifies the path to the plug-in to be used
to evaluate the volume region.

geometry.volumetric integer Defines if the primitive field is rendered as
an iso-surface (0) or as a volumetric region
(1). If the 'volumetric' attribute is set and its
value is 1, an opcode 8 is prepended to the
opcodes array.

geometry.floatargs float[] Float parameters of the primitive fields
(optional).

geometry.stringargs string[] String parameters of the primitive fields
(optional).

APPENDIX D: STANDARD ATTRIBUTES | LOCATION TYPE CONVENTIONS

TECHNICAL GUIDE 241

Location Type or Attribute Type Description

Other > rivolume The rivolume type is mapped to a PRMan
RiVolumeV call. The shape attribute value
must be set to one of the PRMan supported
shapes, such as box, ellipsoid, or cone.

The RiVolume bounds parameter is set
using the value of the bound attribute
defined on the current location, this
parameter must be set.

The RiVolume nvertices parameter is set
using the value of the voxelResolution
attribute.

See the PRMan documentation for more
details.

geometry.type string type == rivolume

geometry.shape string Defines the shape of the volume region.

geometry.voxelResolution integer3 Specifies the number of vertex and varying
storage class primitive variables (if omitted
defaults to [0, 0, 0])

bounds double6 See Location Type Conventions > Group
Attributes > bound for more details.

APPENDIX D: STANDARD ATTRIBUTES | LOCATION TYPE CONVENTIONS

TECHNICAL GUIDE 242

Location Type or Attribute Type Description

Other > rivolumedso The rivolumedso type is mapped to a
PRMan RiVolumeV call using the
blobbydso: prefix for the RiVolumeV type
parameter.

The RiVolume bounds parameter is set
using the value of the bound attribute
defined on the current location.

The RiVolume nvertices parameter is set
using the value of the voxelResolution
attribute.

floatargs and stringargs are mapped to
primitive variables blobbydso:floatargs
and blobbydso:stringargs.

A typical RiVolume call for a rivolumedso
type looks as follows:
Volume “blobbydso:<dso>” <bound>
<voxelResolution> "constant
string[n]
blobbydso:<stringargs>"
"constant float[m]
blobbydso:<floatargs>"

See the PRMan documentation for more
details.

geometry.type string type == rivolumedso

geometry.dso string Specifies the path to the plug-in to be used
to evaluate the volume region.

geometry.voxelResolution integer3 Specifies the number of vertex and varying
storage class primitive variables (if omitted
defaults to [0, 0, 0]).

geometry.floatargs float[] Float parameters of the primitive fields
(optional).

APPENDIX D: STANDARD ATTRIBUTES | LOCATION TYPE CONVENTIONS

TECHNICAL GUIDE 243

Location Type or Attribute Type Description

geometry.stringargs string[] String parameters of the primitive fields
(optional).

bounds double6 See Location Type Conventions > Group
Attributes > bound for more details.

Other > collection This is not a real location type. Katana
displays collections that appear in the
collections attribute on any location as a
fake hierarchy location in the scene graph.
The location is shown with gray text to
indicate that it’s not a real location.

Other > error Renders halt if this type is encountered
(fatal error). An error message is written to
the Render Log and displayed in the
console.

Scene Graph. The string Attribute errorMessage can be
set at any location to display a non-fatal
error message.

Other > faceset Describe a set of faces of a parent
geometry. (Only valid as an immediate child
of polymesh or submesh)

Other > info This location can be used to embed user-
readable info in a klf or assembly. It's
ignored in rendering. Its text attribute is
displayed as HTML in the Attribute tab.

info.text string Info text to display in the Attributes tab.

Other > level-of-detail group Geometry with a specific level of detail.
These are children of a single level-of-detail
group.

APPENDIX D: STANDARD ATTRIBUTES | LOCATION TYPE CONVENTIONS

TECHNICAL GUIDE 244

Location Type or Attribute Type Description

lodRanges float MinVisible

float maxVisible

float lowerTransition

float upperTransition

These values can be set by lodValuesAssign.

Other > light material A material to be assigned to a light.

Other > procedural A legacy attribute for older plug-ins, all new
plug-ins should be Scene Graph Generators.

Other > renderer procedural Location containing attributes that define a
renderer-specific procedural.

Other > renderer procedural arguments Definition of a renderer procedural
arguments that can be assigned to a
renderer procedural.

Other > ribarchive RenderMan-specific rib files can be loaded
and passed to the renderer. Such a file can
be seen as a black box, for instance, the
scene graph only contains the file name to
the rib file and has no insight to the data
containing within.

geometry string filename: The path and file name of the .rib
file, for example, /tmp/archive.rib.

Other > scenegraph generator Contains attributes that define a Scene
Graph Generator for deferred evaluation.

generatorType string String indicating the generator type.

args group Arguments defined by the Scene Graph
Generator.

APPENDIX D: STANDARD ATTRIBUTES | LOCATION TYPE CONVENTIONS

TECHNICAL GUIDE

Appendix E: PRMan Technical
Notes

Use of the "id" Identifier Attribute
The id pass that Katana uses in the Monitor for picking objects makes use of an identifier attribute called "id". This
makes use of a special feature in PRMan where if an identifier attribute is called "id", it is automatically available as an
AOV without the need for any explicit code in shaders to write the value into an AOV.

This can cause potential issues if you want to make use of the "id" identifier attribute for other custom purposes,
such as to write out your own id pass during renders. The "id" attribute is only used by Katana in Preview Render
mode so the "id" identifier attribute can be safely set for Disk Renders. To avoid conflict with Katana's internal use
of the "id" attribute, an Interactive Render Filter can be used to remove the "id" attribute in Preview Render mode.

Custom id passes can also be created with other names by means of explicit writeaov calls added to shader's code.
The following code snippets show two versions of a very simple surface shader that use the writeaov function to tag
objects with a "material_id" identifier. materialId_v1 relies on a shader parameter to assign an id to a location, while
materialId_v2 uses the attribute function to read a user:myId attribute (the user attribute can be assigned to a
location using an AttributeSet node or an AttributeScript node).

surface materialId_v1(uniform float _id = 0;)

{

writeaov("material_id", _id);

Ci = Os * Cs * normalize(N).-normalize(I);

Oi = Os;

}

surface materialId_v2()

{

uniform float myId = 1;

attribute("user:myId", myId);

writeaov("material_id", myId);

245

TECHNICAL GUIDE 246

Ci = Os * Cs * normalize(N).-normalize(I);

Oi = Os;

}

APPENDIX E: PRMAN TECHNICALNOTES |

TECHNICAL GUIDE

Appendix F: AttributeScript
Differences Between Katana 1

and Katana 2
• GetAttr("name") no longer accesses the location name, since location names are no longer simple string

attributes. You should use GetName() instead.

• SetAttr("name", <newName>) no longer renames a location. Locations are explicitly named on creation in
Katana 2.x. The Rename node or OpScript nodes should be used instead.

• GetAttr(<attrName>, inherit=True) now consistently returns an attribute from the input to the
AttributeScript node, even when queried at other locations. In previous versions, in some situations, the output of
the AttributeScript node would be considered.

• GetChildNames(atLocation=<locationPath>) causes the script to abort if the requested location is not an
ancestor of the location the AttributeScript is operating upon. The script restarts from the beginning once the
location is cooked. In most cases this is inconsequential, but can have an impact if the script is dealing with external
resources (database, filesystem, and so on).

• Functions which usually return a ScenegraphAttr, for instance, GetAttr(<attrName>, asAttr=True)now
take the optional asFnAttribute parameter (default: False) to return the newer FnAttribute type. There are
a number of method differences between FnAttribute and the old PyScenegraphAttr type, including the
following:

• FnAttribute.Attribute has no type() method, instead use isinstance(attr,
FnAttribute.<Type>Attribute)

• FnAttribute.GroupAttribute has no method childNames(), instead use childList()

NOTE: AttributeScripts can now use FnAttribute instead of ScenegraphAttr, for more information
see the ScenegraphAttr Porting Guide of the Katana Technical Guide.

• The following methods to resolve and query information about asset IDs are now available in AttributeScript nodes
through the Util module:

DefaultAssetPlugin.isAssetId(string)
DefaultAssetPlugin.containsAssetId(string)
DefaultAssetPlugin.resolveAsset(assetId)

247

TECHNICAL GUIDE 248

DefaultAssetPlugin.resolvePath(path, frame)
DefaultAssetPlugin.getUniqueScenegraphLocationFromAssetId(assetId, includeVersion)
DefaultAssetPlugin.getRelatedAssetId(assetId, relation)

• In order to support the new threading models in Katana 2.x and avoid UI blocking, AttributeScripts are now
evaluated by a separate pool of Python interpreters. This is to mitigate the limitations the CPython GIL imposes.
Consequently, the following considerations should be taken into account:

• Setup scripts can be run more than once, but only once per interpreter in the pool.

• Child locations may not run in the same interpreter as parent locations.

It is important that any code making use of the user module does not assume that it is the same instance as was
present when the script ran in another location.

• As AttributeScripts are now run through an interpreter pool (see above), simple AttributeScripts now have a greater
performance impact than in previous Katana versions (due to the setup/IPC overhead). As such, it’s recommended
to use OpScript for anything that isn’t using pymath or any heavy lifting through bindings to third-party libraries, as
it doesn’t include the same overheads.

NOTE: For more information on Python interpreter processes, see the Python Processes and Geolib3
chapter of the Katana Technical Guide.

Gaffer
• The existing legacy Gaffer node type from Katana 1.x is still present, and previously created projects should

continue to work, but it is advisable to move to using the new GafferThree node type where possible.

• Gaffer nodes from 1.x projects are updated to 2.0-compatible Gaffer nodes by an update script.

• The way that Sky Dome items are implemented in classic Gaffer has changed. Instead of an arnoldSurfaceShader
of type skydome_light on the item’s Material node, materials on Sky Domes are now resolved internally in Gaffer.

Alembic_In

The Alembic_In node type now supports a useOnlyShutterOpenCloseTimes parameter that forces the Alembic
cache to only use the time samples corresponding to shutter open and close times when the maxTimeSamples
option is set to 2.
The parameter is available in the advanced section, in the Parameters tab.

NOTE: The useOnlyShutterOpenCloseTimes argument is also supported by the AlembicIn Op.

VelocityApply

The following parameters have been added to VelocityApply nodes:

APPENDIX F: ATTRIBUTESCRIPT DIFFERENCES BETWEEN KATANA 1 AND KATANA 2 |

TECHNICAL GUIDE 249

• velocityAttribute - The name of the attribute representing the velocity information to be used by the node. If the
parameter is not set, the following attributes are checked:

• geometry.point.V

• geometry.point.v

• geometry.arbitrary.v

• velocityUnits - Units to be used to interpret the values stored in the velocity attribute, with the following options:

• units / second

• units / frame

ScenegraphGeneratorSetup
• The Alembic_In Scene Graph Generator has been removed, having been superseded by the AlembicIn Op.

• The signature of the createProxyAttr() method of BaseProxyLoader has been modified to return a
GroupAttribute that sets up the execution of an Op instead of a Scene Graph Generator. This Op is specified by the
child opType StringAttribute and optional child opArgs GroupAttribute. Proxy resolution using a custom Scene
Graph Generator is supported by setting the opType as ScenegraphGeneratorHost and passing the name of
the generator as the StringAttribute opArgs.generatorType, and the optional args in GroupAttribute
opArgs.args.

APIs
• Attribute Modifier Plug-ins (AMPs) and Scene Graph Generator plug-ins (SGGs) need to be recompiled. For minor

header/source changes, see the Porting Plug-ins chapter of the Katana Technical Guide.

• AMPs are no longer resolved with an AttributeModifierResolve node. They are resolved with an OpResolve node.

• AMPs can no longer rename locations (through setAttribute("name", "newName") or otherwise). Locations
are explicitly named on creation in Katana 2.x. The Rename node or OpScript nodes should be used instead (or the
core Op API).

• The name attribute is no longer used to determine the name of a scene graph location. Querying the attribute only
returns any data set by other calls to setAttribute()/SetAttr(), and not the name of the location, which
means that name is just like any other attribute. In AMPs, the current location’s name can be queried with
AttributeModifierInput::getName(), and in AttributeScript, with GetName().

• Python-based AssetAPI plug-ins are known to be a performance bottleneck due to the overhead of executing
Python code in separate processes. This is particularly prominent with the high numbers of calls to isAssetId()

that are executed during material resolve on shader parameters. It is therefore advisable to use C-based
implementations where possible.

NOTE: For more information on Python interpreter processes, see the Python Processes and Geolib3
chapter of the Katana Technical Guide.

APPENDIX F: ATTRIBUTESCRIPT DIFFERENCES BETWEEN KATANA 1 AND KATANA 2 |

TECHNICAL GUIDE 250

• Python-based Render Location plug-ins have been removed due to the inherent performance bottleneck of
executing Python code when evaluating /root. This is a special case that should be kept as lightweight as possible,
due to the frequency of evaluation in interactive sessions. The core plug-ins have been replaced by C++
RenderOutputLocation plug-ins that are shipped as source and can be found in
plugins/Src/RenderOutputLocations.

• Across the board, ScenegraphAttr has been replaced by FnAttribute, with a new, optimised implementation.

• FnAttribute::GroupBuilder::build() has been modified to support an optional builderMode parameter
to define if the content of the builder has to be retained or flushed when the resulting GroupAttribute is created.
The builderMode parameter has type BuilderBuildMode and supports only the values BuildAndFlush and
BuildAndRetain:

GroupAttribute build(BuilderBuildMode builderMode = BuildAndFlush);

Notice that, in Katana 2.0, BuildAndFlush is the default value for the builderMode parameter, so
GroupBuilder::build() flushes the content of the builder by default.

The same behavior applies in the Python and LUA bindings for FnAttribute::GroupBuilder.

Calling GroupBuilder::build() on the same GroupBuilder multiple times then results in a valid
GroupAttribute being returned only for the first invocation while, for the following ones, an invalid
FnAttribute is returned.

Instead of calling FnAttribute::GroupBuilder::build() multiple times, the GroupAttribute returned by
build() can be stored in a variable and used in different places in the code. Alternatively the BuildAndRetain
value for the builderMode parameter can be used.

Viewer Proxies

Ops can now be used to define viewer proxies on scene graph locations. Two main attribute conventions are
currently supported:

• ViewerProxyLoader (legacy mode) - An Alembic cache can be loaded through the default ViewerProxyLoader,
setting the proxies.viewer string attribute on the target location.

• Op-based - Ops can be chained to create the geometry to be used as a proxy by adding group child attributes to
the proxies.viewer group attribute on the target location. Each child group attribute represents an Op and its
content must contain:

• a string attribute named opType defining the type of the Op to be used.

• a group attribute named opArgs containing attributes defining the Op arguments.

Here's an example of the attributes hierarchy using two Ops to generate the proxy geometry:

Location
/root/world/geo/group

Attributes:
...

APPENDIX F: ATTRIBUTESCRIPT DIFFERENCES BETWEEN KATANA 1 AND KATANA 2 |

TECHNICAL GUIDE 251

proxies
viewer

proxyOp_1
opType 'AlembicIn' (StringAttribute)
opArgs

fileName '/tmp/myProxy.abc' (StringAttribute)
proxyOp_2

opType 'Messer' (StringAttribute)
opArgs

displacement 0.23 (DoubleAttribute)
...

Proxy caches are considered animated by default. Static proxy caches can be defined by setting the proxies.static
IntAttribute to 1.

Attribute History

There is a new API for querying Attribute History from Python. You can find it in the
UI4.Util.AttributeHistory module.

Attribute History can be queried synchronously, in which case the UI blocks until the result is computed and
returned, or asynchronously if you provide a callback to run when the computation is complete.

Handling of Font Preferences

Katana 2.0 uses an application-wide Qt style sheet to apply font preferences to Qt widgets. Custom widgets that use
font metrics before widgets are shown need to be modified to add QWidget.ensurePolished() calls before
working with QtGui.QFontMetrics instances.

Documentation

The Help tab has been deprecated in favor of serving HTML documentation in your web browser. The
documentation is now generated by Sphinx, which features a number of niceties, such as searching and syntax
highlighting.

The Examples page of the previous HTML documentation has been replaced by a dedicated Example Projects tab.
The tab can be launched through Katana’s main menu bar, by navigating to Help > Example Projects.

Changes in Third-Party Library Dependencies

The changes in the third-party library dependencies are the following:

APPENDIX F: ATTRIBUTESCRIPT DIFFERENCES BETWEEN KATANA 1 AND KATANA 2 |

TECHNICAL GUIDE 252

• Alembic 1.5.3 - provides better support for the Ogawa data storage backend.

• OpenColorIO - Katana previously shipped with a build of OpenColorIO that used FnOpenColorIO namespaced
symbols, but the OpenColorIO libraries were not named accordingly (with the Python bindings
libOpenColorIO.so and PyOpenColorIO.so). This caused problems with using a custom facility-installed
OpenColorIO in parallel with the Katana libraries. This has been updated so that the libraries shipped with Katana
are now Fn-prefixed too (libFnOpenColorIO.so and FnPyOpenColorIO.so). Using the Python bindings is still
possible through import FnPyOpenColorIO and any code using PyOpenColorIO needs updating to either use
FnPyOpenColorIO, or a facility-installed OpenColorIO could be used instead of the one that ships with Katana.

• Python 2.7.3 - upgraded to match the VFX Platform CY2014 specification

• Qt 4.8.5 - upgraded to match the VFX Platform CY2014 specification

APPENDIX F: ATTRIBUTESCRIPT DIFFERENCES BETWEEN KATANA 1 AND KATANA 2 |

http://www.vfxplatform.com/
http://www.vfxplatform.com/

	Cover

	Contents

	Preface
	Terminology

	Katana For The Impatient
	What Is Katana?
	A Short History of Katana
	Scene Graph Iterators
	The Katana User Interface
	Katana in Look Development and Lighting
	Technical Docs and Examples

	Scene Attributes and Hierarchy
	Common Attributes
	Generating Scene Graph Data

	Locations and Attributes
	Inheritance Rules for Attributes
	Setting Group Inheritance using the API
	Light Linking

	Katana Launch Modes
	Launching Katana
	Interactive Mode
	Batch Mode
	Script Mode
	Shell Mode
	Querying Launch Mode

	Nodegraph API
	Nodegraph API Basics
	Creating a New Node
	Referencing a Node
	Referencing a Parameter
	Node Position
	Node Naming
	Getting the Parameters of a Node
	Setting the Parameters of a Node
	Input and Output Ports

	Dynamic Parameters
	Duplicating Nodes
	Serialize to XML
	Deserialize
	Printing An XML Tree

	Group Nodes
	A Group Node Example
	Send and Return Ports
	Return Port Example
	Send Port Example

	Physical and Logical Connections
	Physical and Logical Source

	User Parameters
	Top Level User Parameters
	Nested User Parameters
	Parameter Hints

	Parameter Expressions
	Python

	CEL
	Enableable Parameter Groups
	Dynamic Arrays for PRMan Shader Parameters

	Shelf Item Scripts
	Running Shelf Item Scripts from the UI
	Types of Shelves
	Built-in Shelves
	User-defined Shelves
	Additional Shelves

	Directory Structure for Shelf Item Scripts
	Node-Specific Shelf Item Scripts
	Pre-Defined Variables in Node-Specific Shelf Item Scripts
	Targeting Node-Specific Shelf Item Scripts to Specific Types of Nodes

	Docstrings of Shelf Item Scripts

	Op API
	Op API Basics
	The OpTree

	Core Concepts with Geolib3
	Geolib3: Into the Details
	Differences Between Geolib2 and Geolib3
	The Runtime
	Ops
	Clients

	The Op API Explained
	The Cook Interface
	Op Arguments
	Scene Graph Creation
	Reading Scene Graph Input
	CEL and Utilities

	Integrating Custom Ops
	Building Ops
	GenericOp
	The NodeTypeBuilder Class
	Op Toolchain

	Client Configuration
	Advanced Topics
	Caching

	ScenegraphAttr Porting Guide
	Introduction
	Overview of Changes
	Porting from 1.x ScenegraphAttr to 2.0 ScenegraphAttr
	Porting from 1.x ScenegraphAttr to 2.0 FnAttribute

	Op Best Practices Cheat Sheet

	NodeTypeBuilder
	Introduction
	Creating a New Node
	The buildOpChain Function in Detail

	Examples of NodeTypeBuilder
	RegisterMesserNode.py
	SubdividedSpaceOp.py
	RegisterSphereMakerSGGNode.py

	How to Install Scripts that Use the NodeTypeBuilder

	Super Tools
	Registering and Initialization
	Node
	Editor
	Examples

	Scene Graph Generator Plug-Ins
	Running an SGG Plug-in
	ScenegraphGeneratorSetup
	ScenegraphGeneratorResolve
	Generated Scene Graph Structure

	SGG Plug-in API Classes
	ScenegraphGenerator
	Registering an SGG Plug-in
	ScenegraphContext
	Providing Error Feedback

	Porting Plug-ins
	Introduction
	Implications for Existing Plug-ins

	Ops Versus Scene Graph Generators
	Ops Versus Attribute Modifiers
	Defining the getAttr and getOutputAttr Functions
	Recompiling Existing SGG and AMP Plug-ins
	Source Locations
	Additional Build-ins
	Behavioral Differences for SGGs
	Behavioral Differences for AMPs

	FAQ for Plug-in Porting

	Message Logging
	Message Levels
	Loggers
	Root Logger
	Custom Logger

	Logging Exceptions

	Asset Management System Plug-in API
	Concepts
	Asset ID
	Asset Fields
	Asset Attributes
	Asset Publishing
	Transactions

	Creating an Asset Plug-in
	Core Methods

	Publishing an Asset
	createAssetAndPath()
	postCreateAsset()
	Examples

	Asset Types and Contexts
	Accessing an Asset
	Additional Methods
	reset()
	resolveAllAssets()
	resolvePath()
	resolveAssetVersion()
	createTransaction()
	containsAssetId()
	getAssetDisplayName()
	getAssetVersions()
	getUniqueScenegraphLocationFromAssetId()
	getRelatedAssetId()
	getAssetIdForScope()
	setAssetAttributes()
	getAssetAttributes()

	Top Level Asset API Functions
	LiveGroup Asset Functions
	Extending the User Interface with Asset Widget Delegate
	Configuring the Asset Browser

	The Asset Control Widget
	Implementing A Custom Asset Control Widget
	Asset Render Widget
	Additional Asset Widget Delegate Methods
	addAssetFromWidgetMenuItems()
	shouldAddStandardMenuItem()
	shouldAddFileTabToAssetBrowser()
	getQuickLinkPathsForContext()

	Locking Asset Versions Prior to Rendering
	Setting the Default Asset Management Plug-in
	The C++ API

	Python Processes and Geolib3
	Render Farm API
	What scripts work with the Farm API?
	Farm XML Example
	The onStartup Callback
	Farm Menu Options
	The Util Menu
	Render Farm Pop-Up Menu Option
	Farm Node Parameters
	Get Sorted Dependency List
	Get Sorted Dependency List Keys

	Render Dependencies
	Render Passes and Outputs
	File Browser Example
	Custom Dialog

	Errors, Warnings and Scene Validation
	Additional Utils

	Custom Node Graph Menus
	LayeredMenuAPI Overview
	Creating a Custom Node Graph Menu Plug-in
	Example of Layered Menu Plug-in
	CustomLayeredMenuExample

	Typed Connection Checking
	Shader Outputs
	Shader Inputs
	Logical Inputs

	Args Files in Shaders
	Edit Shader Interface Interactively in the UI
	Enabling Editing the User Interface
	Edit Main Shader Description
	Export Args File
	Widget Types
	Widget Options
	Conditional Visibility Options
	Conditional Locking Options
	Editing Help Text
	Grouping Parameters into Pages
	Co-Shaders
	Co-Shader Pairing
	Example Args File
	Args Files for Render Procedurals

	presetsGroup
	Defining presetsGroup Values

	UI Hints for Plug-ins Using Argument Templates
	Usage in Python Nodes
	Usage in C++ Nodes

	Customizing the GafferThree
	Creating a Custom GafferThree Package Class
	Package Class
	Edit Package Class (Optional)
	UI Delegate Class
	Package Initialization File
	Example of Implementing a Custom GafferThree Package Class: Sky Dome

	Registering Callbacks

	Creating New Importomatic Modules
	Importomatic Core Files
	Where to Place New Modules
	Minimum Implementation
	Importomatic Camera Asset Example

	Custom Hierarchy Structures and Extensions
	Creating a Tree Structure
	Updating the Node Graph
	Additional Context Menu Actions
	Registering the GUI
	Adding Importomatic Items Using a Script

	Custom Render Resolutions
	Using the UI
	Modifying the Resolutions XML
	Using a Custom Resolutions XML
	Using the Python API

	Managing Keyboard Shortcuts and the shortcuts.xml File
	Example of a shortcuts.xml File

	Custom Node Colors
	Flavors and Rules
	Editing Rules
	Editing Flavors
	Updating Node Colors
	Making Updates Persist

	Flavor API

	Appendix A: Custom Katana Filters
	Scene Graph Generators
	Attribute Modifiers

	Appendix B: Other APIs
	File Sequence Plug-in API
	Attributes API
	Attribute History
	LiveRenderAPI
	Render Farm API
	Importomatic API
	Gaffer Profiles API
	Viewer Manipulator API
	Viewer Modifier API
	Viewer Proxy Loader API
	Renderer API

	Appendix C: Glossary
	Glossary
	Node
	Asset Fields
	Asset ID
	Asset Widget Delegate
	Widget
	Hint
	Katana Scene Graph
	Katana Node Graph
	Look File
	Node Parameter
	Scene Graph Attribute
	Scene Graph Location

	Appendix D: Standard Attributes
	Key Locations
	Location Type Conventions

	Appendix E: PRMan Technical Notes
	Use of the id Identifier Attribute

	Appendix F: AttributeScript Differences Between Katana 1 and Katana 2
	APIs
	Viewer Proxies
	Attribute History
	Handling of Font Preferences
	Documentation
	Changes in Third-Party Library Dependencies

